
Texture Shaders

Michael D. McCool
University of Waterloo

Wolfgang Heidrich
Max Planck Institute

Abstract

Extensions to the texture-mapping support of the abstract graphics
hardware pipeline and the OpenGL API are proposed to better sup-
port programmable shading, with a unified interface, on a variety
of future graphics accelerator architectures. Our main proposals in-
clude better support for texture map coordinate generation and an
abstract, programmable model for multitexturing.

As motivation, we survey several interactive rendering algo-
rithms that target important visual phenomena. With hardware im-
plementation of programmable multitexturing support, implemen-
tations of these effects that currently take multiple passes can be
rendered in one pass. The generality of our proposed extensions
enable efficient implementation of a wide range of other interactive
rendering algorithms.

The intermediate level of abstraction of our API proposal enables
high-level shader metaprogramming toolkits and relatively straight-
forward implementations, while hiding the details of multitexturing
support that are currently fragmenting OpenGL into incompatible
dialects.

CR Categories: I.3.1 [Computer Graphics]: Hardware
Architecture—Graphics Processors; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Color, shading, shad-
owing, and texture.

Keywords: Hardware acceleration and interactive rendering,
BRDFs, shadows, shading languages, illumination, OpenGL.

1 Introduction

Several multipass algorithms have been proposed recently to imple-
ment photorealistic and/or physically-based rendering algorithms
with hardware acceleration. Algorithms exist for global illumi-
nation, local lighting models with arbitrary anisotropic reflectance
distributions and normal/tangent interpolation, and simulation of
arbitrary lens systems. Unfortunately, the multipass nature of these
algorithms can result in relatively disappointing performance.

Multipass algorithms suffer a severe performance penalty if the
geometry must be sent through the pipeline more than once. Effec-
tively, the utilization of the geometry stage of the pipeline is divided
by the number of passes, since for many multipass algorithms, the

To appear in SIGGRAPH/Eurographics Workshop on Graphics Hard-
ware 1999. Copyright c 1999 by the Association for Computing Machinery,
Inc. Permission to make digitial or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

mmccool@cgl.uwaterloo.ca; Computer Graphics Lab, Depart-
ment of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada N2L 3G1

heidrich@mpi-sb.mpg.de; Computer Graphics Group, Max
Planck Institute for Computer Science, Im Stadtwald, 66123 Saarbrücken,
Germany

geometry of each pass is identical. This is a serious problem as for
many applications existing acceleration architectures are geometry
transformation or geometry bandwidth limited.

In addition, multipass algorithms can consume a great deal of
memory storing frames of intermediate results, a problem which
will only be compounded when signed high-precision frame buffer
and texture map color formats, needed for more advanced rendering
effects [20, 21], are available. Tiling the framebuffer can help to
address these problems, but only at a cost in software complexity,
and possibly in overall performance.

In order to improve the performance of high-quality hardware-
accelerated rendering and reduce the geometry transformation and
bandwidth bottleneck, more should be done on each pass. The
tradeoffs are similar to the RISC vs. CISC tradeoffs in CPU de-
sign. However, in graphics accelerator design there are multiple
dimensions in which complexity could be added or reduced, and
in some cases the conclusions may be different than those in CPU
design. For instance, RISC programs are longer than CISC pro-
grams since they do less with each instruction, but because (non-
self-modifying) programs are static, instruction caches can address
the potential bandwidth problem. The equivalent issue in graphics
accelerators is geometry bandwidth. Unfortunately, in animations
and highly interactive virtual environments (for instance, games)
the transformed geometry can change in every frame, so geometry
caching may be of little use.

One way to reduce the number of passes would be to provide spe-
cialized hardware support for each desired rendering effect: Phong
shading, shadows, bump mapping, etc.

However, implementing specialized hardware for specific ren-
dering algorithms and effects is not cost-effective, and does not
permit the resources used for these effects to be retargeted to other
rendering problems. Such specific rendering effects are the CPU
equivalent of an “evaluate polynomial” instruction.

On the other hand, adding too much generality and programma-
bility to graphics hardware, for instance by using a parallel MIMD
array of general-purpose processors or a SIMD processor-enhanced
frame buffer memory, may be overkill. In particular, we usually
only have to evaluate relatively simple expression trees [4] to com-
pute the color to apply to a fragment, not Turing-complete pro-
grams.

As a middle ground, we propose a small number of conceptual
changes to the standard texture-mapping and compositing pipeline
and the OpenGL API to enable practical hardware-accelerated pro-
cedural shaders. These “texture shaders” would add a measure of
programmability to graphics hardware but are not so general that
analysis and optimization are impossible.

While the abstract model of texture shaders is at the level of mul-
titexturing, the API is in fact at a high enough level that a wide range
of hardware implementations are possible, including pure multi-
pass, SIMD processor-enhanced memory, hybrid multipass com-
bined with fixed-architecture multitexturing, and finally single-pass
programmable multitexturing. On the other hand, texture shaders
are simple enough that mapping them to a given architecture will
not be a monumental task. In fact, simulating texture shaders using
multipass techniques on top of the existing compositing, multitex-
turing, and pixel transfer operators available on current machines is
feasible, with the single addition of signed compositing arithmetic

and color representations. Vice versa, for backward compatibility
existing multitexturing operations can be implemented using any
hardware capabilities added to implement texture shaders.

Texture shaders are general enough that they can be used as an
intermediate target language for higher-level shader compilers or
object-oriented shader metaprogramming toolkits (for instance, us-
ing a “shader node graph” akin to the scene graph in OpenInven-
tor). As with standard compilers, the use of an intermediate lan-
guage decouples the high-level languages from the implementation,
which permits a variety of high-level shader translators to map to a
wide range of implementations. This permits the cost of developing
a high-level shader language to be amortized over a wide product
line. At the same time, compliance verification with the simple API
proposed is more straightforward than with a high-level language.

Our proposal [26] has several parts. These parts are somewhat
independent but are designed to work together in order to express
the implementations of certain photorealistic rendering algorithms
cleanly and efficiently.

First, we extend and generalize existing texture coordinate gen-
eration modes so internally generated or maintained geometric in-
formation (such as the normalized vector to the light source from
a vertex) can be converted into texture coordinate information or
shader parameters in useful ways. We also add tangent vectors to
complete the specification of a surface coordinate system to com-
plement the existing object and view space coordinate systems.

