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Abstract

Extracting high-fidelity RGBD information from two-

dimensional (2D) images is essential for various visual

computing applications. Stereo imaging, as a reliable

passive imaging technique for obtaining three-dimensional

(3D) scene information, has benefited greatly from deep

learning advancements. However, existing stereo depth es-

timation algorithms struggle to perceive high-frequency in-

formation and resolve high-resolution depth maps in realis-

tic camera settings with large depth variations. These algo-

rithms commonly neglect the hardware parameter configu-

ration, limiting the potential for achieving optimal solutions

solely through software-based design strategies.

This work presents a hardware-software co-designed

RGBD imaging framework that leverages both stereo and

focus cues to reconstruct texture-rich color images along

with detailed depth maps over a wide depth range. A pair of

rank-2 parameterized diffractive optical elements (DOEs)

is employed to encode perpendicular complementary in-

formation optically during stereo acquisitions. Addition-

ally, we employ an IGEV-UNet-fused neural network tai-

lored to the proposed rank-2 encoding for stereo matching

and image reconstruction. Through prototyping a stereo

camera with customized DOEs, our deep stereo imaging

paradigm has demonstrated superior performance over ex-

isting monocular and stereo imaging systems in both im-

age PSNR by 2.96 dB gain and depth accuracy in high-

frequency details across distances from 0.67 to 8 meters.

1. Introduction

Stereo-empowered three-dimensional (3D) imaging repli-

cates the human binocular vision system to acquire 3D

scene information, enabling physical-based depth estima-

tion, image enhancement, and super-resolution by leverag-

ing both left and right frames.

Stereo-matching techniques have been widely adopted

for passive depth estimation in applications such as sur-
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gical navigation [43], autonomous driving [38], and aug-

mented reality [14]. Despite advancements in stereo depth

estimation (SDE) methods—including transformer-based

STTR [17], volume-based ACV-Net [42], and iteration-

based IGEV [41]—current approaches still face challenges

in perceiving high-frequency details while incurring signif-

icant computational overhead.

In stereo image enhancement and super-resolution, the

strong correlation between left and right views is cru-

cial [11]. Exploiting mutual information and complemen-

tary cues [45], such as stereo image correlation [36] and

stereo cross-attention [44], enhances individual view qual-

ity. Maximizing information from the same scene point

across both views is particularly critical over wide depth

ranges, where focus considerations are essential. While al-

gorithms like [9, 13, 18] have improved cross-view inter-

actions, the frequency domain’s complementarity and inter-

action remain underexplored, presenting opportunities for

innovative optical encoding and systematic design. Prior

studies in monocular deep optics [10, 23], that jointly opti-

mize optics and image processing algorithms, have shown

that the acquired optical encoding can significantly boost

the performance of diverse visual tasks.

This work seeks an end-to-end stereo optics frame-

work that integrates the joint optimization of phase-coded-

aperture pairs with a stereo imaging neural network for

depth estimation and image enhancement, exploiting both

stereo and focus cues, as illustrated in Fig. 1. Specifically,

we present two rank-2 DOEs that are jointly optimized to

encode complementary high-frequency information while

maintaining low computational complexity [1, 32]. The ef-

fectiveness of this approach is enhanced through tailored

initialization strategies. Overall, we make the following

technical contributions:

• We present an end-to-end design paradigm of binocular

coded apertures and a stereo imaging network, aiming to

resolve high-fidelity RGB and depth images.

• We formulate a rank-2 diffractive optics encoding to facil-

itate coded apertures for left and right imaging channels,

greatly expanding the feature encoding and extraction ca-



Figure 1. Our end-to-end learned stereo imaging pipeline consists of an accurate differentiable image formation model, an advanced

stereo matching algorithm, and a CNN-based RGBD reconstruction network. This model leverages a rank-2 parameterization to efficiently

represent and optimize the two DOEs (bottom-left) that are positioned on lenses’ apertures, aiming to encode the stereo measurements

which is capable to promote the interaction and complementarity of acquired scene information between the left and right imaging channels.

