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1 DPP SURFACE MODELING WITH ZERNIKE
POLYNOMIALS

The optical path difference (OPD) introduced by the deformable
phase plate (DPP) is parameterized as Zernike polynomials.
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where 𝑛 is the radial order and𝑚 is the azimuth order, with 𝑛 ≥
|𝑚 | ≥ 0. Accroding to OSA standard indices:
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The radial polynomials 𝑅𝑚𝑛 are defined as:
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The coefficients 𝑐 (𝑛,𝑚) is a normalization factor to ensure the
variance on the unit circle area equals 1, and is calculated as:
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As the Zernike polynomials is defined in a normalized polar
coordinate, to relate it to the cartesian coordinate with physical size,
the parameters is converted:
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where 𝑅 is the radius of the DPP aperture, and we denotes 𝑟 =√︁
𝑥2 + 𝑦2.
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1.1 Derivative of Zernike Polynomials
To refract the ray according to the introduced optical path difference,
the derivatives of the OPD with respect to the Cartesian coordinates
are required:
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Where the Jacobian for transforming the cartesian coordinate to
the normalized polar coordinates is calcualted as:[
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The derivative of the OPD 𝐷 w.r.t. normalized polar coordinates
is a linear combination of its component Zernike polynomials:
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The derivative of Zernike Polynomials is well separated for 𝜌 and
𝜑 and given by:
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Where the partial derivative of 𝜑 for radial polynomials is:
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1.2 Phase Plate Model V.S. Refractive Surfaces Model
We validate that the DPP can be sufficiently modeled as a thin plate
that introduce phase change, compare to a more complex refractive
modeling that perform ray tracing through refractive surfaces. As
shown in Fig 1, the physical model of DPP is composed of a optical
fluidic chamber, filled with tridecane (𝑛 = 1.4256), and a fused silica
substrate [Rajaeipour et al. 2021]. A refractive surfaces modeling
(Fig 1b) is compared with the implemented phase plate modeling
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Fig. 1. Phase plate model v.s. refractive surfaces Model. (a) The Physical
Structure of DPP [Rajaeipour et al. 2021]. The optical fluidic chamber is
55𝜇𝑚 thick, while the fused-silica substrate is 800𝜇𝑚 thick. (b) The refrac-
tive modeling of DPP, corresponding to the phase structure. (c) The phase
modeling of DPP, which is modeled as a thin plate that introduce optical
path difference.

(a) Refractive surfaces modeling of DPP (b) Phase plate modeling of DPP

Fig. 2. Ray tracing comparison of refractive surfaces Model (a) and phase
plate model(b).

(Fig 1c). Notice the optical fluidic surface thickness 𝐻 is related to
the introduced OPD 𝐷 by: 𝐷 = (𝑛 − 1)𝐻 .

With the same optimized DPP deformation pattern, we perform
ray-tracing through different models and visualized the PSF in Fig 2.
As there is no identifiable difference between this two simulation
results, we regard the phase plate model as a good approximation
of the underlying refraction process, and choose the phase plate
model for its simplicity and computational efficiency.

2 LOCALIZED ABERRATION CORRECTION

2.1 Additional Results
For a single DPP deformation optimization at oblique angle 𝜙 , sagit-
tal and tangential MTF were analyzed using ray tracing for different
wavelengths shown in Fig. 3. The sampled angles align with Fig. 4
in the main paper and provide further analysis. Red, green, and blue
channels were traced using wavelengths of 640 nm, 525 nm, and
470 nm, respectively, matching the prototype system’s sensor color
response [FILR 2017]. Compared to the unoptimized initial state,
defocus-only optimization improved sagittal MTF while tangential
MTF remained low. Full Zernike optimization corrected higher-
order aberrations, leaving only chromatic aberration, which single
refractive elements cannot effectively address.
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Fig. 3. Detailed analysis on MTF and PSF for various oblique angle 𝜙 . (a)
Initial system without optimization. (b) optimization of the defocus Zernike
parameter only. (c) Full Zernike parameter optimization up to 4-th order.

