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Figure 1: We propose an end-to-end hardware-software joint optimization technique to extend the depth of field (DOF) of
projectors. Instead of just algorithmically deconvolving the out-of-focus blur, we learned a custom diffractive optical element
(DOE) placed in front of the projector lens. The learned DOE results in a point spread function (PSF) with higher energy
concentration over a wide range of projection distances compared to normal projection using a normal lens. With jointly
optimized hardware and a deep compensation network, our method can create an all-in-focus image display with sharp details on
projection planes at different depths. Here are the PSFs (bottom left) and the results (right) displayed on a tilted projection screen
at 50 degrees to the projection direction.

ABSTRACT

Projector Depth-of-Field (DOF) refers to the projection range of
projector images in focus. It is a crucial property of projectors in
spatial augmented reality (SAR) applications since wide projector
DOF can increase the effective projection area on the projection
surfaces with large depth variances and thus reduce the number of
projectors required. Existing state-of-the-art methods attempt to
create all-in-focus displays by adopting either a deep deblurring
network or light modulation. Unlike previous work that considers
the optimization of the deblurring model and physic modulation
separately, in this paper, we propose an end-to-end joint optimization
method to learn a diffractive optical element (DOE) placed in front of
a projector lens and a compensation network for deblurring. Using
the desired image and the captured projection result image, the
compensation network can directly output the compensated image
for display. We evaluate the proposed method in physical simulation
and with a real experimental prototype, showing that the proposed
method can extend the projector DOF by a minor modification to the
projector and thus superior to the normal projection with a shallow
DOF. The compensation method is also compared with the state-of-
the-art methods and shows the advance in radiometric compensation
in terms of computational efficiency and image quality.
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1 INTRODUCTION

Projection-based spatial augmented reality (SAR) is a technology
that turns 3D objects into display surfaces and changes the appear-
ance of the objects to generate mixed-reality experiences. Benefiting
from the low cost of projectors and the convenience of not wearing
additional devices, the technology has become popular in a variety
of applications, such as virtual exhibition [3], product design [32],
serious games [23], and industry manufacturing [46]. With the ad-
vancement of geometric calibration and radiometric compensation
methods based on projector-camera systems (Procams) [13], precise
geometric alignment and color reproduction become possible in 3D
projection mapping, greatly enhancing the realism of SAR.

However, projectors are originally invented for display on 2D
planar screens, and they usually adopt large apertures for high light
throughput. Therefore the degree of focus (DOF) is relatively narrow
and not suitable for projection mapping on 3D objects with large
depth variances. A straightforward solution is to apply multiple
conventional projectors to construct the display. Each projector is
responsible for a separate area with a substantially constant depth
[4, 34]. However, this will increase the cost of the display as the
number of projectors used has increased significantly.

An alternative solution is to extend the DOF of projectors and
make a single projector cover as many areas as possible. Many
approaches have been proposed to improve the DOF of projectors
from the perspectives of optical hardware modulation and projection
deconvolution algorithms. Existing optical modulation approaches
either spatially modulate the light field or temporally modulate the
focal length to achieve wide DOF. However, the light efficiency or
the frame rate of the display is sacrificed with the modified projectors.
Most of the projector deconvolution approaches compensate for the
out-of-focus blur with known point spread function (PSF) kernels.
The PSFs have to be accurately measured before compensation as
their non-blind compensation algorithm requires. Furthermore, most



of the previous approaches treat optical hardware modulation and
compensation algorithms as separate tasks, resulting in the loss of
some performance optimization freedom.

In this paper, we focus on the joint end-to-end optimization of
optical design and compensation algorithms for extending the pro-
jector’s in-focus display range. We consider optical hardware modu-
lation and compensation algorithm as two interdependent tasks, thus
putting forward an end-to-end neural network that can learn a DOE
placed in front of a projector lens, and a compensation method for
projector deblurring without requiring the PSF measurement before
compensation. We fabricate the learned DOE and equip it with a
conventional projector as a prototype system. The light efficiency of
the prototype is higher than that of previous EDOF projector designs.
Both simulations and experiments on the prototype show that our
network effectively enlarges the projector DOF, and outperforms
state-of-the-art projector compensation methods. Our contributions
can be summarized as follows:

• We present the first work to jointly design a DOE for light
phase modulation and a convolutional neural network for
projector compensation. The designed extended depth of
field (EDOF) computational projector can achieve high light
throughput and real-time performance;

• We demonstrate that this learned optics compares favorably to
baselines with conventional projectors, and the learned com-
pensation network outperforms previous state-of-the-art com-
pensation methods in terms of both computational efficiency
and compensation quality;

• We implement a laboratory prototype of the computational
EDOF projector equipped with the learned DOE, and evaluate
it with real display experiments on depth-varying and tilted
projection surfaces.

2 RELATED WORKS

As mentioned above, many efforts have been made to improve
the DOF of a single projector, including non-blind deconvolution
algorithms and hardware modulation methods. We also introduce
two techniques related to our approach in this section: radiometric
compensation and end-to-end optics learning.