Resolved RGBD imaging results from real-captures of our stereo camera prototype are presented (right-most).

pability for subsequent stereo matching.

• We develop a stereo camera prototype with a pair of

learned diffractive optical elements placed on apertures,

achieving high-fidelity 3D imaging results with a large

depth range in various photography scenarios.

2. RELATED WORK

Stereo Depth Estimation. Neural networks excel at ex-

tracting features from left and right views, driving the

advancement of learning-based stereo methods [19, 40].

PSMNet [4], a prominent example, employs a 3D convo-

lutional encoder-decoder to aggregate and regularize a 4D

cost volume. While 4D cost volume-based methods [42]

achieve impressive benchmark performance, they require

heavy 3D convolutions for aggregation and regularization.

Iterative optimization-based methods [34, 37, 41] have

demonstrated remarkable performance on standard bench-

marks and high-resolution images. Unlike cost volume-

based approaches, these methods iteratively refine the dis-

parity map by retrieving information from a high-resolution

4D cost volume without the need for computational cost ag-

gregation operations. However, due to the computation de-

mands of stereo matching, these methods involve downsam-

pling the depth-map during volume construction updates

and subsequently upsampling disparity maps.

Furthermore, when considering stereo depth estimation

in real-world scenarios, the fidelity and accuracy are signif-

icantly constrained by physical camera capabilities such as

depth of field (DoF) and the resolution of stereo cameras.

While advanced models can distinguish high-frequency de-

tails from stereo image pairs [37], the limitation of physical

cameras is that not all captured images are in perfect focus.

Stereo Image Enhancement. When stereo cameras cap-

ture left and right images with significant RGB overlap at

appropriate working distances, cross-view interactions can

enhance RGB quality in challenging scenarios [9, 44] or

super-resolution applications [11, 45]. An essential aspect

is to appropriately perform cross-view interaction, incorpo-

rating the features of the reference image into the target

view. Recent studies have explored and utilized such cor-

relations for stereo image enhancement [9, 44].

In addition to algorithmic image fusion and enhance-

ment, a more systematic solution involves hardware-

software co-design [27, 31]. In our proposed deep stereo

framework, the input stereo pairs are encoded by learned

optics within the imaging system to promote more inter-

action and complementary information in both spatial and

frequency domains. Following pre-processing and encod-

ing at physical layer, the learning-based algorithm func-

tions as a decoder and fuser for the hardware measurements.

The effectiveness of hardware-software joint optimization

in imaging and vision tasks has been showcased in monoc-

ular [10, 32] and dual-pixel imaging [29], alleviating the

computational burden on software.

Coded-aperture Imaging and Deep Optics. Traditional

imaging systems typically utilize compound refractive

lenses that are engineered for image quality independently.

These refractive lens stacks are constrained by their smooth

surface profile, thereby limiting the design flexibility for op-

tically encoding desired task-specific scene information. In

recent years, manipulating input light with a coded mask at



the aperture has been extensively explored in various com-

putational imaging applications. The coded aperture can be

tailored to manipulate the light wavefront, influencing its

amplitude [29], phase [10], and polarization [1]. Diffrac-

tive optical elements (DOEs), a common thin lens platform

utilized for aperture encoding, allow for fine-grained phase

modulation of incident light via diffraction [15, 21], lever-

aging micron-scale surface profiles.

Thanks to the differentiable optical diffraction and im-

age formation model [8, 39], coded-aperture optical sys-

tems can be optimized through back-propagation [31]. A

recent development in monocular cameras has demon-

strated that the joint optimization of optics and imag-

ing algorithms can lead to superior performance for var-

ious visual tasks, including high-quality color photogra-

phy [27], microscope imaging [20], monocular depth es-

timation [10, 21], high-dynamic-range imaging [23, 32],

hyperspectral imaging [2, 12], and high-level computer vi-

sion tasks [28, 35]. This emerging field, dubbed Deep Op-

tics, has been leveraged in dual-pixel camera systems, em-

ploying both amplitude- and phase-coded masks for imag-

ing [7, 29]. Recent work by Tan et al. [33] introduced a

multi-shot coded stereo system using identical optical en-

coding with separate RGB/depth processing, achieving ex-

tended depth-of-field within a 0.84-diopter range.