The texture coordinate generation extensions are very power-
ful in their own right and could significantly improve performance
when rendering sophisticated lighting effects, yet they will be gen-
erally easier to implement than full texture shader support. In
fact, on implementations that use the host CPU for texture coordi-
nate generation and lighting, the new texture coordinate generation
modes proposed can be added to the drivers of existing graphics
accelerators.

Secondly, we extend and generalize multitexturing to support a
directed acyclic graph (DAG) of blending operators; currently mul-
titexturing supports only a fixed-length chain of such operators. At
the root (output) of the DAG is the color assigned to a fragment
destined for the frame buffer; at the leaves (inputs) are filtered tex-
ture lookups, the colors interpolated from vertex colors and/or hard-
ware lighting, and possibly parameters passed in or generated from
local geometric information using the texture coordinate genera-
tion modes and a texture coordinate pass-through mode. Signed
arithmetic and scaling by powers of two is permitted within the
shader DAG, with internal values clamped to and the output
clamped to .

The shader definition includes a mechanism for dynamically
binding texture coordinates and texture lookups. This mechanism
enables reuse of texture coordinate generation and interpolation
computations, which is especially useful when a software imple-
mentation of the geometry stage of the pipeline is used.

The shader DAG is specified at the API level as a postfix (reverse
Polish notation) stack program operating on a stack of 4-vectors,
with some support for infix notation.

It is unlikely that the texture shading DAG will actually be im-
plemented as a stack machine, but rather as an optimized paral-
lel VLIW or SIMD machine, or even using hidden multipass ren-
dering. We sketch a few possibilities in Section 6. However, the
abstract stack machine permits the removal of variable names in
the shader and permits modular metaprogramming. These features
can be exploited by higher-level shader metaprogramming software
toolkits.

2 Prior Art

Several researchers have developed multipass techniques for gener-
ating high-quality images using the operations available in contem-

porary graphics hardware. The effects covered by these techniques
include bump mapping [27], normal mapping [19], and reflections
off planar [7] and curved reflectors [12, 17, 29]. The traditional
local illumination model used by graphics hardware can also be
extended to include shadows (using either shadow maps [35] or
shadow volumes [7]), arbitrary reflectance functions [20, 17], and
complex light sources [15, 35].

Other researchers have developed methods for solving the global
illumination problem with the help of graphics hardware. Keller
[22] uses multipass rendering to generate indirect illumination for
diffuse environments. Stürzlinger and Bastos [37] can render indi-
rect illumination in glossy environments by visualizing the solution
of a photon map algorithm. Stamminger et al [36] and Walter et al
[39] place OpenGL light sources at virtual positions to simulate in-
direct illumination reflected by glossy surfaces. Heidrich and Seidel
[17] use multiple rendering passes and environment maps to render
global illumination solutions for non-diffuse environments.

Another useful class of techniques uses light fields; these can
be either rendered directly [9, 24], used to illuminate other objects
[15], or used to simulate realistic cameras and lens systems [18].

While it has been clearly demonstrated that high quality im-
ages can be achieved using multipass techniques, the performance
of these algorithms can be disappointing, especially when used in
combination. There are two reasons for this: hardware mismatch
and multiplicative pass combinations.

2.1 Hardware Mismatch

Hardware mismatch results because contemporary hardware has
been derived from empirical models of rendering. In contrast, pho-
torealistic rendering algorithms are often physically derived and re-
quire higher dynamic range and precision than is usually provided
in hardware. Compositing operations often clamp color values at
inconvenient places in the computation. Current frame buffer arith-
metic is also usually unsigned, which poses an additional problem
for some algorithms.

Surmounting these difficulties is possible but usually requires ex-
tra operations, such as scaling and biasing color values in the frame
buffer. These extra operations can result in a loss of precision and a
severe performance penalty.

The hardware mismatch problem can, for the most part, be over-
come with modifications of color representations (such as signed
values and/or floating-point color representations) and the addition
of a small number of new operations (such as scale factors greater
than unity, perhaps limited to powers of two, in the compositing
operators).

2.2 Pass Combination

More seriously, the organization of contemporary hardware permits
only a relatively small amount of work to be accomplished on each
pass.

Each new photorealisitic effect typically requires multiple
passes. When combining effects, sometimes with some ingenuity
(and loss of modularity) passes can be combined, but in the worst
case the total number of passes is the product of those required for
each individual effect.

Consider, for example, the combination of multipass planar re-
flections [7] with separable lighting models/BRDFs [17, 20]. A
maximum reflection depth of requires passes; in each pass tex-
ture maps representing reflected images must be generated using the
texture maps generated in the previous pass. However, if passes
are needed to compute the local lighting, these passes must be
used for each of the passes required for reflectance, resulting in

passes in total.

Similar multiplicative effects can be observed when combining
multipass algorithms for simulating lens systems [11, 18], shadows
cast from multiple light sources, and so on. While the cost of in-
dividual multipass algorithms is usually tolerable, the expense of
their combination explodes.

2.3 Shading Languages

Shading languages, such as Pixar’s RenderMan shading language,
[13, 38] can be used for more than just specifying local lighting
models. Since shading programs assign the color to a surface with
a relatively arbitrary computation, and can use other sources of
pretabulated information, they can also be used to render shad-
ows, generate non-photorealistic “sketch” renderings for visualiza-
tion and artistic purposes, and can be potentially used to integrate
the results of global illumination solutions into a rendering.

Several attempts have been made to integrate shaders into inter-
active rendering. Some researchers have accelerated the software
evaluation of shaders by precomputing parts of them [10], or by
parallelizing the computations on a number of MIMD or SIMD pro-
cessors; for example, see Perlin [31].

Hardware support for procedural shading has begun to appear
in graphics accelerators. The most prominent example is the Pix-
elFlow architecture [28, 30], which is in the process of being com-
mercialized. In this architecture, several rendering units based
on general-purpose microprocessors and specialized processor-
enhanced memory run in parallel a program implementing a ren-
dering pipeline on part of the scene database. Shaders are imple-
mented using a SIMD array, with shader programs compiled from
a high-level language (pfman) almost identical to Pixar’s Render-
Man shading language, except for the addition of fixed-point types.

Unfortunately, due to differences in demand, production volume,
and position on the learning curve, SIMD arrays are likely to remain
significantly more expensive per bit than conventional memory.

2.4 Sample-Based Approaches

The traditional rendering pipeline used by most contemporary
graphics architectures has been extended recently by some new fea-
tures, available through the OpenGL API, that can be used to im-
prove the realism of rendered images.