2.1 Deconvolution

Previous deconvolution methods treat the depth-dependent PSFs as
known degradation models and optimize the input projector images
for display on a plane placed at out-of-focus distances [5]. The
defocus PSF kernels for each projector pixel can be recovered from
the captured images of projected dot patterns [50], and can also be
estimated from the captured images of projected natural images [36].
Knowing the PSFs, in order to compensate for the spatially-varying
projection blur, a straightforward optimization that minimizes the
reprojection error can be solved via iterative gradient descent algo-
rithms [50]. Considering further improving the convergence rate of
the deconvolution, Wiener deconvolution in the frequency domain
is another practical solution [6]. However, all the deconvolution
algorithms attempt to minimize the color numerical difference (e.g.,
Mean Square Error) while not considering the perceptual difference
between the real display and the desired images. We argue that
the Mean Absolute Error (MAE) and Mean Square Error (MSE)
are not suitable for the objective function in image deblurring task,
since they are insensitive to blurring [7], that is, blurring may cause
large perceptual differences but only small MSE and MAE changes.
Therefore, deep image quality perceptual metrics are more suitable
as objective functions for the compensation in projector display.

2.2 Hardware modulation
The optical modulation techniques for projector EDOF can be di-
vided into two categories: coded aperture and focal sweep projector.
In the projector design with a coded aperture [11], a high-frequency
random blocking mask is placed at the location of the aperture of a
camera to generate high-frequency PSFs. Other methods [29] study
further to enhance the display quality of a single image display by ex-
ploiting a spatial light modulator (SLM) to modulate the light fields
in multiple frames. Such projectors with coded apertures can be used
in display and surface reconstruction [22]. However, the mask or
the SLM blocks at least half of the light energy, leading to relatively
low light throughput. As another modulation-based solution, the
focal sweep projectors equipped with an electrical focus tunable
lens (ETL) to periodically adjust the focal length of the projector
and projected content to adapt to the surfaces with pixel-dependent
depths [19]. The combination of ETL and high-speed projectors
demonstrates its advance in the dynamic display on depth-varying
planes [49] and 3D moving objects [47]. Despite the high image
quality of the focal sweep projector, such projectors rely on high-
speed focal length adjustment, and sacrifice frame rate and a certain
amount of light throughput to generate sharp pixel-dependent PSFs.

2.3 Radiometric compensation
Radiometric compensation is a technique to eliminate the indirect
light transport effects in projector displays. Indirect light transport
effects, such as inter-reflection, refraction, and defocus, heavily de-
grade the display quality. Previous works consider representing full
light transport in projector display by a 4D large-scale tensor. It
utilizes low-rank assumption to measure the tensor, and apply the
inverse of the tensor to remove the unwanted effects [37, 48]. Some
recent works focus on either compensating the defocus blur [20, 21]
or textured projection surfaces and geometric distortion [16–18].
Taking full advantage of the power of the convolutional neural net-
works, these models are trained in a supervised manner, and can deal
with complicated scenes with local light transport effects. Most of
the methods do not rely on acquiring accurate degradation models,
thus no need to project sampling patterns to projection surfaces, re-
sulting in no interruption during the continuous projection procedure.
Instead, they project natural images and capture the degraded images
by a well-registered camera, then directly feed the desired images
and the captured degraded display image into the compensation net-
works to train the network parameters. This inspires us to construct
a deep convolutional neural network for blur compensation without
acquiring the out-of-focus degradation model.

2.4 End-to-end optics learning
As the inverse processing of projector display, camera imaging also
concerns the properties such as DOF and light throughput. Recently,
end-to-end optics learning attracts extensive attention in the compu-
tational imaging community. Combining the differentiable optics
simulation and various downstream reconstruction neural networks,
end-to-end optics learning shows its automaticity and flexibility in
optics design, compared with traditional hand-crafted design. Un-
like hand-crafted designs that focus on optical aberrations only in
the optical system, end-to-end optics learning takes more into ac-
count the performance of the whole system on specific tasks, and
jointly optimizes the optics and reconstruction algorithms, resulting
in higher optimization freedom. The learned optics modulates the
optical phase to encode implicit image information into the PSFs,
and decode the information using the reconstruction algorithms. Ex-
isting end-to-end methods have been widely used in super-resolution
and EDOF [43], high-dynamic range imaging [44], hyperspectral
imaging [2], large field-of-view imaging [39], seeing through ob-
structions [42] and so on. Compared with the modulation method
using a blocking mask, learned optics usually have much higher
light throughput, and can also reconstruct the images in a snapshot.
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Figure 2: Framework of our end-to-end optimization for both the DOE and the compensation network. We simulate the PSF of a DOE at
each depth by substituting its height map into a diffraction propagation model, and randomly choose a PSF as the convolutional kernel to
generate the projection result I∗ of the original images I. The compensation network takes the sharp original images I and the corresponding
blur result images I∗ as inputs and outputs the compensation images Î for the projector display. Then we simulate the projection result Î∗ of the
compensation images Î by convolution with the selected PSF, and treat the difference of I and Î∗ as the loss function L of the network. As our
entire framework is differentiable, the DOE height map and the compensation network can be learned by minimizing the loss function L.