Our approach differs in that we utilize a pair of com-

plementary DOEs in a snapshot binocular configuration,

achieving superior imaging precision and expansive depth

estimation capabilities by fusing aggregated and physical

cues. By utilizing asymmetric learned rank-2 PSF encod-

ing and integrating left-right channel image fusion within

our stereo framework, we effectively resolve high-fidelity

depth and complementary angular information across mul-

tiple depth layers, surpassing conventional coded-aperture

imaging solutions in both accuracy and versatility.

3. Stereo Phase-coded 3D Imaging

3.1. Monocular Image Formation Model

As shown in Fig. 1, the left and right camera in our binocu-

lar setup utilize the same design space, so that we can first

describe the image formation process for each camera inde-

pendently before considering the stereo effect.

Each camera is modeled as an optical stack of an ide-

alized thin lens, an aperture, and a diffractive optical ele-

ment (DOE), without spacing between the components, i.e.

all three components are effectively co-located in the same

plane (Section 5 discusses how this model can be approxi-

mated with a real optical system). In this imaging system,

the ideal lens is tasked with optical power (focusing) while

enabling the DOE to perform the tailored encoding opera-

tion. An object point at a finite distance z from the cam-

era results in a diverging spherical wavefront incident on

the thin lens. Ideal thin lens converts the diverging spher-

ical wave into a converging spherical wave at z, and the

resulting wavefront after passing through the thin lens can

be denoted as uuu1(x
′, y′, z), where (x′, y′) represents the co-

ordinates on the Lens-Aperture-DOE plane, as shown in the

upper left of Fig. 1. Subsequently, this wavefront interacts

with the aperture and the height field geometryHHH(x′, y′) of

the DOE, leading to the generation of the final wave field

uuuz0 immediately after the optical stack [8]:

uuuz0 = A(x′, y′)uuu1e
jk
[

(n(λ)−n0)HHH(x′,y′)
]

, (1)

where A is the aperture, k=2π/λ denotes the wave number,

and nλ is the wavelength-dependent refractive index.

To obtain the (depth dependent) PSF pλ of the scene

point for a specific wavelength, we can perform free-space

propagation of uuuz0 , for example using the angular spec-

trum method (ASM), and then squaring the resulting wave

field to obtain its intensity [8]. These wavelength-dependent

PSFs pλ contribute to the measurement Mc of an RGB im-

age sensor (with c being the color channel) according to the

following image formation model:

Mc =

∫

Λ

Rc(λ)
[

Is(λ) ∗ pλ
]

dλ+ ηc, (2)

where Λ denotes the target spectrum, Is represents the all-

in-focus scene image, ∗ represents the 2D convolution, ηc is

the corresponding noise, and Rc(λ) is the spectral response

function of channel c. Incorporating sensor response into

measurements can yield more realistic simulation results.

3.2. Rank-2 Parameterized DOE

A critical choice for end-to-end learned diffractive optics

is the parameterization of the DOE. Existing choices, such

as rotational symmetric models [5, 26] and pixel-wise ap-

proaches [24, 31], often induce encoding local minima

(e.g., highlight shifts and scaling artifacts [32]) incompat-

ible with our approach. Specifically, pixel-wise representa-

tion shows little control over the local smoothness, which

increases manufacturing difficulties, usually resulting in a

lower diffraction efficiency. On the other hand, the blur en-

coded by ring-pattern encounters challenges in balancing

image and depth performance [21].

Moreover, for our binocular system, we seek encodings

that can provide complementary information in the left and

right view, while still allowing for robust stereo matching

with an easy-to-learn, easy-to-fabricate DOE design space.