The imaging subset that has been added to OpenGL 1.2.1 con-
sists of color transformations and color lookup tables as well as
scaling, biasing, and extended compositing operations. In combi-
nation with the “pixel texture” extension, which feeds rendered im-
ages back as per-pixel texture coordinates, it is possible to combine
normal maps with environment mapping and interesting per-pixel
reflection models [17]. Pixel textures can also be used to imple-
ment shadows and sample light fields [19].

However, the most widely available new feature at the low end
is the ability to apply multiple textures to a single object in a single
rendering pass, using a chain of blending operators. This can reduce
the number of required rendering passes dramatically in many mul-
tipass rendering algorithms, including some of the examples dis-
cussed in the next section.

One of the central premises of this paper is that multitexturing,
whether or not it is actually implemented in hardware, is at least
a useful conceptual abstraction at the API level. However, more
flexibility is needed in the specification of how samples from dif-
ferent texture lookups are combined. We will establish this through
case studies of the expressions needed to compute several important
rendering effects.

3 Rendering Effects Targeted

The following examples will be used to motivate the specific ex-
tensions we propose. We do not mean to imply, by using these
examples, that texture shaders can only be used to implement these
effects. However, each of the following is a very important visual
phenomenon not well served by existing graphics hardware.

3.1 Local Lighting Models

Physically-based local reflectance can be expressed in terms of in-
coming radiance and outgoing radiance at
each surface point :

(1)

where is an incoming light direction, is the view direc-
tion, , the integral is taken over the incom-
ing hemisphere relative to the solid angle measure, the factor

is called the irradiance at , and is called
the bidirectional reflectance distribution function, or BRDF.

Here we have explicitly shown the dependence on surface po-
sition and surface orientation, as specified by the normal vector

and a tangent vector , which in turn also depend on sur-
face position . The BRDF is actually a function of the coordi-
nates of and relative to the position-dependent coordinate
basis , , and . In the following
we will take these dependencies as implied and write the BRDF as

. There is also, of course, an implied dependence
on wavelength/color in , , and , which is not necessarily
separable from the geometric dependency.

If point sources are used (a gross approximation of realistic
lighting situations), the incoming radiance is a sum of delta func-
tions scaled by , where is the intensity of the th light
source and is the world-space distance to the th light source.
Let be a normalized direction vector pointing towards the th
light source. In this situation the reflectance integral reduces to

(2)

Usually, we generalize and use an (empirical) quadratic attenua-
tion function in place of just . This permits point sources
to better approximate the attenuation properties of area sources. For
convenience denote the irradiance from light source as , to give
the following:

(3)

(4)

Unfortunately, even evaluating this (gross) approximation re-
quires evaluations of the 6-dimensional function , assuming
we encode each of , , and with two degrees of freedom.

If we store in a tabulated form, we cannot use a naive ap-
proach; it simply takes too much space. If we remove some of
the degrees of freedom, such as the dependence on surface position

or on the local orientation of the surface (i.e. assume isotropic
BRDFs), we potentially throw away interesting visual phenomena.
While we might want to do this some of the time to save space when
a BRDF is isotropic, we don’t want to be forced to do it all the time.

A shift-invariant BRDF does not depend on surface position .
Elsewhere [20, 17] we have found that visually useful representa-
tions of shift-invariant BRDFs can be obtained using a reparame-
terized separable expansion:

(5)

(6)

where is a relatively simple-to-compute reparameterization, for
example using the halfvector norm as one of the
axes of a new coordinate system [20, 21, 34]. With a good pa-
rameterization, typically good approximations can be found with

, and often even gives good visual results. The
separable decomposition is in effect a compressed representation,
but an asymmetric one; it’s relatively hard to find the right factors

and , but evaluation of the BRDF at a point from
the compressed representation is trivial.

With the right reparameterization and texture-map representa-
tions of and (e.g. parabolic maps [16, 17]) inter-
polation of and gives Phong-shading like results, so
the parameters need only be computed at the vertices of
polygons, as texture map coordinates; see Figure 6. Unfortunately,
for , we need to store signed values in and .

Dependence on can be reintroduced in various ways. For in-
stance, we can assume that the glossy part of the BRDF is shift-
invariant, but an additive diffuse term depends on . This
requires a reconstruction of the following form:

(7)

Alternatively, we could blend between two BRDFs using com-
positing. This might be useful to represent, for example, a chess
board with the white squares using the BRDF of ivory and the black
squares using the BRDF of slate, or to represent localized corrosion
or scuffing of metal:

(8)

Straightforward extensions of this approach could be used for any
other mixed-reflectance model with a small number of base BRDFs.

What is interesting about all the above expansions is that only
multiplication and addition of color values are needed to reconstruct
the reflectance; these operations can be implemented with existing
compositing operations. If is used (giving an asymptotic
error of 0 as) signed arithmetic is needed; however, biasing
can be used at some loss in efficiency and precision.

Compared to implementing Phong shading in hardware, the
texture-map based shader approach provides much more flexibility
(any BRDF) while exploiting existing capabilities in texture map-
ping.

3.2 Specular and Glossy Reflection

So far we have only considered local lighting models responding to
point sources. But this is of course a gross oversimplification, and
what we really want is a glossy reflection of the incoming radiance
from the entire environment.

Without Shadows

With Shadows

Figure 1: Are the spheres sitting on the ground planes, or not? Are
the cubes? What are the relative distances of the cube and sphere
in these two images? Are these images of the same scene or of
different scenes? With shadows, all of these questions are easy to
answer.

Reflection of the environment can be approximated with envi-
ronment maps. However, when the incoming radiance is filtered
through the integral in Equation 2, what results is a blurry, or glossy
reflection of the environment. If the BRDF is a constant shape, as in
the Phong lighting model, then glossy reflection can be simulated
simply by blurring the environment map.

In general, however, the shape of the BRDF depends on the rela-
tionship of and to the local surface frame. In particular, due
to the Fresnel term and foreshortening of microgeometry, glancing
reflectances are generally more specular than normal reflectances.

Better approximations can be obtained by:

1. Generating a representation of the desired BRDF in terms of
a weighted sum of a set of parameterized basis functions.

2. Generating a set of filtered environment maps over the param-
eter space of the basis functions.

3. Selecting and blending the prefiltered environment maps us-
ing the coefficients and parameter settings found during the fit
of the basis functions to the BRDF.