To ensure both high frame rate and high light throughput, moti-
vated by the development of end-to-end optics learning in the com-
putational imaging domain, we propose to use learned diffraction
optics elements instead of blocking masks to modulate the phase of
the light emitted by projectors, and utilize a deep convolutional neu-
ral network to compensate for the projected images. The transmitted
light by DOEs is much higher than blocking masks, indicating little
energy loss through the DOE. Furthermore, convolutional neural
networks can be trained with perceptual losses to efficiently handle
compensation and achieve high perceptual display quality.

3 METHOD

The goal of our proposed method is to build a framework that jointly
optimizes the projector optics and the compensation algorithms for
projection DOF extension as a whole. We present a unified data-
driven projector EDOF method to learn a DOE and a reconstruction
network in an end-to-end manner. Compared with individual opti-
mizations, our method can achieve better image display quality over
a larger projection range. As illustrated in Fig. 2, the framework
mainly consists of a wave-optics simulation component and an im-
age compensation component. The wave-optics propagation model
is applied to simulate the PSFs and the projection results of input
projector images at a specific projection distance, and the image
compensation network can generate the compensated image for the
projector display at that distance.
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Figure 3: The light propagation from a point on the pixel plane to
the projection surface. The phase of the spherical light wave coming
from a pixel point is modulated by an ideal thin-lens with focal
length f and the optimized DOE. The PSFs along varying depths
can be simulated by using the Fresnel diffraction model.

3.1 PSF Simulation

The proposed projector optical system consists of a light source,
and a DMD chip followed by a refractive lens and an optimized
DOE. In order to simulate the PSFs of the system, we apply the
wave optics model [10] to approximate the physical propagation of
light and calculate the intensity from a point light source to a plane
with a specific projection distance. Specially, we treat a pixel on
the pixel plane as a point light source and consider the light wave
emitted from the pixel as a spherical wave. As shown in Fig.3, let
the position of the pixel be the origin of coordinates, and the distance
of the lens principal plane from the pixel plane be u. The light from
the pixel and arrival at the lens plane satisfies the spherical wave
propagation model, and the phase of the point at position (x,y,u)
can be expressed as:

φs =
2π

λ

√
x2 + y2 +u2, (1)

where λ is the wavelength of the incident light. The refractive
thin-lens then delay the phase of the light as:

φ f =
−2π

λ

(x2 + y2)

2 f
, (2)

where f is the focal length of the lens. Right after the lens, the DOE
then modulates the phase of the light. We neglect the gap between
the lens plane and the DOE plane, and simulate the phase delay
caused by the DOE based on the height map h and the wavelength-
dependent refractive index nλ of the DOE:

φDOE =
2π(nλ −1)

λ
h(x,y). (3)

Then, the accumulated phase of the outgoing light after being modu-
lated by the DOE can be expressed as:

φm = φs +φ f +φDOE . (4)

Combining the consideration of the ideal thin-lens equation that

1
f
=

1
u
+

1
v
, (5)



where v denotes the focusing distance of the lens under the focal
length f and the distance u, the accumulated phase φm can be ex-
pressed as:

φm =
2π

λ

[
(nλ −1)h(x,y)− x2 + y2

2v

]
, (6)

in which the assumption
√

x2 + y2 ≪ v is made to simplify the
expression, and variables u and f are eliminated. Note that the phase
after the modulation of DOE is only related to the wavelength λ , the
refractive index nλ , spatial location (x,y), the DOE height h, and
the original focusing distance v. Finally, the wave field at the DOE
plane propagates to the projection plane with the projection distance
z, and the PSF kernel p at the projection plane can be calculated by
using the squared magnitude of the complex wave field:

p ∝

∣∣∣F−1 {F{A ·Um} ·Hz}
∣∣∣2 , (7)

where Um is the complex-valued light wave after modulation, A
denotes a two-dimensional binary pupil function whose spatial reso-
lution is the same as that of Um, F and F−1 denote Fourier trans-
form and inverse Fourier transform respectively, and the convolution
kernel of Fresnel propagation can be expressed as:

H= ei 2π

λ
(z+ x2+y2

2z ). (8)

Note that the elements in binary pupil function A with value
1 indicate the light is fully transmitted at the point, while those
with value 0 indicate the light is blocked. In this paper, we use a
circular pupil function that only allows the light to pass through
the circle region. Obviously, the PSFs are both depth-dependent
and wavelength-dependent. In order to eliminate the effects of the
spectral variable λ , the spectral power distribution (SPD) function
of the projector’s primary needs to be known. Fortunately, the
SPD function of the primaries can be obtained by referring to the
product specifications or measuring with a spectrometer (e.g., X-
Rite ColorMunki) easily. Sampling each wavelength in Eq. 7 and
calculating the integral of each channel by substituting the obtained
SPD functions separately, the depth-dependent three-channel PSFs
can be simulated by giving projection distances z. We randomly
set the depth z and generate the corresponding PSF for network
training. To force the consistency of the input and output energy, the
simulated PSFs are scaled so that the sum of each channel equals
one.

