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BUSIFusion: Blind Unsupervised Single Image
Fusion of Hyperspectral and RGB Images
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Abstract—Hyperspectral images (HSIs) provide rich spectral
information that has been widely used in numerous computer
vision tasks. However, their low spatial resolution often prevents
their use in applications such as image segmentation and recog-
nition. Fusing low-resolution HSIs with high-resolution RGB
images to reconstruct high-resolution HSIs has attracted great
research attention recently. In this paper, we propose an unsu-
pervised blind fusion network that operates on a single HSI and
RGB image pair and requires neither known degradation models
nor any training data. Our method takes full advantage of an
unrolling network and coordinate encoding to provide a state-of-
the-art HSI reconstruction. It can also estimate the degradation
parameters relatively accurately through the neural representa-
tion and implicit regularization of the degradation model. The
experimental results demonstrate the effectiveness of our method
both in simulations and in our real experiments. The proposed
method outperforms other state-of-the-art nonblind and blind
fusion methods on two popular HSI datasets. Our related code
and data is available at https://github.com/CPREgroup/Real-
Spec-RGB-Fusion.

Index Terms—Unsupervised Image Fusion, Blind Fusion, Hy-
perspectral Image Fusion

I. INTRODUCTION

Hyperspectral images (HSIs) are three-dimensional data
cubes with two spatial dimensions and a spectral dimension.
Since HSIs contain rich spectral signatures that can describe
physical properties and chemical composition of objects, HSIs
are widely used in diverse applications such as land cover
classification [1], biological recognition [2], and high-color-
fidelity display [3]. To acquire high-quality HSIs for the
demands of these applications, hyperspectral imaging has gath-
ered substantial attention from the computer vision community
in the past two decades [4]–[6].

Although HSI cameras can directly capture images with
tens to hundreds of spectral bands, they either suffer from
relatively low spatial resolution and the narrow depth-of-
field, or require temporal scanning in either the spatial or
spectral dimension. Either of these scenarios presents a strong
obstacle to applications such as object tracking [7], [8],
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Fig. 1. The framework of our unsupervised single HSI and RGB image blind
fusion method.

image classification [9]–[12] and segmentation [13]. One of
the commonly used methods to practically reconstruct high-
resolution hyperspectral images is fusing a low-resolution
hyperspectral image captured by a hyperspectral sensor with
a corresponding high-resolution RGB image captured by a
conventional RGB sensor [14]. However, HSI and RGB image
fusion is an ill-posed problem since both the high-resolution
RGB and the low-resolution HSI are heavily degraded from
the high-resolution HSI with the spectral sensitivity/response
functions (SSFs or SRFs) and the point spread function (PSF)
kernels respectively [15]–[17].

Most of the previous fusion works [18], [19], assume that
both SSFs and PSFs are available and known [20]–[22], and
recover high-resolution HSIs by either solving the inverse
problem of the known degradation model or learning the
reconstruction from the dataset synthesized using the SSFs
and PSFs. However, the assumption is impractical since the
measurements of SSFs and PSFs usually require professional
devices such as spectrometer and ideal point light source.
Furthermore, dataset synthesis methods of previous works are
unrealistic because they apply a single PSF kernel to generate
low-resolution HSIs in the entire dataset, whereas real PSF
kernels depend on the spectral composition of the scene and
vary with scene depth.

Therefore, to avoid acquiring SSFs and PSFs, and to ensure
adopting scene-variant PSFs, in this paper, we propose an
unsupervised snapshot hyperspectral and RGB image blind
fusion method, which jointly recovers an high-resolution HSI
and degradation parameters (SSFs and PSFs) only from a sin-
gle pair of a low-resolution HSI and an aligned high-resolution
RGB image without any known imaging degradation parame-
ters or constructed dataset, as shown in Fig.1. Compared to the
previous methods with either known degradation parameters or
a large-scale dataset, our problem is the most challenging due
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TABLE I
CLASSIFICATION OF HSI AND MSI FUSION METHODS DEPENDING ON THE
PRESENCE OF THE DEGRADATION PARAMETERS (PSF AND SSF) AND THE

TRAINING DATA.

Types Descriptions Methods

Unsupervised & Blind
Unknown PSF & SSF

w/o training set
[23]–[27]

Unsupervised & Semi-blind
Unknown PSF or SSF

w/o training set
[28]–[30]

Unsupervised & Nonblind
Known PSF & SSF

w/o training set
[31]–[49]

Supervised & Blind
Unknown PSF & SSF

with training set
[50]–[54]

Supervised & Nonblind
Known PSF & SSF

with training set
[55]–[58]

to the larger degrees of optimization freedom, while requiring
the fewest known conditions.