Inspired by the previous research [32], we choose to param-

eterize the DOE pair using low-rank matrices. This repre-

sentation can not only facilitate the encoding of high spatial

frequencies but also contribute to parameter reduction dur-

ing training. A rank-1 height map at coordinates (x′, y′) can

be defined as:

HHH(x′, y′) = Hmax · σ(aaabbbT ), (3)



Figure 2. Overview of the stereo imaging network architecture,

that consists of two components: a stereo matching network [41]

and a RGBD refinement network. After deriving the disparity map

DN through N GRUs, we feed it into the stereo image enhance-

ment network for image warping and depth map enhancement. A

Combined Geometry Encoding Volume (CGEV) is constructed,

serving as a cost volume by integrating all-pairs correlations Ccorr

with a geometry encoding volume CG.

where aaa,bbb are m × 1 learnable real valued vectors. A sig-

moid function σ is applied to constrain the heightmap value.

Instead of using rank-1 representation, we found that

a rank-2 design offers enhanced control and reconstruc-

tion quality while retaining the benefits of the rank-1 de-

sign space. The rank-2 design is formulated as the sum

of two rank-1 matrices mmm1 = aaa1bbb
T
1 ,mmm2 = aaa2bbb

T
2 , where

aaai, bbbi ∈ R
m are learnable real number vectors, and m is set

630. We further enforce symmetrical PSFs by optimizing

only the parameters for one quadrant, and then replicating

this quadrant four times through rotations by 90◦, 180◦, and

270◦, respectively. Finally, we found it beneficial to have

the axes of the low-rank DOE rotated by 45◦ relative to the

pixel grid of the cameras (as well as the baseline between

the cameras) to facilitate simultaneous frequency sampling

in the x and y directions, as illustrated in Fig. 7. The final

DOE height mapHHH(x′, y′) can then be described as:

HHH(x′, y′) = Rπ

4

{

Quad
[

Hmax · σ
(

2
∑

i=1

aaaibbb
T
i

)]

}

, (4)

where Quad represents the quadrant replication operator,

and Rπ

4
is the rotation by 45◦. The modeling process for

left and right DOE is illustrated in the bottom-left Fig. 1.

3.3. Network Architecture

In the stereo matching network (refer to Fig. 2), we lever-

age the context network following the RAFT-Stereo [19]

and a multi-scale feature extractor to extract features

fl,i (fr,i) ∈ R
Ci×Hi×Wi , where i=4, 8, 16, and Ci indicates

feature channels. Besides, a simplified iterative geometry

encoding volume (IGEV) [41] is utilized for stereo match-

ing, consisting of a group-wise correlation volume and pro-

cessing the volume through a lightweight 3D regularization

network to derive the geometry encoding volume (GEV).

We then pass the GEV through ConvGRU-based operators

to iteratively update the disparity. The resulting disparity

map DN is a predetermined set of disparity indices at 1/4

resolution, linked with a spatial upsampler. In the stereo

image recovery network, we warp the right image to the

left view using the estimated depth map and incorporate a

U-Net with a cross-cue mechanism [16] to fuse images en-

coded by complementary PSFs from our rank-2 modeling.

3.4. End-to-end Optimization

The proposed stereo RGBD imaging pipeline jointly opti-

mizes three primary parts — a differentiable optics model, a

robust stereo matching network, and an RGBD reconstruc-

tion network, as illustrated in Fig 1. This integrated system

seeks to resolve the all-in-focus RGB image (AiF-RGB)

and detailed depthmapDDD{l,r}, from blurred measurements.

DOE Initialization. The objective is to ensure that the

left and right DOEs are optimized to offer complementary

encoding and induce non-smooth phase variations within

our rank-2 model. For the left and right channels, the

symmetric-like nature of network architectures may pose

challenges in achieving complementary encoding with stan-

dard initializations, such as zeros or random matrices. Al-

ternatively, in this work, the DOE is initialized to emulate a

pair of compound cylindrical lenses, as illustrated in Fig. 3

(left-most), enforcing different spreading directions for left

and right PSFs. This special initialization not only enables

rich phase variation but also imparts focal power to our

stereo camera system. We have conducted a comprehen-

sive analysis of optimized sampling outcomes using differ-

ent initialization methods in the frequency domain. The im-

pact of various DOE models and initialization strategies is

presented in the supplementary material.