3.2 Projection Results Synthesis

Given a PSF generated at a random projection distances z, and an
input color image I, we simulate the corresponding projection result
I∗ based on the convolutional PSF model:

I∗ = F−1 {F{I} ·F{p}} . (9)

Note that we use the fast Fourier transform(FFT) in the frequency
domain to get the convolutional result instead of using filtering
because the kernel size of p is usually hundreds due to the diffraction
propagation simulation. The computational complexity of filtering
is O(N2), resulting in unacceptable computational cost as the kernel
size increases. In contrast, the computational complexity of FFT
is O(Nlog(N)), resulting in a reasonable computational time. In
addition, to handle the image boundaries accurately, we pad the
image and kernel with zeros for linear convolution. The PSFs can
be used to simulate not only the projection results of target images,
but also the projection results of the compensated images.
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Figure 4: The multiple layer perceptron (MLP) for height represen-
tation. In order to constrain the optimization freedom degree of the
height map, we force all points that are the same distance from the
center of the DOE to have the same height, and the radial distribution
height map is represented by an MLP Fθ with trainable parameters
θ . Note that we apply position encoding p() to the radius r before
sending it to the MLP, and the height map is quantized to meet the
manufacturing requirement.

3.3 DOE Height Representation
The height map of the DOE is learned to modulate the incident
light wave after being focused by the lens. Our joint optimization
framework seeks for optimal combination of the DOE height map
and the compensation network.

The most straightforward representation of a m×m height map is
to treat the height of every point on the DOE as learnable parameters.
However, this may lead to local minima solutions due to the high
degree of optimization freedom [31, 44]. Also, in the SAR-oriented
projector display problem, rotation-invariant PSFs are much easier
for compensation since the normal direction of the projection sur-
face is usually arbitrary in SAR applications. Therefore, we apply
a constraint on the height map that all points that are the same dis-
tance from the center of the DOE have the same height. This radial
distribution constraint drastically reduces the degree of optimization
freedom of the height map. Furthermore, as shown in Fig. 4, we
adopt the position encoding technique and a multiple layer percep-
tron (MLP) to implicitly generate the height of the points at radius r.
The representation of our height map function is formulated as:

h(x,y) = Fθ

(
p(
√

x2 + y2)

)
, (10)

where (x,y) denotes the point position, p(·) denotes the positional
encoding operation, Fθ (·) denotes the MLP that maps the encoded
vector of a point to a height value, and θ is the set of trainable
parameters in the MLP. A popular trigonometric-functions-based
form is applied in the position encoding:

p(r) =
(

r,sin(20
πr),cos(20

πr), · · · ,sin(2L−1
πr),cos(2L−1

πr)
)
,

(11)
where L denotes the order of frequency of the vector. The frequency
of the height map can be inflexibly adjusted by changing the value
L. We set L = 9 with the height map resolution of 2048×2048. It
is worth noticing that there are precision limits in manufacturing, so
the actual height map of the DOE is the quantization result of the
numerical height values.

3.4 Compensation Network
In order to generate the compensated image for practical display,
we design a compensation network that takes the target image I and
the projection result I∗ as input, and outputs a compensated image Î
as the input image of the projector for display. The compensation
network aims at generating a display in which the projected result is
numerically and perceptually close to the desired image. The goal
of taking only I and I∗ as inputs is to avoid the time-consuming
processing of projecting patterns and PSFs estimation.



In the training stage, the input projection result images are simu-
lated by using the convolutional model in Eq.9 and the PSF simulated
by the MLP; while in the testing stage, we use a camera to capture
the projection result images directly and apply the compensation
network for compensated image generation.
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Figure 5: The U-net architecture of the projection compensation
network. The network contains seven scales with six downsampling
and upsampling blocks. The channel amount of each block is shown
in the figure. Note that the input target image is directly added to
the output image for residual learning.

The architecture of the compensation network is illustrated in Fig.
5. We adopt a U-net consisting of seven scales with six downsam-
pling and upsampling blocks respectively. In each block, there are
two convolutional layers with 3×3 filters, each followed by a Leaky
ReLU activation function. To reduce the training burden of the
network and accelerate the training, we add a long skip connection
from the input target image to the output image and initialize the
weights of the network to zeros. This residual-learning mechanism
allows the network to focus more on learning how to restore the
high-frequency residual details.

As the MLP and the compensation network are both differen-
tiable, the whole framework is trained to minimize the following
loss function via backpropagation:

L=
α

N
||Î∗− I||22 +β D(Î∗,I), (12)

where || · ||22 denotes the squared error term, N denotes the resolution
of the projector images, D(·) denotes the DISTSs based perceptual
metric [8] which is widely used in image quality assessment, and
variables α and β denote the weights for the two terms. We set α = 1
and β = 0.05 as empirical values. The loss function is optimized to
jointly learn the parameters of optics and the compensation, in an
end-to-end manner.
4 SIMULATION

4.1 Implementation
To evaluate our method, we train the proposed network and compare
our simulation results with previous projector deblurring methods.
The dataset used in the simulation is the DIV2K dataset [1], in
which 500 high definition high-resolution images are for training
while the other 200 images are for testing. We randomly crop
image patches, each with the default resolution 1024× 1024, to
generate the target images. We simulate the PSFs by fixing the
focusing distance v = 500mm and substituting the arbitrary depths
ranging from 300 mm to 800 mm into the wave optics propagation
model. We use a projector Philips PPX4350 in both simulations
and experiments. The used SPDs of the projector is measured and
sampled from 400 nm to 700 nm with an interval of 30 nm. We
generate the projection results of the input projector images by
convolution with the PSFs, and crop the results images to the same
resolution as the input projector images for concatenation.