The proposed method, named BUSI-FusionNet, reconstructs
both the high-resolution HSI and the degradation parameters
through deep unsupervised learning based on a physical model.
Our blind method can even achieve more accurate fusion
than previous nonblind methods by utilizing deep image
denoising prior of a single image and neural representation
of degradation parameters. The contributions of this paper can
be summarized as follows:

• We present an unsupervised learning method to jointly
recover high-resolution HSIs and the imaging degradation
parameters only from a single pair of low-resolution HSI
and high-resolution RGB image, without known SSFs
and PSF, or constructing a training set. Our unsupervised
blind fusion approach outperforms state-of-the-art unsu-
pervised semi-blind/blind methods.

• We show that the physics-model-based unrolling architec-
ture combined with spatial variant denoising blocks and
the implicit neural representations of imaging degradation
parameters can guarantee both the data fidelity and the
deep prior of the target image.

• We build a high-quality real low-resolution HSI and
high-resolution RGB image datasets, providing a general-
purpose benchmark for the training and evaluation of real
unregistered HSI fusion task.

II. RELATED WORK

In the last decade, many models and optimization ap-
proaches have been developed for HSI fusion tasks [59], in-
cluding pan-sharpening models [60], [61], matrix factorization
based models [23], [34], [37], [44], [62], tensor representation
based models [33], [36], [63]–[65], and deep learning based
models [27]–[30], [38], [47]–[52], [66]–[73]. Most of the
models utilize either the prior knowledge of the degradation
model or sufficient supervised training data, as shown in Table
I.

a) Non-blind methods: Non-blind methods [33], [37],
[41] use a known and calibrated physical model to guide the
optimization of HSIs fusion. However, since HSI fusion is an
ill-posed problem, to reduce the number of possible solutions,
some priors are proposed to enhance the robustness of the
fusion methods. For example, low-rank regularizers are uti-
lized in unmixing-based methods [37], [42], [43] to constrain
the number of final spectra; dictionary-learning-based methods
learn a spectral dictionary from the low-resolution HSI, map
the spectral dictionary to RGB dictionary using known SSFs,
and apply sparse regularizers to obtain the HR HSIs [35],
[44], [45], [74]; Bayesian-based method [34] assumes that
the representation coefficients of high-resolution HSI follow
a Gaussian distribution, and use the assumption as a prior to
accomplish high-resolution HSI fusion; tensor-based methods
[32], [36], [38] exploit the redundancy of HSI, group non-local
similar cube patches to aggregate tensors, and apply sparse
representation to construct the tensors. Especially, Liu et al.
[31] recast the tensor-trace-norm formulation to reconstruct
HR HSIs via low-rank approximation; Dian et al. [39] use
low tensor-train rank (LTTR) as a regularization term on the
grouped tensors consisting of non-local patches. Similarly, Xu
et al. [40] enforces that RGB image and low-resolution HSI
share the same factor matrices in the Canonical Polyadic (CP)
decomposition of the non-local tensor.

The advent of deep-learning-based methods shows that HSI
fusion can achieve superior performance and high efficiency
through the use of deep image priors. The deep neural net-
works [46], [55] adopt convolutional layers to generate the
high-resolution HSIs which satisfy the known degradation
model, and give better results compared with the methods
using handcrafted priors. Others [47], [48] apply cross-space
attention blocks and learn a Dirichlet distribution respectively
to further improve the fusion quality.

b) Supervised methods: supervised methods [56]–[58]
do not reconstruct high-resolution HSI with a known degrada-
tion model, instead, they construct the training set of HSIs and
RGB images using hyperspectral and RGB cameras, and train
neural networks to learn the fusion for the specific devices.
Recently some supervised methods are proposed to jointly
learn the degradation model and the fusion from the training
set, and iteratively improve the reconstruction results by the
multi-blocks neural networks [50], [52]–[54]. However, these
supervised methods rely on large-scale high-quality training
sets, otherwise, the training sets are synthesized using the
ground truth of degradation parameters. Both of the prior
knowledge is impractical to obtain, in order to fully address
the fusion with the lack of imaging model and perfect training
data, the unsupervised blind fusion single image methods are
still sorely needed.