The fovea in the radial-angular diagram is approximated as a
rectangular region (Fig 4). To determine the images needed for full
coverage, we iterate radially over the sampled 32 optimized patterns,
identifying the next largest overlapping pattern index above a sharp-
ness threshold. The replication count for each selected pattern is
then estimated by dividing 2𝜋 by its angular size. When 𝜌 >

√
2/2,

we estimate corner coverage by dividing 𝜋/2 − 2 arccos(1/𝜌
√
2)

by the angular size and multiplying by 4 to obtain the full cover-
age replication count, assuming no radial symmetry for extreme 𝜌
values.

With a 5.5𝜇𝑚 pixel size, the sensor has approximately 182 pix-
els/mm, resulting in a Nyquist frequency of 91 lp/mm. Given the
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Square Coverage:     8 
Circle Coverage:   10

Square Coverage:   30
Circle Coverage:   69

Square Coverage:   100
Circle Coverage:   198

Square Coverage:   281
Circle Coverage:   589

Square Coverage:   646
Circle Coverage:   1154

Fig. 4. Fovea coverage above different sharpness thresholds, ranging from 10 lp/mm to 50 lp/mm.
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Fig. 5. Required Zernike orders to correct for off-axis aberrations. Left: The optimized PSF RMS spot size in 𝜇𝑚 compared to the number of allowable Zernike
orders on DPP, superimposed by the initial wavefront aberration at an oblique angle of 6.5◦. Right: from top to bottom are zernike coefficients, spot diagram,
and the remaining wavefront aberrations on the green channel after correction with corresponding order-limited DPP deformation.

Bayer pattern, sharp imaging requires 45 lp/mm resolution. The
lowest 10 lp/mm in Fig. 4 corresponds to a PSF spanning 9 × 9 raw
sensor pixels. Notice this threshold serves as the lowest (instead of
an average) quality over the entire image. Increasing image quality
rapidly increases the number of required images to cover the full
sensor area.

2.2 Analysis on the Required Zernike Orders
The optical system determines the wavefront aberrations at the exit
pupil for different sensor regions. In this work, using a simple achro-
matic main lens (Thorlab’s AC254-050A), aberrations are confined
to lower radial orders. To identify the necessary Zernike orders for
off-axis correction, we optimized DPP patterns limited to different
radial orders at a 6.5° oblique angle under hyperfocal conditions.
As shown in Fig. 5, off-axis aberrations are effectively corrected
with Zernike terms above 4th order, and a device supporting up to
7th order is sufficient. This conclusion is system-dependent; other
optical systems may require more complex deformation.

3 DATASET COLLECTION FOR DPP CONTROL MODELS
To collect control voltage - Zernike coefficient pairs, random sam-
pling on the “voltage space” rarely generates large amplitude defor-
mation, which is useful for large off-axis aberration correction. This
is because large amplitude deformation requires a joint activation
of a local spatial region of electrodes (jointly reaching its maxi-
mum voltage to pull down the membrane with larger electrostatics
force), which is rarely sampled if electrodes voltages are sampled
independently. To enable the sampling of such large deformation,
we perform the sampling in the “Zernike coefficient space” within
the operational range and obtain the control voltage through con-
strained optimization using Eq. 8 in the main paper. The precise
deformation is then measured by the wavefront sensor.

4 INTERPOLATION FOR DPP CONTROL
For applications like fovea tracking, a fast change of the control
signal is required. In this section, we discuss how to pre-compute
optimized patterns specialize on a grid of locations across the image,
and acquire control signal for any locations through interpolation.

We first sampled (2𝑛 +1)× (2𝑛 +1) corner-aligned grids across the
image. Then the interpolation is performed in ideal Zernike space,
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Fig. 6. The imaging quality using interpolated control signals in different
spaces. (a) Ideally, the interpolation is performed in Zernike parameters. (b)
When hardware response is considered, the interpolated Zernike parameters
is applied to the device and the predicted response from the proxy model is
used. (c) The interpolation is performed in the voltage space.