Our framework is implemented in PyTorch and is trained on a
workstation with Nvidia Tesla V100 GPU with the optimizer Adam.
The initial learning rate is set to 1×10−3 and decayed by a factor

of 0.99. We train the model for 150 iterations with a batch size of 1,
which takes about six hours to complete. Note that in the test stage,
we do not require PSF kernels, and only exploit the compensation
network to generate compensated images from the desired images
and its projection results.

4.2 Results

We present the evaluation of the proposed method by comparison
with the state-of-the-art methods. Our proposed method is compared
with three projector display methods, including directly projecting
the desired images without compensation, non-blind deconvolution
with known PSF [6], and compensation using OnlineProDeb [21].
Non-blind deconvolution utilizes the known blur kernel and directly
solves a least square problem in the frequency domain by apply-
ing Fourier transform. OnlineProDeb and ours compensate for the
projector’s out-of-focus blur without known the PSFs. Since the
compared method does not involve any modification of the projector
optics system, we simulate the PSFs using only the projector lens
for the compared methods; while in our method, the PSFs are simu-
lated using the lens and the optimized DOE. The comparison of the
methods is shown in Fig.6.

In the projection results without any compensation, the images
are quite blurry since the planes at depths z = 320mm,630mm, and
800mm are far away from the focusing plane (v = 500mm). Know-
ing the PSFs at different depths, the non-blind deconvolution method
solves a least square problem to minimize the projection error,
thereby maintaining the desired image color and contrast in the
result image, although a large amount of high-frequency detail is
lost. The loss of high-frequency detail is due to the fact that the
objective function of the non-blind deconvolution method does not
take into account perceptual errors. OnlineProDeb generates the
compensated images for out-of-defocus projector display without the
prior knowledge of PSF, instead, it learns the compensation for pro-
jector deblurring in a data-driven manner. Since the OnlineProdeb
can only deal with gray images, we directly apply the pretrained
OnlineProDeb for each color channel to compensate for the single
lens projector display at varying depths. The results show that the
improvement brought by OnlineProDeb is unnoticeable. This is be-
cause that OnlineProDeb can only handle slight blur and the quality
of compensation is highly sensitive to the PSFs. Our method learns
both DOE and compensation, and achieves the best performance
compared with others. Furthermore, the high-frequency details are
preserved in our results.

We also evaluate the peak signal-to-noise ratio (PSNR), struc-
tural similarity index (SSIM), and learned perceptual image patch
similarity (LPIPS) [51] metrics of the results for each method in
Fig.6. PSNR and SSIM are treated as conventional metrics to eval-
uate the numerical differences between two images while LPIPS
is the perceptual metric to judge the perceptual similarity between
two images. We observe that the non-blind deconvolution method
performs the best on the PSNR metric with known PSFs. This is
reasonable since PSNR is determined by mean square error (MSE),
and the goal of the non-blind deconvolution method is exactly to
find the solution that minimizes MSE of the display images. Unlike
the non-blind deconvolution, OnlineProDeb and our method do not
need to know the PSFs. The advantages of our method on SSIM
and LPIPS metrics are significant, which is also consistent with our
visual perception of comparing these images. Note that although we
do not use SSIM and LPIPS in the loss function for training, our
method shows superior results on the two metrics and provides more
high-frequency image details than other methods.

Finally, we compare the computational time of the three methods
with varying resolutions. The results are shown in Tab.1. The
computation time of the non-blind method depends on the resolution
of the test images with linear complexity. Compensating for an
image with a resolution of 256×256, the non-blind method takes
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Figure 6: The comparison of simulated display results of the four methods on a projection plane at the projection distance (depth) z = 320 mm,
630 mm, and 800 mm. The used kernels are also simulated by either only using the original projector lens (Projection Results, Non-blind
Deconvolution, OnlineProDeb) or using both the lens and the learned DOE (Ours). Here we set the focusing distance of the original projector
lens v = 500 mm. The PSNR (P)↑, SSIM (S)↑, and the LPIPS (L)↓ of each method are given. The best result of each metric of each example is
shown in bold red fonts. Our method gives the best image display perceptual quality (LPIPS) and structured similarity (SSIM) among the four
methods. Please zoom in to see more details.

Table 1: The computational time of the three methods for deblurring
a single projector image with three channels.

Resolution
Computation Time

Non-blind [6] OnlineProDeb [21] Proposed

256x256 1.5 ms 90 ms 3.6 ms

600x800 24 ms N/A 4.5 ms
768x1024 37 ms N/A 5.6 ms

less than half of our computation time. However, it takes five times
ours to compensate for a single image with a resolution of 600×
800. This is because our convolution network works in parallel
and the computational time is less affected by the image resolution.
Besides, OnlineProDeb currently only supports the compensation
for the images with a resolution of 256×256, and the computational
complexity is much higher than ours due to its more complicated
network architecture. Our compensation network can achieve real-
time efficiency for even higher-resolution images.

5 EXPERIMENTS

To fully investigate the performance of our method in practice, a
prototype of a modified projector is designed and implemented. In
the following sections, we will present the built prototype and give
the experimental comparisons of real projection results with other
methods in detail.