c) Unsupervised blind methods: Unsupervised blind
methods attempt to fuse a spatially degraded low-resolution
HSI and a spectrally degraded high-resolution RGB image
to obtain the target high-resolution HSI without a known
degradation model and training set. The most straightfor-
ward solution is estimating SSF and PSF first, and applying
non-blind reconstruction method to recover the target high-
resolution HSIs [25]. However, such two steps strategy can
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Fig. 2. Architecture of the proposed unsupervised single image blind fusion network. The network is individually trained for each dataset, where both SSFs
and PSFs are represented by MLPs for the reconstruction process. To handle the metamerism problem, the tensors sent to each resblock are constructed by
concatenating a 2D Positional Encoding tensor with the data tensor X . We use the projection error at the neural representation of SSF and PSF as the loss
function to train the unrolling network.

not guarantee the optimal solution of both degradation pa-
rameters and the reconstructed images. Therefore, most of
the methods jointly estimate the degradation parameters and
the high-resolution HSI, which are highly under-constrained.
To deal with the highly ill-posed problem, they apply total
variation (TV) [23] and L2 norm [24] as regularizers in the
loss functions to robustly estimate PSFs and SSFs. The main
disadvantage of these methods is the need to adjust the weights
of the explicit regularizers in loss functions to adapt to the
numeric magnitude of the reprojection error for each image.
Others implicitly model the degradation operation in deep
networks. For instance, Zheng et al. [28] proposed a deep
network consisting of three coupled autoencoders, where HSI
is unmixed and degradation parameters are adaptively learned;
Yao et al. [29] propose a coupled convolutional network,
where a cross-attention module is embedded to extract and
transfer spectral or spatial information.

III. METHOD

A. Overview

Our goal is to generate an high-resolution HSI from the ac-
quired high-resolution RGB and low-resolution HSI. Consider
an high-resolution HSI X ∈ Rmn×k, where mn denotes the
spatial resolution of the image, and k denotes the spectral res-
olution. The acquisition of the corresponding high-resolution
RGB image Y ∈ R(mn)×3 follows the degradation model:

Y = XS (1)

where S ∈ Rk×3 is the SSFs of the RGB camera. The
degradation model of the low-resolution HSI Z ∈ Rm′n′×k

is constructed as:
Z = ΦCX (2)

where C ∈ Rmn×mn denotes a PSF convolutional operation,
which is formulated as a matrix here, and Φ ∈ Rm′n′×mn

denotes a downsampling matrix that uniformly samples the
original data by a downsampling ratio r (m′ = m/r, n′ =

n/r). We let CΦ = ΦC for abbreviation. The above two
degradation models can be regarded as two linear low-
dimensional projections of the target high-resolution HSI.

To recover the target high-resolution HSI from a single
pair of high-resolution RGB and low-resolution HSI without
knowing SSF and PSF, we adopt a neural network architecture
composed of multiple unrolling optimization stages. As shown
in Fig.2, each stage is constructed via unrolling our optimiza-
tion iterations for HSI fusion. Note that both the SSF matrix
S and the downsampling matrix CΦ are treated as learned
parameters in our network.

B. Unrolling Network

To present the network architecture, we first mathematically
formulate the fusion problem as an unconstrained optimization
problem, and then loop-unroll the optimization to construct our
multi-stage unrolling network.

Our optimization model aims at minimizing the weighted
sum of the projection errors of the reconstructed high-
resolution HSI. The objective function is formulated as:

argmin
X

1

2
||Y −XS||2F +

η

2
||Z−CΦX||2F + J(X), (3)

where || · ||F denotes the Frobenius norm, η denotes a weight
for the tradeoff of the high-resolution RGB projection error
and the low-resolution HSI projection error, and J(·) denotes
the denoising prior of the target high-resolution HSI for
regularization. Since J(·) is not differentiable, we introduce
an auxiliary variable V and represent Eq.3 as a constrained
optimization problem:

argmin
X

1

2
||Y−XS||2F+

η

2
||Z−CΦX||2F+J(V), st.X = V.