An example is shown in Figure 7, using only two environment
maps: one very glossy, one a near mirror reflection. Glancing-angle
reflectance is typically closer to being specular. This effect can be
simulated by blending in more of the mirror environment map when

is small.
This is a very simple, ad hoc example. More than two environ-

ment maps would lead to more convincing results and better ap-
proximations of arbitrary BRDFs. Also, while in this case a 3D
texture (or a MIP/pyramidal map with 3D texture map indexing)
would be adequate, in general the basis fitting may require different
texture coordinates for each term, and texture-mapped weighting
functions that are non-zero for more than two texture maps.

For example, if a multiple lobe model is used [23] to fit the
BRDFs, the direction, width, and radial profile of each lobe could
potentially vary independently, and several environment maps
could potentially contribute to a pixel’s color, not just two as in
3D texture mapping with linear interpolation.

3.3 Shadows

Shadows are a very important depth cue, and require no special dis-
play hardware to present (unlike, for instance, stereo). Consider the
demonstration in Figure 1. Despite this fact, almost no commer-
cially available midrange hardware supports shadows directly.

There are (at least) two practical ways to implement general
shadows with hardware acceleration: shadow maps and shadow
volumes [1, 2, 3, 5, 8, 33, 35, 42]. There are several possible vari-
ants of these two algorithms and algorithms that are hybrids of them
[25].

Any implementation of shadows should not consider merely the
cost of casting a shadow from a single light source, but also the
cost of integrating shadows into the lighting model and of casting
shadows from multiple light sources in a single pass. This latter
capability is especially important for implementing global illumi-
nation algorithms based on distributing a number of light sources
throughout the scene [22].

Ultimately, the problem boils down to the integration of the in-
formation that a given point is in shadow with respect to a given
light source with the shading model. For every surface point be-
ing rendered, let be 1 if the point is not in shadow relative to
light source , and 0 if it is in shadow. To antialias shadow edges or
to represent penumbra, can take on intermediate values. Now
the local lighting expression should be

(9)

Obtaining can be done using a shadow map, in which case
must be backtransformed into a light-centric coordinate system.

Alternatively, can be projected forward into screen space (some-
thing that must be done anyways) and an appropriate stencil bit or
group of bits can be referenced, where the stencil values can be set
with either the shadow volume algorithm or a forward-projection
shadow map algorithm.

If the stencil planes can be treated as textures and appropriate
bits can be extracted during evaluation of the above expression, then
the second approach does not require a special purpose backtrans-
formation.

What is needed to implement this is a texture-map lookup, pos-
sibly with a projective transformation of the position , followed
by generation of a scale factor either by using a comparison
or by simply extracting bits from a (stencil) texture map value.

Note the most important aspect of Equation 9: it is a summa-
tion that occurs after we have evaluated samples of the local
lighting model, each of which may require its own summations and
multiplications for reconstruction from a compressed form, and an
illumination-modulating multiplication.

The current OpenGL multitexturing specification does not per-
mit single-pass shading computations with the right form to handle
even two light sources; we must use multiple passes and frame-
buffer compositing or the accumulation buffer.

4 Extensions Proposed

Our extensions have been developed in the context and using the
conventions of the OpenGL 1.2.1 API and abstract machine. This is
for concreteness and to directly address a very important graphics
hardware API. Of course, these ideas are also applicable to other
hardware APIs that use a similar graphics pipeline. Due to space
limitations the extensions are presented only briefly and by exam-
ple. A full specification is available elsewhere [26].

The goal of these extensions is to significantly reduce the num-
ber of rendering passes required for our target applications with

relatively small changes to the existing pipeline and API. We are
intentionally keeping the changes as simple as possible to make
them easier to implement and verify.

4.1 Tangent Vectors

In order to support anisotropic reflection models, the concept of
a surface orientation needs to be added to OpenGL. This should
take the form of a new function Tangent*() analogous to
Normal*(). The Tangent*() function would specify a cur-
rent tangent vector that should become attached to vertex data in
exactly the same way as normal information1.

Tangent vectors should be transformed into eye coordinates by
the model/view matrix. Normalization and scaling “hints” for han-
dling normals should be cloned for the tangent. It is most practical
to assume that it is the programmer’s responsibility to ensure that
the tangent and normal are initially perpendicular to each other in
object space, so they remain perpendicular in eye space.

4.2 Texture Coordinate Generation

One of the problems with the current OpenGL specification is that
useful information is computed at various places in the pipeline, but
cannot be accessed. For instance, we would like to have access to
the normalized light and view vectors generated at the vertices for
lighting, and be able to convert this information directly into texture
coordinates.

New texture coordinate generation modes should be provided
that take the form of dot products between any of , , ,

, , , , , , , , , and . A different texture gen-
eration mode should be specifiable for each of the four available
texture coordinates.

The vectors , , and are generated internally:

(10)

(11)

norm (12)

The vectors , and are the axes of the viewing coordi-
nate system; the vectors , and are the axes of the object
coordinate system.

Some reasonable approximations are available for . The binor-
mal in combination with and gives a complete orthonormal
“surface” coordinate frame at each vertex2. The reflection vector,
, is already required for sphere maps.

Practically speaking, the API for this extension consists sim-
ply of a number of new enumerated types for the TexGen and
MultiTexGen function calls.

Given these modes, some other useful texture coordinates can be
synthesized. In particular, using an appropriate projective texture
transformation matrix we can evaluate parabolic map coordinates,
which give a low-distortion parameterization of the hemisphere.

These extensions offload texture coordinate generation and trans-
fer from the host CPU, and are very powerful in their own right.
In combination with even basic multitexturing and/or compositing,
these extensions can be used to implement single-term separable
BRDFs, microcylinder shading models for line segments, view-
independent environment maps [16, 17], and attenuation from lin-
ear and triangular light sources—at least.

1The EXT coordinate frame extension actually supports both a
tangent vector and a binormal, and is close to what is required.

2This coordinate frame is useful for bump mapping as well as anisotropic
reflectances.

4.3 Multiple Primary Colors

In order to handle shadows correctly while still using hardware
lighting for computing irradiance, the “primary” colors computed
for each active light should be transferred independently to the tex-
ture shading stage.

Unfortunately, the primary colors cannot be summed before they
have been properly masked by shadows, and this information will
not be available until a shadow map (or the equivalent) has been
accessed.