5.1 Prototype
Our prototype consists of a modified projector equipped with the
optimized DOE. The used projector is Philips PPX4350 with a
spatial resolution of 600×800. We print a mount and fix it closely
in front of the projection lens with a lens diameter of 7 mm. The

fabricated DOE is placed inside of the mount. The focusing distance
v used for training is set to 600 mm.

Fabrication DOE can be fabricated with either subtractive or
additive lithography techniques [9]. Since the feature sizes dis-
tribute uniformly in a rotational symmetric manner for the optimized
height map, we choose to fabricate the DOE with repeated photo-
lithography (PL) and reactive-ion etching (RIE) steps [14, 38]. Be-
fore the fabrication, we prepare a double-side polished 4-inch fused
silica wafer (thickness of 0.5 mm) that is cleaned by Piranha solution
at 110 ◦C for 20 min. In the PL step, we deposit a 200 nm-thick
layer of Chromium (Cr) on the substrate by sputtering, and then
spin-coat the photoresist (AZ1505, 0.6 µm) with 1 min of pre-bake
at 100 ◦C. The coated wafer is closely contacted with a pre-defined
mask a contact aligner (EVG 6200∞), and UV light (i-line) exposure
is applied to the photoresist (9 mJ/cm2). After UV exposure, the
pattern on the mask is transferred to the photoresist, which forms the
desired pattern after 18 sec of development in AZ726. A wet etching
step is necessary to transfer the pattern again from the photoresist to
the Cr film to a create a hard mask. The residual photoresist is then
removed by acetone. In the RIE step, we use a combination of gases
(CHF3, 15 sccm and O2, 5 sccm) at 10 ◦C to remove the materials
on the substrate under the open areas of the Cr mask. The etched
depth depends linearly on the etching time. Once the target depth is
achieved, the residual Cr is removed by the Cr etchant. This basic
PL-RIE fabrication cycle is repeated 4 times to fabricate 16-level
micro-structures, with the etched depth doubled each time. The
etched depths in the 4 iterations are 75 nm, 150 nm, 300 nm and
600 nm respectively. A final circular Cr aperture is deposited to
block the light outside of the effective region.

PSFs To evaluate the optics part of the proposed method, with-
out applying any projector deblurring methods, we compare the



PSFs

only lens lens+DOE

Figure 7: To estimate PSFs of the original and the modified projec-
tor at an out-of-focus projection depth z = 300 mm with focusing
distance v = 500 mm, we project random Bernoulli color noise
pattern (top-right) to the flat screen and then captured the patterns
of using DOE (top-middle) and using only the lens (top-left). The
PSFs are estimated by using Eq.13. The estimated PSFs of using
DOE (bottom-middle) and using only the lens (bottom-left) at each
spatial location show that our optimized optics effectively improve
the EDOF of the projector. The example plots (bottom-right) of
the middle row (solid line) of the middle PSF show that our PSF is
much sharper than that using only the lens. Here the sizes of the
PSF windows are 50.

out-of-focus PSFs of the original projector with only the lens and the
modified projector with the lens and the optimized DOE. Motivated
by the previous camera intrinsic blur kernel estimation [33], we
project a sequence of random Bernoulli color noise patterns to the
flat screen using the original and modified projector, and capture the
images of the projected patterns using a DSLR camera Canon 750D
as shown in Fig.7. In order to ensure that the image blur mainly
comes from the projectors rather than the camera, we use the camera
with minimum aperture and place the flat screen in the wide range
of the camera’s DOF as shown in Fig.8.

Suppose the pattern sequence have n images, we denote the se-
quence of the Bernoulli patterns as {Bi|i = 1, ...,n}, and denote the
pixel-to-pixel corresponding captured pattern as {Ci|i = 1, ...,n},
the PSF p is estimated as follows:

p = F−1
{

∑
n
i=1 F̄{Bi}F{Ci}

∑
n
i=1 F̄{Bi}F{Bi}

}
, (13)

where F̄ is the complex conjugate of the Fourier transform. We use
n = 5 here to enhance the robustness of the PSF estimation. Note
that the color of the camera responses is not consistence with the
input color of the projector, we apply nonlinear color calibration to
match the two color spaces. The color calibration will be described
in detail in the following Sec.5.2.

We crop the images into patches at varying locations and estimate
the PSFs of the patches. Fig.7 shows the spatial distribution of the
PSFs across the full image. The PSFs of both projectors show fewer
variations with the change of spatial location. The PSFs created by
the modified projector are superior to those of the original projector.
We also show the depth-variant PSFs of the two projectors in Fig. 1.
This indicates that our modified projector is able to generate sharp
images at out-of-focus depths.

5.2 Calibration
As mentioned above, the projection results of the target images are
regarded as the direct convolutional results of the target images with
a PSF. However, in the practical display, the projection results of
the target images are captured by a DSLR camera and thus have
to be transformed from the camera color space to the color space

z = 350mm

v = 600mm

z = 640mm

z = 800mm

projector

camera

50°

Figure 8: The two projection screen setups of our experiments. The
flat screen is placed at different projection depths in the first setup
and placed at a certain inclination angle in the second setup. We
calibrate a Procams and use it to evaluate the displays.

of the outputs of the projector; the input images of the projector
also need to be transformed to the color space of the projector
outputs for consistency. The color space alignment in the projector-
camera-system (ProCams) usually contains linear and nonlinear
component [41]. Therefore, to align the color spaces, it is necessary
to calibrate the colors of the ProCams to obtain both the linear color
mixing matrix between the projector and the camera and the 3D
non-linear response functions of the projector.