physical Zernike space, and voltage space respectively. For each
interpolated DPP deformation pattern, the PSF of its corresponding
location is calculated through ray tracing, as shown in Fig 6. For
ideal Zernike interpolation, no underlying physics is considered,
and the DPP’s Zernike parameter is interpolated linearly. While
the physical Zernike interpolation considered the DPP’s hardware
response by apply the control strategy discussed in Sec. 4.4 in the
main paper, and use the decoded Zernike parameters to perform
ray-tracing. For physical voltage interpolation, the voltage for each
pre-computed grid points are computed and interpolated, a decoder
is applied to obtain the recovered Zernike parmeters for ray-tracing.
When the DPP control model is considered, the image quality on
the edges is limited, this is considered as a limitation of the device.
Fig. 7 shows that finer grids reduce the average RMS spot size

across the image, but improvements become marginal beyond a
9×9 grid for all interpolation methods, enven for ideal interpolation.
Therefore, optimizing a 9 × 9 grid is considered sufficient for linear
interpolation based control. For real-world applications, the voltage
interpolation is preferred over Zernike interpolation because no
additional computation is required before sending the signal to the
DPP device, thus improve the real-time performance.

5 IMAGE FUSION METHODS
The sharpness-based fusion algorithm is presented in Algorithm 1.
Since the DPP’s Zernike vertical and horizontal tilt terms are con-
strained to zero during optimization, only minor misalignment is ex-
pected in the foveated image stack. Consequently, we perform fusion
without prior alignment. Additionally, severe blurring in the image
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Fig. 7. Image quality under different levels of interpolation.

ALGORITHM 1: Fusion algorithm for Fovea Stacking
Input: Images 𝐼1, 𝐼2, . . . , 𝐼𝑁 of size 𝐻 ×𝑊 × 3
Output: Fusion image𝑂 of size 𝐻 ×𝑊 × 3
for 𝑘 ← 1 to 𝑁 do

𝐺𝑘 ← Convert 𝐼𝑘 to grayscale;
𝐵𝑘 ← GaussianBlur(𝐺𝑘 , kernel size 𝑘gauss);
𝐿𝑘 ← |Laplacian(𝐵𝑘 , kernel size 𝑘lap ) |;
𝑆𝑘 ← GaussianBlur(𝐿𝑘 , kernel size 𝑘blur);
Store 𝑆𝑘 in sharpness_list;

end
Stack all 𝑆𝑘 into a 3D array 𝑆 of shape 𝑁 × 𝐻 ×𝑊 ;
Stack all 𝐼𝑘 into a 4D array 𝐼 of shape 𝑁 × 𝐻 ×𝑊 × 3;
for each pixel location (𝑖, 𝑗 ) do

Enhance sharpness:
𝑆 [𝑘, 𝑖, 𝑗 ] ← (𝑆 [𝑘, 𝑖, 𝑗 ]/max𝑁

𝑙=1 (𝑙, 𝑖, 𝑗 ) )
𝑘sharp ;

Normalize weights: 𝑤𝑘 ← 𝑆 [𝑘, 𝑖, 𝑗 ]/∑𝑁
𝑙=1 𝑆 [𝑙, 𝑖, 𝑗 ];

𝑂 [𝑖, 𝑗, :] ← ∑𝑁
𝑘=1 𝑤𝑘 · 𝐼 [𝑘, 𝑖, 𝑗, :];

end
return𝑂 ;

stack hinders the identification of sufficient corresponding points
for alignment. For all experiments with captured 2048×2048 images,
the fusion algorithm uses parameters 𝑘gauss = 𝑘lap = 19, 𝑘blur = 127,
and 𝑘sharp = 10. The parameter 𝑘sharp balances mean/max fusion.
With 𝑘sharp = 1, fusion softly blends images via sharpness-weighted
averaging. As 𝑘sharp → ∞, fusion hard blends by selecting the
maximum sharpness value across the stack.
Fig. 8 visualizes the sharpness of individual and fused images

obtained via sharpness-based fusion. Images 3, 7, and 11 focus on
near, middle, and far distances, respectively. The calculated sharp-
ness effectively identifies the sharp regions in each image, and the
maximum sharpness index reflects the depth ordering, with smaller
values indicating closer depths.
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Fig. 8. Sharpness based fusion on extended depth of field application.
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