Since texture shaders can be used to implement lighting models,
subsuming the function of hardware lighting, it would be reason-
able to implement the transfer of primary colors in a way that does
not require a great deal of extra bandwidth. For instance, transfer
of a primary color to the texture shader could disable one of the
texture access channels.

4.4 Extended Texture Types

In order to compute shadows and otherwise use depth and stencil
conditional expressions in shaders, it is proposed that the internal
texture types be extended to include depth and stencil types.

As stencil planes typically have only 8 bits, a stencil value
(converted to fixed point format) can be treated as an RGBA matte
value for the purposes of blending in the texture shader.

The depth type needs specialized support since it should have
at least 16 bits of precision, and preferably 32. Depth types may
use an internal representation that can only be compared with other
depths, not used in arithmetic. Fortunately, depth textures need not
be filtered.

4.5 Multitexturing Stack Machine

The core of our proposal is a more flexible and “programmable”
way to combine the results from multiple texture lookups.

The current specification of multitexturing only allows for blend-
ing together the results of a fixed number of textures and the frag-
ment color in a fixed order (a chain). The color resulting from each
blend operation is used as an input color for further blending with
the color from the next texture. This fixed architecture is very lim-
iting for many of our target applications. For example, it is not
possible to compute the sum of two products of values looked up
from a texture, and so we cannot do two-term separable expansions
of BRDFs in one pass.

We propose to replace this fixed order of blending operations
by a simple stack-based “programming language”. Each entry of
the stack contains a “color” with signed components in the range

. Each color on the stack actually consists of a set of 48 or
more bits that can be used either as a high-precision RGBA value,
4D texture coordinate, or a single depth value.

The postfix notation of a stack machine enables a simple
metaprogramming API and in particular permits the semantics of
the host language to be used for modularity. Since there are no
variable names, there is no potential for naming conflicts; stack ma-
chine “subroutines” can simply be wrapped in host language func-
tions that emit them inline into an open shader definition.

Conceptually, the stack is manipulated by a sequence of instruc-
tions that place texture lookups and primary colors on the stack and
then combine them with various operators. At the end of the com-
putation, the color value at the front of the stack is clamped to
before being used as the fragment color.

A mechanism for the loose binding of texture coordinate vectors
to texture lookups is also defined that would permit reuse of texture
coordinates, as is common in multiple-term approximations.

It should be noted that despite the conceptualization of the stack
machine as a sequential execution unit, it need not be implemented
this way, as we outline in Section 6.

Definitions of shader programs are surrounded by
BeginShader(uint) and EndShader() statements.
The parameter passed to the BeginShader() statement
defines the “name” of a shader object for later reference. The
shader identifier 0 is reserved for “default OpenGL behaviour” but
other identifiers are available for the programmer’s use.

Shaders are made active using the function Shader(uint).
Activating a shader also activates and binds associated texture ob-
jects and texture coordinate generation modes. This “shader ob-
ject” interface is used in case any non-trivial compilation is needed
to map a shader program onto a given implementation, and also to
permit fast switching between shaders when drawing a scene.

Stack operations are divided into categories: stack manipulation
(for instance, pulling items out of the middle of the stack to sup-
port shared subexpressions), arithmetic and blending, comparison
of colors and depth values (comparisons return black or white for
blending with further computations), logical operations, and com-
ponent shuffling.

Access operations permit placing of texture lookups, texture co-
ordinates, and interpolated primary colors on the stack to act as
parameters for shaders. When the shader is defined a list of all the
necessary parameters is formed and a schedule created for deliver-
ing them to the shader.

Finally, for cases when postfix notation is too verbose or incon-
venient, a ShaderExpr function accepts a string specifying an
infix expression that can initiate a number of blend and access op-
erations.

4.6 Texture Coordinate Generation

In order to support shaders that require multiple texture lookups,
support for programmable texture coordinate generation is also use-
ful. For example, use of environment maps combined with bump
mapping would require two stages of texture lookup, one to eval-
uate the bump function and one to sample the appropriate place in
the environment map.

Shader programs with multiple texture accesses can be speci-
fied using the following function to bind together several primitive
shader programs:

ShaderTexGen(uint , enum , uint)

This function takes the entries on the top of the stack after execu-
tion of shader and sends them back to the texture generation unit,
binding these results to the texture coordinate identifiers through

.
Evaluating and binding all texture coordinates at once ensures

that in packetized implementations, all the information for the next
shader will be available simultaneously, so no buffering will be re-
quired at the input to the texture lookup units.

5 Example

In this example we show how the proposed extensions can be used
to implement one of the targeted rendering effects: multiple-term
separable BRDF approximations.

Consider the illumination of an object with a two-term separa-
ble expansion of a BRDF with the irradiance evaluated using the
existing hardware lighting model. The required shader expression
is shown in Figure 2 along with a shader program which imple-
ments it. Note that expression requires the sum of two products
with negative values in the second product; neither operation can
be implemented in a single pass with the existing multitexturing
facility.

Modulate

Modulate

Add
T

ex
tu

re
 "

c"

T
ex

tu
re

 "
d

"

Modulate

T
ex

tu
re

 "
a"

T
ex

tu
re

 "
b

"

TexGen 0 TexGen 1

E0

-0.5 -0.5

Add Add

x 2 x 2

BeginShader(1);
//--- Establish base of light and coord indices
ShaderBaseLight(LIGHT0); // (actually, is default)
ShaderBaseParam(TEXTURE0); // (actually, is default)

//--- Bind texture object a to coords 0, b to coords 1
ShaderTexture(a,0); // a(0)
ShaderTexture(b,1); // b(1), a(0)
//--- Multiply a and b
ShaderModulate(); // b(1)*a(0)

//--- Bind texture object c to coords 0
ShaderTexture(c,0); // c(0), b(1)*a(0)
//--- Convert c over [0,1] to C over [-1,1]
ShaderConstant1(-0.5);
ShaderShift(1);
ShaderAdd(); // C(0), b(1)*a(0)
ShaderShift(0);

//--- Bind texture object d to coords 1
ShaderTexture(d,1); // d(1), C(0), b(1)*a(0)
//--- Convert d over [0,1] to D over [-1,1]
ShaderConstant1(-0.5);
ShaderShift(1);
ShaderAdd(); // D(1), C(0), b(1)*a(0)
ShaderShift(0);

//--- Multiply C and D
ShaderModulate(); // D(1)*C(0), b(1)*a(0)
//--- Add the two products
ShaderAdd(); // D(1)*C(0)+b(1)*a(0)

//--- Multiply irradiance and reflectance; scale
ShaderLighting(0); // E0, D(1)*C(0)+b(1)*a(0)
ShaderShift(3);
ShaderModulate(); // (E0*(D(1)*C(0)+b(1)*a(0)))<<3

EndShader();

Figure 2: Example expression tree and shader.