We use the projector to project three primary-color (red, green,
blue) images to the projection screen and use the camera to capture
the images. Although the color-mixing matrix is spectral-reflectance-
dependent, we assume that the spectral reflectance of the screen is
similar and uniform. Let the outputs of the three single-color images
be (1,0,0), (0,1,0), and (0,0,1) respectively, the vectors in the color
mixing matrix can be constructed using the average pixel intensity of
the illuminated regions in the captured images. Applying the inverse
of the color-mixing matrix, we can directly transform the colors of
the captured image to the colors of the outputs of the projector [35].
In the experiments, we use the Canon 750D camera.

Then we densely sample the colors of the projector on the pro-
jection screen and capture the images to obtain the responses. Mul-
tiplying the inverse of the known color-mixing matrix, we get the
corresponding output colors of the projector input color samples. To
construct the 3D non-linear response function of the projector that
maps the input colors to the output colors, instead of obtaining an
explicit expression of the function, we treat it as a nonlinear interpo-
lation problem and adopt the local linear embedded techniques [26]
which interpolate on the non-linear response functions via a linear
combination of the nearest k neighbors. The computational com-
plexity of the non-linear interpolation is much lower than the global
interpolation [12, 27], and can be accelerated by parallel computa-
tion. To achieve geometric calibration, we firstly project a sequence
of 16×32 structured dots, then detect the spatial location of each
light blob on the captured images, and finally, make pixel-to-pixel
correspondence between the projector and the camera to warp the
captured images to the coordinate system of the projector images by
using bilinear interpolation.

5.3 Results

We implement the methods in the experiments with two types of
projection screen setups, as shown in Fig.8. In the first setup, the
screen is placed perpendicular to the projection direction at varying
depths z = 350 mm, 640 mm, and 800 mm while the focusing
distance is fixed to v = 600 mm; in the second setup, the tilted
screen is placed at an angle of 50 degrees to the projection direction,
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Without DOE &

without deblurring

With optimized DOE &

without deblurring

With optimized DOE &

deblured by Ours

Without DOE &

deblured by OnlineProDeb

Figure 9: The comparison of captured display results of the four methods on a projection plane at the projection distance (depth) z = 350 mm,
640 mm, 800 mm. Here we set the focusing distance of the original projector v = 600 mm, and the normal projection (without DOE and
compensation) shows a narrow DOF. Note that although the results of solely using learned DOE are hazed, the edge details are preserved. Our
method gives the best image display quality among the four methods. Please zoom in to see more details.

and the left region of the displayed images is at the in-focus depth
z = 600 mm.

To evaluate the generalization ability of our method, the dataset
we used for testing is KonIQ-10k IQA Database [15], which is
constructed for image quality assessment purposes and is completely
different from the training set. The dataset contains 10,073 quality-
scored images, all of which are given ratings for the quality of
brightness, color, contrast, and sharpness. Because the EDOF task
is most concerned with the sharpness of the image, we randomly
select 1,000 images from the top 20% sharpest images from KonIQ-
10k IQA Database, and randomly crop and resize the images to the
patches with a resolution of 600×800 as the test images.

We calibrate the geometry of each setup and the color of each
method as presented above. OnlineProDeb can only handle the im-
age with the size 256× 256, therefore we crop the testing images
into 2×2 sub-images, then resize each sub-image to the resolution
256× 256, and finally resize and tile the four compensated sub-
images to get the compensated images. Our compensation network
is fine-tuned by 20 iterations using the real captured PSFs in the
depth range of 300 mm - 900 mm. This is to deal with the incon-
sistency between the simulated and captured PSFs due to imperfect
manufacturing and model approximations.

In the first setup of the real experiments, our results are compared
with the uncompensated results (without DOE & without deblur-
ring), the compensated results of OnlineProDeb (without DOE &
deblurred by OnlineProDeb), the direct projection results of our
modified projector (with optimized DOE & without deblurring), and
the compensated results of our modified projector (with optimized
DOE & deblurred by ours). Three examples of the results of the
first setup are shown in Fig.9. The uncompensated results show the
sharpest image at depth z = 640 mm since the depth is the closest to
the focusing distance v = 600 mm. OnlineProDeb improves the im-
age quality but the high-frequency details can not be preserved. It is
worth noticing that the projection results with only DOE have sharp
edges although the contrast is degraded. This is because the concen-
tration ratio of the PSFs created by the DOE and the lens is higher
than that created by only the lens, as shown in Fig.7. Therefore,

unlike previous compensation networks, our network can be more
focused on the task of contrast enhancement and color adjustment,
which is much easier than image deblurring. On the other hand, our
compensation network can be lighter and more efficient due to the
low computational complexity. With the proposed compensation
network, our results show superior image quality to other methods,
both at out-of-focus and in-focus distances.