(4)
In order to solve the above optimization problem, we apply
half-quadratic-splitting (HQS) method to separate it into two
sub-problems respect to X and V, and alternatively optimize
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the two sub-problems with multiple iterations. The update
steps of the i-th iteration are formulated as:

X(i+1) ← argmin
X

1

2
||Y −XS||2F +

η

2
||Z−CΦX||2F

+
β(i+1)

2
||X−V(i)||2F ,

V(i+1) ← argmin
Z

β(i+1)

2
||X(i+1) −V||2F + J(V),

(5)

where β(i+1) is a trainable weight term in the i-th iteration.
Optimization of X: It is evident that the optimization of X

in the first subproblem can be treated as solving a Sylvester
equation. However, we observe that the eigen-decomposition
involved in the optimization process causes instability in the
training. Previous works [75], [76] have also shown that
obtaining an exact solution in each step is not necessary and
is less flexible compared with the forward gradient descent
method. Therefore, we apply the general gradient descent
method to solve the first subproblem, the update step of X(i+1)

can be performed as:

X(i+1) ←X(i) − α(i+1)
(
(X(i)S−Y)ST + ηCT

Φ(CΦX
(i) − Z)

+ β(i+1)(X(i) −V(i))
)
,

(6)
where α(i+1) is the trainable step length in the (i+1)th iteration.

Optimization of V: To optimize the auxiliary variable
V(i+1), supervised unrolling networks [75] typically apply
convolutional residual denoising modules, which are designed
to be spatially invariant. However, in the unsupervised single
HSI fusion task, it is difficult to correctly resolve metamerism
issues with spatially invariant reconstruction kernels. Spatial
invariance also results in lower degrees of freedom and re-
duced approximation power of the neural network. There-
fore, unlike previous denoising modules, our model not only
implicitly restricts that each patch satisfies the unified local
prior, but also introduces spatially-variant to the features of
different pixels to avoid underfitting. The most straightforward
idea of introducing spatial-variant is utilizing position-related
information. Instead of directly using the coordinates, we
apply positional encoding [77] to map the single coordinate
value of a pixel into a higher (2L+ 1) dimensional space:

γ(p) =
(
p, sin(20πp), cos(20πp), · · · , sin(2L−1πp), cos(2L−1πp)

)
,

(7)
where p denotes the normalized coordinate value lying in
[−1, 1], and L denotes the order of frequency of the vector.
We apply the function γ() separately to the two coordinate
values of the pixels in the target HSI, and construct the
M × N × (4L + 2) tensor Γ. Then we concatenate Γ with
Xi+1, and feed the concatenated tensor into the denoising
module D() to obtain V(i+1):

V(i+1) ← D
(
Concat

[
X(i+1), Γ

]
; θ

)
. (8)

Our denoising module consists of two cascaded residual
blocks, each containing five convolutional layers with 3 × 3
kernels.

By unrolling the alternative optimization of X and V, we

construct a multi-stage neural network, in which each stage
consists of a linear mapping module to update X and a
convolutional module to update V. The linear module ensure
the reconstructed HSI satisfy the linear mapping model in Eq.3
while the convolutional module can efficiently fit the target
HSI in a few iterations.

C. Implicit Neural Representation of SSF and kernel

Now we turn to discuss how to deal with unknown S and
C. The naive solution is directly setting them as trainable
matrix and optimizing them jointly with other parameters in
the network. However, the optimization degree of freedom
of this solution is too high, and the training may fall into
a local optimum. Fortunately, most convolutional kernels of
hyperspectral cameras and SSFs of RGB cameras are smooth
due to their optical and material property. Previous works [23],
[24] presented that blind image reconstruction tasks can benefit
from the smoothing regularization of SSF and convolutional
kernel. In this paper, instead of adding handcrafted regularizer
in the loss function, we propose adopting multilayer perception
(MLP) networks to represent SSF and convolutional kernel.
The major advantage of the implicit neural representation
is that the implicit regularization is only relevant to the
degradation model, and is not affected by different image
reconstruction errors in loss function. Furthermore, the op-
timization freedom of neural representation is higher than that
of the handcrafted ones.

As shown in Fig.2, the SSF and PSF are approximated
with MLP networks Fφ and Fϕ respectively. We optimize the
weights φ of Fφ to map from each input wavelength λ to its
corresponding spectral sensitivity of the RGB channels, and
optimize the weights ϕ of Fϕ to map from each input 2D
coordinates (u, v) of the kernel window to its corresponding
intensity. Note that we apply the same positional coding as
Eq.7 to map λ and (u, v) to higher dimensional space before
feeding them to Fφ and Fϕ respectively. Both networks Fφ

and Fϕ are fully connected networks consisting of five layers
each. Since the blind fusion problem is ill-posed, the shape
of the estimated PSF and SSF would not be accurate if we
treat them as completely unconstrained trainable parameters.
The positional encoding gives constraints on the frequency
of the PSF and SSF as regularizers. Since most of the PSF
and SSF are either unimodal functions or bimodal functions,
it is reasonable to apply positional coding to guarantee both
smooth constraint and the freedom of representing PSFs and
SSFs. In addition, the dimension of positional coding can be
adjusted by controlling the frequency order L to avoid both
overfitting and underfitting.