6 Implementations

In this section we briefly consider the implementation of shaders,
including a simple preliminary “plausibility” design for single-pass
shading and some global architectural consequences.

6.1 Global Architecture

A typical high-level architecture for a graphics accelerator is shown
in Figure 3. In this architecture we have shown a single memory,
as opposed to separate framebuffer and texture memory. The units
which this paper is primarily concerned with, the texture coordinate
generation unit and the texture shader, are shown with bold outlines.

6.2 Texture Coordinate Generation

Despite their relative simplicity, the new texture coordinate gener-
ation modes proposed are crucial for making local geometric infor-
mation available to shader programs, and would be a useful addi-
tion even without programmable multitexturing. As they require
only dot products between normalized and unnormalized vectors
that already must be computed at the vertices of primitives, a high-
performance pipelined implementation is straightforward.

6.3 Managing Texture Access Latency

Typically, the texture lookup units have long latencies, since texture
memory accesses are pipelined and filtering and interpolation oper-
ations must be performed. They may also have variable latencies,
as a texture cache may be used, and if a multibank memory is used
bank conflicts may occur.

Shader programs do not request texture samples; due to the long
texture access latency, texture samples must be scheduled to arrive
at the shader at the right time. It is also necessary for all texture
samples from multiple textures to arrive at the shader together. For
instance, if a cache miss occurs on one texture channel, stalling all
channels to keep them synchronized may be required. Of course,
these are concerns in existing multitexturing implementations as
well.

The additional concern that texture shaders introduce is that
complex shaders may require the use of more texture samples than
there are parallel units available. In this case sequential texture ac-
cesses must be scheduled, and if one of the accesses in a texture
sample “cluster” is stalled, all must be delayed to synchronize ar-
rival at the shader. Alternatively, the shader compiler can decom-
pose shaders that have too many inputs into multiple passes.

Interpolation

Texture Lookup and Filter

compositing

Rasterization
and

Geometry
Transformation

Host

Texture
Coordinate
Generation
and
Lighting

Texture Lookup and Filter

Memory

Texture
Shader

Display

pixel

texturesstored geometry
pbuffers
framebuffer

texture
feedback

Fragment
Operations

depth test
alpha test
stencil test

Figure 3: Global accelerator architecture.

6.4 Multipass Implementation

Texture shaders can be simulated, if necessary, using multipass al-
gorithms. Basically, pbuffers can be used to hold intermediate re-
sults of the computation, with compositing and texturing operations
used to implement each texture shader operation.

Both color storage formats and the compositing and texturing
operations must be extended to support high-precision signed arith-
metic, but this is a relatively small change that does not require
rearchitecting existing designs. This implementation possibility
permits a single API to cover machines both with and without mul-
titexturing capabilities.

The chief disadvantage of the multipass approach is that even
after optimization of the shader program, a great deal of memory
may be required, particularly since high precision may be required
in the pbuffers. This limits the complexity of the shaders than can
be implemented. Furthermore, if a scene has multiple shaders that
each cover a small part of the display area, then memory utilization
will be low unless tight bounding boxes around the pixels affected
by the shader can be built.

If a processor-enhanced memory is used, as in PixelFlow, similar
problems arise, except the memory costs more and so the memory
allocation problems are more acute.

Therefore, the multipass approach will be most useful in do-
mains such as industrial design, where the number of shaders in the
scene is low and shader coherence is high. The multipass approach
is also useful as a fall-back in case shaders get too complex for a
single pass. However, the addition of multitexturing and texture
shader support should greatly reduce the number of passes required
when only moderately complex shaders are required.

6.5 Single-Pass Texture Shaders

A literal sequential implementation of the conceptual stack machine
would be too slow to be useful. We could replicate stack machines
or pipeline a single stack machine by replication. However, imple-
menting a sequential stack machine efficiently is difficult, and the
pipelined approach results in large busses between pipeline stages
and low utilization of the functional units.

An alternative is to reconstruct the shader expression and then
map it onto a different implementation architecture, such as an array
processor, or a specialized SIMD or MIMD processor. These need
not be general-purpose units; in particular, branches conditioned on
data values are not necessary, and this can simplify implementation.

An example is shown in Figures 4 and 5. Here a shared bus is
used to deliver texture samples to a small number of parallel pro-
cessing units. The register units are organized in banks so multiple
texture samples can be loaded simultaneously.

The processing units are all executing the same instruction
stream. However, because the instruction stream is pipelined, they
are out of step. Texture samples (or interpolated primary colors, or
texture coordinates passed through from the rasterizer) are deliv-
ered to processing units in a round-robin order using a shared bus
as each processing unit reaches the beginning of another execution
of the current shader program. When the results are ready they are
sent to a shared output bus for delivery to the next stage.

If this architecture results in too many wires, the result and input
buses can be combined, and perhaps the inputs can be serialized
onto a single bus. To initialize a shader, constants can be preloaded
into the PEs using the texture input busses. Since the instruction
memory is shared, it can be large enough to hold several shader
programs, to minimize the time required to switch between them.

If the shader programs are small, then output can be generated
on every clock. If every operation takes one clock cycle, then with
four shaders three operations can be executed before the next in-
put is ready. A tree with four leaves has three internal nodes, each

Register
Bank

1

Register
Bank

0

Result Bus

Functional
Unit

MUX MUX

MUX MUX
0 1 0 1

0 1 0 1

Load Load

DstAddr DstAddr

SrcAddrA
SrcAddrB

SrcAddrA
SrcAddrB
A B A B

Texture Sample Input Bus 2

Instruction Register

PE

Texture Sample Input Bus 1

L0 L1 DST O FUNC AB SRCA BB SRCB
I-in I-out

Figure 4: One processor element for the staggered-SIMD approach
to the implementation of texture shaders.

representing an operation, so this permits shader trees with two con-
stants and two space-variant operands to execute at full speed.