In the second setup of the real experiments, we also compare our
method with the uncompensated results (without DOE & without
deblurring), and the compensated results of OnlineProDeb (without
DOE & deblurred by OnlineProDeb). Two examples of the results
of the first setup are shown in Fig.10. The focusing distance is fixed
to 600 mm, and the depth of the projection area on the screen ranges
from 600 mm to 800 mm. Our method presents sharp details at
varying depths in the range, while others can only give in-focus
display results on the left region of the projection images.

We also show the quantitative results for the displayed images in
Table2. The comparative results in terms of SSIM and DISTS show
the advantages of our method.

Table 2: The quantitative results of the displayed images.

Metrics
without DOE&

without debluring

without DOE&

OnlineProDeb
ours

SSIM↑ 0.532 0.579 0.590

DISTS↓ 0.598 0.484 0.455

6 DISCUSSION

The effectiveness of the proposed method is verified in the experi-
ments. However, the prototype still remains three major technical
limitations in practical use.

First, the haze effect in the direct output images is noticeable
due to the imperfections in the fabrication process and the incoher-
ent light used in the prototype, which decreases the image contrast.
The haze artifacts are basically caused by far-range inter-influence
between pixels, which is an issue that has been well-studied in pre-
vious projection inter-reflection removal literature [25, 28, 37, 45].
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Figure 10: The comparison of captured display results of the three methods on a tilted projection plane inclined 50 degrees from the projection
direction. Note that only the left part of the images is in focus when only using the original projector lens. Our method gives the best image
display quality among the three methods. Please zoom in to see more details.

Although the multi-scale architecture allows our compensation net-
work to handle the inter-influence of pixels in a large receptive field,
the hazing phenomenon can be further improved from four aspects:
(1) Increasing the contrast of the projection screen dynamically, the
projection surface modulation technique can be helpful to further
improve the haze effect [45]; (2) Applying gamut mapping to the
desired image in presence of the hazing artifacts to enhance the
visual quality [24]; (3) Applying two projectors for a superimposed
projection display, one with only the original lens generating low-
frequency components of the images and the other with optimized
DOE generating high-frequency components (e.g. edges) of the
images. Since the high-frequency component in an image is usually
given by only a small set of pixels at the edges [40], the haze effect
caused by these pixels should be ignorable in the display; (4) Since
the learned DOE can produce sharp PSFs with long tails, directly
applying the contrast enhancement method with low computational
complexity [30] can also greatly improve the haze effect.

Besides, although the light transmittance of the DOE material is
relatively high (≥ 90%), we observe a slight color shift in the output
images due to the diffraction efficiency variations among different
wavelengths. At the design wavelength the DOE achieves maximum
diffraction efficiency (> 95%), and drops for other wavelengths,
because of the inherent dispersion properties of DOEs. This can be
seen as a problem with the primary color shift of the projector. In
fact, color shift due to long-term projector lamp usage is quite com-
mon, and this problem can be resolved using a linear color mixing
matrix correction. In our method, the linear transform is absorbed
in the compensation network and thus does not bring extra com-
putational burden. We adopt 16 levels as a comprise of efficiency
and feasibility. Ideally a DOE would have the maximum diffrac-
tion efficiency with continuous profiles. However, fabricating such
continuous DOEs is challenging and costly (using e.g., grayscale
lithography). A common trade-off in optics is to approximate the
continuous profile with multi-level binary structures as we did in this
work. The diffraction efficiency for a binary DOE is only 40.5% in
principle, which makes most of the light spreading out in the back-

ground. With 16 levels in only 4 steps of fabrication, the diffraction
efficiency can reach > 95% already. Although it is tempting to make
more levels, the gain in the improvement is worthless compared with
rapidly increased fabrication complexity and cost.

In addition, our compensation network can generate normal reso-
lution compensated images in real-time at frame rates higher than
100 fps, but the efficiency of the method is heavily affected by the
latency of the ProCams devices and the readout time of images.
Future programmable and configurable computational projectors
and cameras embedded with neural processing units may be able to
significantly improve the computing efficiency of the system.

7 CONCLUSIONS AND FUTURE WORKS

In summary, we propose an end-to-end hardware-software joint
optimization framework for projector EDOF. In the framework,
we learn both diffraction optics and the deep compensation neural
network that can generate sharp image displays in a wide range of
DOF. The parameters of diffractive optics are learned in a trainable
wave optics model, which is the front-end module of our framework
to simulate the projection results; while the compensation network
works as a back-end module, and can deal with image blurring and
color deviation without known PSFs. We implement a prototype
by adding the learned DOE in front of the lens of a projector for
phase modulation. Experiments illustrate that the modified projector
can effectively create sharper PSFs than the original projector. Our
compensation network also shows much higher efficiency and better
visual perception compensation effect than previous methods. Our
work opens up the possibility of automatically and jointly designing
a computational projector for SAR-oriented displays.

In the future, we will explore complex projector lens optimization
for dynamic DOF adjustment to adapt to the requirement of dynamic
SAR applications. We will seek a more efficient compensation
network to deal with both local (e.g., subsurface scattering, and
blurring) and global light transports (e.g., inter-reflections). We also
would like to work on optimal arrangements for multiple projectors
in SAR applications based on their specific field-of-view and DOF.
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