Image Simulation. We integrate the state-of-the-art LS-

ASM [39] into our image simulation process to determine

the minimal number of samplings essential for imaging sim-

ulations. When generating 3D PSFs, it is crucial to model

the realistic defocus blur for each region in an image based

on its depth value, especially in areas with depth transi-

tions. Taking into account multiple depth layers within

the working-distance range, we utilize a nonlinear differen-

tiable image formation model proposed by Ikoma et al. [10]

based on alpha compositing. In this model, the input RGBD

image is quantized into K depth layers lk, with k = 0 rep-

resenting the furthest layer. As it is computationally de-

manding to forward and back-propagate the entire full vis-

ible spectrum during model training, we consider the sen-

sor responses as δ functions and employ a simplified image

formation model. Detailed analysis on the PSF behaviors

across full spectrum is presented in the supplementary ma-

terial. Thus, the left and right sensor images Ii(λ), where

i ∈ l, r and λ ∈ (632, 550, 450)nm, can be expressed as:



Ii(λ) =

K−1
∑

k=0

pi,k(λ) ∗ lk
Ek(λ)

K−1
∏

k′

[

1−
pi,k′(λ) ∗ αi,k′(λ)

Ei,k′(λ)

]

+ηi,

(5)

where αi,k denotes the binary mask at a particular depth

layer k, and E serves as a normalization factor.

Loss Function. We train the network using a feature sim-

ilarity loss [30] for the RGB image LRGB, and calculate

the L1 loss on initial disparity D0 regressed from GEV and

all predicted disparities from ConvGRU as LD0
and LDi

.

We also include the L1 loss of refined depthmap LDr
af-

ter passing through the depth refinement network. For PSF

regularization, we introduce a concentration mask M to en-

force constraints on its divergence, as follows:

LPSF =
∑

λ

∑

k

M · |PSFλ,k|
2. (6)

As such, the total loss is defined as:

L = ψPSFLPSF + ψRGBLRGB+

ψD(Ld0
+

N
∑

i

wiLDi
) + ψDr

LDr
,

(7)

whereψi denotes the weights of each loss, empirically set as

ψPSF : ψRGB : ψD = 1 : 1 : 1, and weight wi is computed

in each GRU iteration to prioritize earlier iterations: wi =
(

γ15/(i−1)
)N−i−1

, where N is the total iteration number

and γ is set 0.9.

Our model demonstrates reduced dependency on the per-

formance trade-off between RGB recovery and depth esti-

mation that often appears in monocular deep optics mod-

els [10, 21]. This is because both RGB imaging and stereo

matching prioritize extracting high-frequency information,

and the fused depth cues are not solely dependent on the

PSF distribution but also on sharp edges for matching.

4. Simulation Assessment

4.1. Data Preparation

Datasets. During initial training, we utilize a cleanpass

subset of Sceneflow Flyingthings3D [22], which respec-

tively comprises 22K and 8K pairs of synthetic RGB images

and corresponding depth maps for training and testing. The

input patch size is (320, 736) and the maximum disparity set

in IGEV is 192. While the FlyingThings3D dataset offers

variable depth maps aligned with RGB images, it is syn-

thetic and does not reflect natural scenes accurately. There-

fore, we additionally incorporate the InStereo2K dataset [3]

to test the robustness of trained model. This dataset contains

2k captured images for training and 50 for testing.

Data Augmentation. To incorporate noise into simulated

measurements (Eq. 6), we utilize a normal distribution with

Figure 3. PSF visualization at varying depths. We simulate PSFs

at 9 depths for the ideal thin lens (top row) and our DOE + thin

lens optical system (middle and bottom rows). The left and right

DOEs are initialized by enforcing the phase of compound cylindri-

cal lenses with perpendicular spreading-out direction (left-most).