More complicated shaders with the same number of inputs are
possible, for example if analytic evaluation of a tone operator is
used, or if a function is synthesized as a polynomial. In this case
the output rate should degrade gracefully. On the other hand, if
a shader requires more inputs, they can be delivered in additional
round-robin passes, although the rasterizer now has to schedule and
reorder texture accesses over fixed-size groups of pixel fragments
and the texture access units need to synchronize the arrive of each
group. For this and other reasons, it may be simplest to implement
multitexturing using sequential texture access using only a single
texture lookup unit; in this case, the texture shader would require
only a single input bus, and high performance would be achieved
by having several parallel texture lookup and shader pipelines.

If some operations take multiple cycles to complete, variations
on this architecture may be necessary. If we assume the functional
units can still issue one operation per cycle, then we can attempt
to schedule the operations specified by the shader tree to maximize
throughput. As shader programs are small, this can be difficult.
Two observations can be made:

1. Shader coherence can be assumed, so shader execution cycles
can be unrolled and overlapped. Fewer parallel operations are
typically available at the end of a shader cycle and more at
the beginning. Therefore while the previous shader completes
and scheduling becomes more difficult, the arguments for the
next shader can be loading and early operations for the next
shader begun.

2. We have shown each PE as a vector machine, with each reg-
ister holding a four-vector and the functional unit operating
in parallel on all four components. We could use an 8-bank

Instruction Fetch

Instruction Memory

Texture Channel

Texture Channel

T1

T2

PE

In Out

T1

R

T2

PE

In Out

T1

R

T2

PE

In Out

T1

R

T2

PE

In
IR IR IR IR

Figure 5: A staggered-SIMD architecture for execution of texture shader programs.

register file instead, and use separate specification of the oper-
ations on each component. This provides four times as many
operations for each shader cycle, making scheduling easier.
This flexibility is required anyways; for instance, computing
a dot product requires multiplying two vectors and adding the
components, and texture coordinate generation may also re-
quire irregular computation. Furthermore, some savings can
be made for computations that involve only RGB or greyscale
values and not RGBA values.

With separate components, we can use either a VLIW parallel
functional unit or a simpler sequential unit and more PEs. The more
PEs we add, the more we depend on shader coherence. If texture
packets also carry pixel destination addresses and the downstream
fragment processor is capable of routing fragments to different pix-
els, then we do not have to assume shader spatial coherence, and
can depend merely on temporal coherence.

6.6 Texture Coordinate Feedback

In order to use shader programs to generate texture coordinates and
write shaders that permit multiple texture accesses, the output of a
shader needs to be fed back to the texture lookup unit(s).

There are two ways to accomplish this: an additional feedback
channel that can feed back additional texture lookup requests to
the start of the texture lookup units, or a multipass approach us-
ing pixel textures. The packet approach requires that a new shader
be selected on a per-fragment basis, which inhibits some of the
coherence-based optimizations mentioned above.

Therefore, it probably makes the most sense to use a multipass
approach to implement texture coordinate feedback. It might be in-
teresting to permit writing to several pbuffers at once, so multiple
texture coordinates can be generated at once and more operations
are available for scheduling. This requires generalizing the con-
cept of “pixel address” to include a pbuffer address, and can be
implemented using additional result output cycles for each shader
program.

7 Conclusions

A procedural shader extension to the OpenGL API has been pre-
sented based on a generalization of multitexturing. This extension
was motivated by a number of rendering problems that currently re-
quire several composition passes, but whose exact analytical form
does not quite match that of multitexturing. We have sketched how
a hardware implementation of these texture shaders could be imple-
mented in a way that preserves pixel throughput for simple shaders,
and degrades gracefully for more complex shaders.

Further progress will require extending a software implementa-
tion of OpenGL and then trying to implement the algorithms dis-
cussed here on top of it.

Interactive computer graphics has been very fortunate in having
an API, OpenGL, which mapped onto a wide range of implemen-
tations. Recently the portability of OpenGL has been degraded be-
cause several features, such as multitexturing, have not been avail-
able universally. In addition, it is clear that fixed-architecture mul-
titexturing is very limiting.

The texture shader extension permits a simple hardware abstrac-
tion that can map in a straightforward way to a wide range of hard-
ware architectures, including those without hardware multitextur-
ing support or with only fixed multitexturing, and so is one possible
way to resolve these conflicts.

Acknowledgements

We would like to acknowledge the help and advice of members of
the Computer Graphics Lab at the University of Waterloo and the
Computer Graphics Group at Universitat Erlangen, especially Jan
Kautz, whose work (on separable representations of BRDFs and
variable-glossiness reflection) motivated much of what is found in
this paper. One of the reviewers of the draft of this paper suggested
the staggered-SIMD approach. This research was sponsored in part
by a research grant from the National Science and Engineering Re-
search Council of Canada.

References

[1] P. Bergeron. Shadow Volumes for Non-Planar Polygons. In
Proc. Graphics Interface, pages 417–418, May 1985. Ex-
tended abstract.

[2] P. Bergeron. A General Version of Crow’s Shadow Volumes.
IEEE CG&A, 6(9):17–28, September 1986.

[3] L. Brotman and N. Badler. Generating Soft Shadows with a
Depth Buffer Algorithm. IEEE CG&A, 4(10):71–81, October
1984.

[4] Robert L. Cook. Shade Trees. In Proc. SIGGRAPH, pages
223–231, July 1984.

[5] F. Crow. Shadow Algorithms for Computer Graphics. In Proc.
SIGGRAPH, volume 11, pages 242–248, July 1977.

[6] Kristin J. Dana, Bram Van Ginneken, Shree K.
Nayar, and Jan J. Koenderink. Columbia-
Utrecht Reflectance and Texture Database.
http://www.cs.columbia.edu/CAVE/curet/.

[7] P. Diefenbach and N. Balder. Multi-Pass Pipeline Rendering:
Realism for Dynamic Environments. In SIGGRAPH Symp. on
Interactive 3D Graphics, pages 59–70, April 1997.

[8] H. Fuchs, J. Goldfeather, J. Hultquist, S. Spach, J. Austin,
F. Brooks, Jr., J. Eyles, and J. Poulton. Fast Spheres, Shadows,
Textures, Transparencies, and Image Enhancements in Pixel-
Planes. In Proc. SIGGRAPH, volume 19, pages 111–120, July
1985.

[9] S. Gortler, R. Grzeszczuk, R. Szelinski, and M. Cohen. The
Lumigraph. In Proc. SIGGRAPH, pages 43–54, August 1996.