D. Training

Once the K-stage network is built, we train it to learn
the network parameters θ, ϕ, φ , and {αi, βi|i = 1, ...,K}
simultaneously. In order to be consistent with the objective
function, our loss function is designed as:

Loss = ||Y − X̃S||2F + η ||Z−CΦX̃||2F , (9)

where X̃ is the reconstructed HSI of our network.
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Fig. 3. The capturing devices (left) and our real image dataset (right). Note that the image registration process is applied to align the RGB images and HSI
images before sending the image pairs to the proposed BUSI-Fusion network. Here, the optical flow method GMA [78] is adopted for image registration. We
use the GMA model on the Sintel dataset [79].

We implement our network in the PyTorch framework, the
stage number of K is set to be 6 from experience, the network
is trained using an ADAM optimizer with a learning rate
of 0.001. We set the parameter η = 1 for balancing the
contribution of the low-resolution HSI and high-resolution
RGB image. Trainable variables of the network β and α are
empirically initialized to 0.1, note that they should be non-
negative so we take them as the input of the ReLU function
first in practice. We send the whole RGB image and low-
resolution HSI into the network for training. It takes about 200
epochs, which consumes 2.5 hours, to converge and reaches
the top quality of the output high-resolution HSI on a V100
GPU.

IV. EXPERIMENTAL

A. Synthetic & Real Datasets

Experiments are conducted on both synthetic datasets,
CAVE [80] and KAUST [81], and also on real image pairs
that were taken in actual indoor and outdoor scenes. The
images in the CAVE1 and KAUST2 datasets have the same
spatial resolution of 512 × 512 pixels. We used the first 31
bands of HSI in both datasets, starting from 400nm with
10nm intervals. Ten images and eight images were respectively
randomly chosen from CAVE and KAUST for evaluation.

In the ablation study and simulations, the SSFs of Nikon
D700 were used to synthesize the RGB images, and two PSFs
with size 8 × 8 and 32 × 32 were used to generate the low-
resolution HSIs. The 32 × 32 PSF is an average kernel and
collocates with 32 × 32 downsampling operation, and 8 × 8
PSF is a Gaussian kernel with σ = 2.0 and collocates with
8× 8 downsampling operation.

The real image dataset consists of 200 paired low-resolution
HSIs and trichromatic images. The trichromatic images
were captured by a HUAWEI P30Pro RYYB camera and
a HUAWEI P20 RGGB camera with the spatial resolution
5472 × 7296, and the HSIs were captured by a compact
scanning-based hyperspectral camera Specim IQ with spatial
resolution 512 × 512 and 204 bands ranging from 400nm
to 1000nm. We attached the trichromatic camera to the
hyperspectral camera as shown in Fig.3 to capture scenes.
The extrinsic of the two cameras are close compared to the

1https://www1.cs.columbia.edu/CAVE/databases/multispectral/
2https://repository.kaust.edu.sa/handle/10754/670368

shooting distance thus the occlusion area can be ignored when
we register for the two images. The field of view (FOV) of
trichromatic cameras is near three times larger than that of the
hyperspectral camera, so we cropped the central region of the
trichromatic image to the size 3100× 3100 to match the FOV
of the hyperspectral camera. To maintain consistency with the
synthetic datasets, we uniformly sampled the hyperspectral
images in the visible range from 400nm to 700 nm into 10
nm intervals, resulting in a total of 31 channels.

B. Ablation Study

Here we verified the effectiveness of the methodology using
the positional encoding (PE) in the residual blocks and the
implicit neural representation of PSF and SSF. Four commonly
used metrics root-mean-square error (RMSE), peak signal-
to-noise ratio (PSNR), spectral angle mapper (SAM) [82],
structural similarity index (SSIM) are brought in to evaluate
the quality of reconstructed high-resolution HSI. We compared
different methods on both CAVE and KAUST datasets.

1) Positional Encoding in Spatial-variant Resblock: We
compared three different structures of Γ in resblock: con-
catenated with/without PE, and concatenated with the spatial
coordinates (u, v). Note that the positional encoding vector we
used contains only six channels including the two-dimensional
coordinates, which are uniformly sampled from the high-
dimensional vector γ(p)(L = 64).