After the end-to-end optimization, we can obtain learned DOE

profiles (second column from left).

a maximum noise value of 0.005. To account for tolerances

during DOE assembly and calibration, we introduce ran-

domness to the DOE position at the Lens-Aperture-DOE

plane. This randomness involves a 2D translation (x, y) by

up to 4 × 4 pixels and a rotation by up to (θ) by 2◦. In ad-

dition, we have introduced a simple but effective data aug-

mentation technique involving mirrored sub-batches for the

stereo imaging pipeline. Our network input comprises not

only the measurements generated by the image formation

model but also their mirrored counterparts. Consequently,

two pairs of stereo images are included in each sub-batch,

enabling the training of left-right RGB-D images and en-

hancing network training concurrently. Furthermore, since

our model is only trained on synthetic datasets, we utilize

the data augmentation methods from [19] in stereo match-

ing, including horizontal image stretching, saturation ad-

justment and vertical perturbation of the right image.

4.2. Implementation Details

In the simulation, we employ three principal wave-

lengths Λ(nm)={632, 550, 450} across 7 depth layers

D(m)={0.67, 0.79, 0.96, 1.24, 1.72, 2.83, 8.00}, which are

uniformly sampled in the diopter domain. As depicted in

the right of Fig. 3, the rank-2 encoded depth-dependent PSF

exhibits a more focused distribution compared to that of a

thin-lens model, highlighting its ability to capture a broader

frequency spectrum. In addition, these PSFs exhibit dis-

tinct extension directions to the left and right, perpendicu-

lar to each other across all depths except at the focal points,

thereby providing complementary spatial sampling.

In this research endeavor, we have developed and trained

two distinct sub-branch models tailored to different work

distances. The medium-shot model exhibits exceptional

precision in 3D imaging within the range of 1–5m, cor-

responding to approximately 0.8 diopter. In contrast, the

long-shot model excels in imaging spanning 0.67–8m, ap-

proximately equivalent to 1.4 diopter.



Table 1. Ablation on varying neural network architectures. Evalu-

ated models: depth from defocus with learned optics [10], simpli-

fied IGEV stereo matching [41] (IGEV-S), our stereo imaging net-

work without DOEs (Baseline), and deep stereo models (D-S) us-

ing different DOE modeling methods, including pixel-wise (PW),

rotational symmetric (Ring), rank-1 (Rank1), and rank-2 (Rank2)

encoding. d denotes the diopter of working distance (unit: m−1).

d Model DOE Image Depth

(m−1) PSNR SSIM RMSE EPE (px)

DfD Ring 31.02 0.905 0.132

IGEV-S w/o 0.078 1.52

Baseline w/o 29.83 0.897 0.076 1.38

0.8 D-S PW 31.88 0.915 0.071 1.23

D-S Ring 32.10 0.922 0.069 1.16

D-S Rank1 32.52 0.925 0.072 1.19

D-S Rank2 32.96 0.926 0.066 1.12

Baseline w/o 29.17 0.832 0.090 1.49

D-S PW 31.08 0.890 0.082 1.37

1.4 D-S Ring 31.24 0.912 0.078 1.28

D-S Rank1 31.65 0.906 0.079 1.33

D-S Rank2 32.13 0.917 0.071 1.21

4.3. Simulation Results

We compare our deep stereo (D-S) framework with the sim-

plified version of advanced stereo depth estimation algo-

rithm IGEV [41] and monocular deep-optics imaging on

the Scene Flow testset, as shown in Table 1. Detailed com-

parisons with recent deep optics methods [10, 33] are pro-

vided in the supplementary material. We further assess

the imaging performance utilizing four different optical en-

coding methods in the DOE optimization: pixel-wise(PW),

Ring, Rank-1, and our Rank-2 parameterization. As listed

in Table 1, we assess benchmarks for depth estimation us-

ing RMSE and end-point error (EPE) matrices, while im-

age recovery quality using PSNR and SSIM. The baseline

is our proposed RGBD reconstruction framework without

optical encoding (thin lens only). Furthermore, by utiliz-

ing the proposed end-to-end learned encoding D-S frame-

work, optimized results were obtained through applying

varying DOE representations. Results tested on the Scene-

flow dataset demonstrate that our Rank-2 encoding, charac-

terized by complementary encoding and superior focusing

properties, yields superior performance in both image re-

covery and depth estimation. Specifically, we have achieved

a PSNR of 32.12 dB in RGB reconstruction, surpassing the

benchmark by 2.96 dB, and 1.21 px in EPE, decreased by

0.28 px. Figure 4 shows the qualitative simulation results.