[10] B. Guenter, T. Knoblock, and E. Ruf. Specializing shaders. In
Proc. SIGGRAPH, pages 343–350, August 1995.

[11] P. Haeberli and K. Akeley. The accumulation buffer: Hard-
ware support for high-quality rendering. In Proc. SIGGRAPH,
pages 309–318, August 1990.

[12] P. Haeberli and M. Segal. Texture mapping as A fundamen-
tal drawing primitive. In Fourth Eurographics Workshop on
Rendering, pages 259–266, June 1993.

[13] P. Hanrahan and J. Lawson. A language for shading and light-
ing calculations. In Proc. SIGGRAPH, pages 289–298, Au-
gust 1990.

[14] X. He, K. Torrance, F. Sillion, and D. Greenberg. A Compre-
hensive Physical Model for Light Reflection. In Proc. SIG-
GRAPH, pages 175–186, July 1991.

[15] W. Heidrich, J. Kautz, Ph. Slusallek, and H.-P. Seidel. Canned
lightsources. In Rendering Techniques ’98 (Proceedings of
Eurographics Rendering Workshop), 1998.

[16] W. Heidrich and H.-P. Seidel. View-independent environment
maps. In Eurographics/SIGGRAPH Workshop on Graphics
Hardware, pages 39–45, 1998.

[17] W. Heidrich and H.-P. Seidel. Realistic, hardware-accelerated
shading and lighting. In Proc. SIGGRAPH, August 1999.
Accepted for publication. Preprint soon available from
http://www9.informatik.uni-erlangen.de/Persons/Heidrich.

[18] W. Heidrich, Ph. Slusallek, and H.-P. Seidel. An image-based
model for realistic lens systems in interactive computer graph-
ics. In Graphics Interface ’97, pages 68–75, 1997.

[19] W. Heidrich, R. Westermann, H.-P. Seidel, and Th. Ertl. Ap-
plications of pixel textures in visualization and realistic image
synthesis. In ACM Symposium on Interactive 3D Graphics,
1999. Accepted for publication.

[20] J. Kautz. Hardware Rendering with Bidirectional Re-
flectances. Technical Report TR-99-02, Dept. Comp. Sci., U.
of Waterloo, 1999.

[21] J. Kautz and M. McCool. Interactive Rendering with Arbi-
trary BRDFs using Separable Approximations. In Eurograph-
ics Rendering Workshop, June 1999.

[22] A. Keller. Instant radiosity. In Proc. SIGGRAPH, pages 49–
56, August 1997.

[23] E. LaFortune, S. Foo, K. Torrance, and D. Greenberg. Non-
linear approximation of reflectance functions. In Proc. SIG-
GRAPH, pages 117–126, August 1997.

[24] M. Levoy and P. Hanrahan. Light field rendering. In Proc.
SIGGRAPH, pages 31–42, August 1996.

[25] M. McCool. Shadow Volume Reconstruction. Technical Re-
port CS-98-06, University of Waterloo Department of Com-
puter Science, 1998.

[26] M. McCool and W. Heidrich. Texture Shaders: OpenGL Ex-
tension Specifications. Technical Report CS-99-11, Univer-
sity of Waterloo Department of Computer Science, 1999.

[27] T. McReynolds, D. Blythe, B. Grantham, and S. Nelson. Ad-
vanced graphics programming techniques using OpenGL. In
SIGGRAPH 1998 Course Notes, July 1998.

[28] S. Molnar, J. Eyles, and J. Poulton. PixelFlow: High-speed
rendering using image composition. In Proc. SIGGRAPH,
pages 231–240, July 1992.

[29] E. Ofek and A. Rappoport. Interactive reflections on curved
objects. In Proc. SIGGRAPH, pages 333–342, July 1998.

[30] M. Olano and A. Lastra. A shading language on graphics
hardware: The PixelFlow shading system. In Proc. SIG-
GRAPH, pages 159–168, July 1998.

[31] K. Perlin. An image synthesizer. In Proc. SIGGRAPH, pages
287–296, July 1985.

[32] P. Poulin and A. Fournier. A Model for Anisotropic Reflec-
tion. In Proc. SIGGRAPH, pages 273–282, August 1990.

[33] W. Reeves, D. Salesin, and R. Cook. Rendering Antialiased
Shadows with Depth Maps. In Proc. SIGGRAPH, volume 21,
pages 283–291, July 1987.

[34] S. Rusinkiewicz. A new change of variables for efficient
BRDF representation. In Eurographics Workshop on Render-
ing, pages 11–23, June 1998.

[35] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and P. Hae-
berli. Fast Shadows and Lighting Effects using Texture Map-
ping. In Proc. SIGGRAPH, volume 26, pages 249–252, July
1992.

[36] M. Stamminger, Ph. Slusallek, and H.-P. Seidel. Interactive
walkthroughs and higher order global illumination. In Mod-
eling, Virtual Worlds, Distributed Graphics, pages 121–128,
November 1995.

[37] W. Stürzlinger and R. Bastos. Interactive rendering of glob-
ally illuminated glossy scenes. In Rendering Techniques ’97,
pages 93–102, 1997.

[38] Steve Upstill. The RenderMan Companion. 1990.

[39] B. Walter, G. Alppay, E. LaFortune, S. Fernandez, and
D. Greenberg. Fitting virtual lights for non-diffuse walk-
throughs. In Proc. SIGGRAPH, pages 45–48, August 1997.

[40] G. Ward. Measuring and modeling anisotropic reflection. In
Proc. SIGGRAPH, pages 265–272, July 1992.

[41] G. Ward. Towards More Practical Reflectance Measurements
and Models. In Graphics Interface ’92 Workshop on Local
Illumination, pages 15–21, May 1992.

[42] L. Williams. Casting curved shadows on curved surfaces. In
Proc. SIGGRAPH, volume 12, pages 270–274, August 1978.

Figure 6: Separable approximations of reflectances for a single light
source: anisotropic brushed metal [32], HTSG copper [14], velvet
[6], vinyl [41], Ward’s anisotropic model [40], and varnished wood
[6]. The last two also use a texture mapped diffuse component.

Figure 7: Variable glossiness reflections simulated with superposi-
tion of filtered environment maps. Left: sharp reflection. Middle:
uniformly blurred reflection (Gaussian lobe). Right: blend between
blurry normal reflections and sharp glancing angle reflection.