5. Experimental Assessment

Prototype Implementation. We fabricate a pair of op-

timized DOEs and construct a stereo camera prototype,

as illustrated in Fig. 5. The DOE fabrication involves it-

erative photolithography and dry etching processes on a

fused silica wafer [6, 32] to achieve 24-level phase profiles.

These DOEs have a clear diameter of 4.4 mm and utilize

Figure 4. Comparison in simulation between the proposed method

and baseline (w/o optical encoding).

Figure 5. Diagrams of our learned stereo camera prototype and

DOE assembling. (a) shows the 3D model of our prototype, con-

sisting of four lens groups, two sensors, associated adapters, and

two optimized DOEs placed at aperture planes (b–c).

a Chromium layer as an optical baffle. The equivalent f-

number of our prototype is 8. Our camera setup consists

of a pair of Nikkon EF 35mm f/1.8 SLR lenses and FLIR

Grasshopper3 1/1.2” sensors.

To simulate the co-planar arrangement of lens, aperture,

and DOE, we insert the DOE in the middle of the optical

system, near the pupil plane. The manual SLR lenses allow

for detaching the front and rear lens groups, facilitating the

easy replacement of the aperture with custom DOEs [10].

To position the DOEs accurately, we have designed and 3D

printed a pair of custom DOE holders with slots to aid in

the 45◦ angle calibration. We construct our prototype by

fixing the DOE plane at the aperture inside the compound

lens, illustrated in Fig. 5(c). The f-number of an optical sys-

tem should be determined at the entrance pupil, located at a

specific distance from the aperture plane. Consequently, we

delineate the magnification between the pupil and aperture

and then fine-tune our pre-trained model by incorporating

the magnified aperture. Our experiment shows that the mag-

nification from pupil to aperture plane is only 1.031, which

can be easily adjusted through network fine-tuning.

PSF Calibration and Model Fine-tuning. After proto-

typing the stereo camera consisting of left and right SLR

lenses assembled with learned DOEs, as illustrated in Fig. 5,

we need to capture the PSFs of our optical system. We



Figure 6. Captured and simulated depth-dependent PSFs. The de-

signed PSF (top row) is optimized with our end-to-end simulator.

Center row simulates the PSFs sampled and captured by our sen-

sor. Optical imperfections, light source spectrum and size result in

the captured PSFs (bottom row), slightly deviating from the simu-

lated sensor images. The PSF patch size is 50× 50px.

use a 25µm pinhole and a tunable laser-driven white light

source as the point light to measure the depth-variant PSFs

at depth layers D. At each depth in D, we captured ten

images for average calculation, and five extra background

images to be averaged and subtracted as noise. The bot-

tom row in Fig. 6 shows the measured depth-variant PSFs,

which slightly differ from the three-wavelength PSF simu-

lation (top row). This discrepancy may originate from the

spectrum distribution and size of the point light source, the

misalignment, and the rotation error of left and right DOE

positions. Since we considered the PSF jittering and rotat-

ing in the augmentation and end-to-end optimization, it has

a tolerance and robustness within 5◦ and 40µm. Given cal-

ibrated PSFs, we incorporate the real PSF distribution and

pupil-aperture magnification into our pre-trained model and

fin-tune it for 3 epochs under the imaging size of (320, 736).

Real-world Results. We demonstrate the effectiveness of

our stereo camera system with learned optics through four

captured indoor and outdoor scenes (Fig. 8). The first row

of each scene displays the captured images and RGBD re-

construction results from our prototype, while the second

row compares the performance with a conventional stereo

camera employing our baseline model. All processed RGB

and depth maps in our experiments are at full resolution of

1,200×1,920 pixels.

Results indicate that our model excels in far-field sce-

narios, overcoming challenges encountered by conventional

cameras such as shallow depth-of-field and potential degra-

dation of image SNR with aperture adjustments. Lever-

aging complementary optical information encoding in the

left and right channels enables us to retain edge details in

coded blurry images, mitigating concerns like detail loss,

distortion, and deformation in RGBD imaging. Our proto-

type performs effectively in demanding scenarios such as

capturing intricate small features like the panda toy’s head

(Indoor-2) and the distant plants (Outdoor-1), and mitigates

distortions caused by significant blur, as evidenced by the

Figure 7. Ablation on sampling capabilities in the frequency do-

main of the DOE-lens hybrid optics. We present the PSFs at 3

depths: (0.67, 2.83, 8) m. MTF, indicated as S, represents the 2D

modulation transfer function of the corresponding optics. It is ev-

ident that compared to traditional stereo camera with same lenses,

our optimized stereo DOEs-lens system offers enhanced and com-

prehensive sampling in frequency domain, allowing our proposed

camera to extract more spatial information.

color checkerboard (Indoor-1) and shapes of the box and

doll (Outdoor-2).

6. Discussion and Conclusion

Unlike prior studies on stereo imaging, this work delves into

evaluating the detailed interactions between hardware and

software binocular vision systems, especially the interac-

tion and optimization of stereo and focus cues. We have

devised an encoding method that provides complementary

spatial frequency information in the left and right camera

to significantly improve both color and depth results over a

large depth range in real world settings.

The complementarity of the MTFs between the two cam-

era allows for a broader range of frequency components to

be collectively encompassed [25]. This insight implies that

a greater number of frequency components from the input

signal can be preserved and transmitted, thereby enhancing

the systems’ ability to reconstruct the original signal. Con-

versely, in cases where the MTFs of two coded-aperture

cameras are identical but orthogonal in the frequency do-

main, they can address complementary frequency compo-

nents. Fig. 7 illustrates the simulated MTFs for the left

and right cameras, denoted as SL(f) and SR(f), respec-

tively. Ideally, the combined MTF for our stereo camera

can be represented as SL+R = max(SL + SR, 1) across

most points (5th column), covering a broader frequency

spectrum, facilitating capturing more frequency informa-

tion compared to a conventional stereo camera pair.

Limitations and Future Work. One limitation of the cur-

rent system is that the computational complexity of our

model prevents real-time image reconstruction. Addition-

ally, experiments reveal artifacts in scenes with high dy-

namic range, e.g. directly visible light sources or specular

highlights. For instance, circular DOEs can produce cir-

cular halos, while rank-1 and rank-2 DOEs may generate



Figure 8. Experimental results of our learned stereo camera prototype. Baseline is the proposed stereo RGBD reconstruction network

without optical encoding, aka., thin lens only. From left: Images captured by our stereo camera (Row 1 in each scene) and conventional

stereo camera (Row 2 in each scene), AiF images recovered by our reconstruction network, zoomed-in comparison for recovered RGB

images, and zoomed-in comparison for estimated depth maps.

cross-shaped due to “long tail” PSFs from limited diffrac-

tion efficiency of the DOE. This is at least in part due to pro-

totyping challenges that could be substantially reduced with

commercial grade fabrication and assembly.These chal-

lenges could also be mitigated by implementing optimiza-

tion constraints and adjusting exposure settings appropri-

ately. Future avenues also include exploring more advanced

network architectures to improve the scalability of our end-

to-end deep stereo framework, particularly targeting imag-

ing tasks in extreme environments. Advancements in differ-

entiable optical designs that are more resource-efficient and

offer greater design flexibility are also worth investigating.

Conclusion. We presented a deep stereo imaging frame-

work that jointly optimizes neural networks and a pair of

complementary phase-coded apertures. By utilizing an ap-

propriate initialization and a rank-2 encoding scheme, our

stereo imaging model can acquire focus cues and comple-

mentary dual-channel information. Through intensive sim-

ulations and experiments, we observed significant enhance-

ment in high-frequency image recovery and detailed depth

estimation, particularly in far-field scenarios. Our stereo

imaging framework also paves the way towards enabling

various task-specific computational camera configurations,

such as low-light and hyperspectral imaging scenarios.
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