Table II shows the fusion quality of the three structures.
Here, the PSF we used is the 32×32 kernel. It is evident that
introducing coordinate information into residual blocks can
effectively enhance fusion quality. The PSNRs are improved
by nearly 3dB on both two datasets when position encoding
is applied.

Specifically, we observed that the PE in the spatial-variant
residual block can effectively eliminate the effect of the
metamerism in HSI fusion. As shown in Fig.4, the RGB
appearances of the real and fake peppers are similar, as well
as it is in fake and real faces, but the spectral plots of the
two peppers and two faces are different. The PE structure can
accurately reconstruct the two spectra, while the residual block
without PE can only give results that appear to be a mixture of
the two ground truth spectra. This is because the pure resblock
without position information is spatial invariant and tends to
give average spectral results for points with similar RGB but
different spectra.
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TABLE II
THE COMPARISON OF FUSION QUALITY OF THE THREE STRUCTURES IN RESBLOCKS.

Datasets Methods
RMSE↓ PSNR↑ SAM↓ SSIM↑

mean std mean std mean std mean std

CAVE

w/o PE 2.438 0.579 40.568 1.822 6.598 1.714 0.983 0.003
uv only 1.752 0.242 43.334 1.212 5.400 1.375 0.989 0.002
with PE 1.696 0.346 43.696 1.768 5.256 1.431 0.990 0.003

KAUST

w/o PE 1.904 1.097 43.531 4.502 4.242 1.393 0.986 0.005
uv only 1.488 0.620 45.163 3.076 3.484 2.143 0.991 0.004
with PE 1.300 0.564 46.440 3.492 3.353 2.101 0.992 0.002
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Fig. 4. Metamerism comparison of the results produced by structures with
and without positional coding.
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Fig. 5. The effects of total variation (TV) prior and implicit neural repre-
sentation (Neural) on the errors of the reconstructed high-resolution HSIs on
CAVE balloons (up) and KAUST tree and wall (bottom).

2) Implicit Neural Representation of PSF & SSF: First we
evaluated four basis functions of positional encoding, which
are sin&cos (as shown in Eq.7), rbf, sawtooth, and dirichlet.
The results are conducted on the CAVE dataset with two kernel
sizes of PSF, as shown in Table V. Overall, there is not much
difference between the four basis functions, but the sin&cos
strategy proves to be more stable, therefore we choose it as the
used basis function of positional encoding for the subsequent
experiments. Then, to further verify the effectiveness of the
implicit neural representation of PSF & SSF, we compared
it with two other strategies: adding TV regularizers for both
PSF and SSF, and representing PSF and SSF as trainable
tensors without any regularizer (no regular.). Note that for
implicit neural representation, we respectively apply nine and
six channels PE tensors for generating SSFs (L = 4) and PSFs
(L = 1). TV is chosen as a comparison method since it is a
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Fig. 6. PSF and SSFs estimated by the three strategies for dealing with
degradation model. Here the 8× 8 and 32× 32 PSFs are used.

commonly used regularizer for estimating PSF and SSF [23].
In the TV strategy, we set the fixed weight 0.5 × 10−5 and
1× 10−4 for the TV terms of PSFs and SSFs respectively.

We compared the three strategies on the two datasets with
the uniform 32× 32 PSF. As shown in Table III, our implicit
neural representation significantly outperforms others on the
four metrics. It proves that the deep prior of the degradation
parameters performs better than other handcrafted prior in our
network, such as TV. This is because our implicit neural repre-
sentation has higher optimization freedom than TV, moreover,
the implicit constraints in the neural representation are not af-
fected by differences in reprojection errors of different images.
Fig.5 shows the error between the GT and the estimated high-
resolution HSI by using the three strategies. It is significant
that our implicit neural representation method is much more
suitable for regularization and more effective to reduce the
fusion error.

We showed two examples of estimated PSFs and SSFs of
the three strategies with 8 × 8 and 32 × 32 PSF kernels in
Fig.6. Both our PSF and SSF are close to the ground truth,
while other strategies might get trapped into local minima and
give inaccurate results.
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TABLE III
THE COMPARISON OF THE THREE STRATEGIES FOR DEALING WITH THE DEGRADATION MODEL.

Datasets Methods
RMSE↓ PSNR↑ SAM↓ SSIM↑

mean std mean std mean std mean std

CAVE

No regular. 15.823 4.019 24.388 2.230 22.577 5.945 0.775 0.048
TV 9.189 4.171 29.804 4.610 15.147 7.303 0.879 0.075

Neural 1.868 0.367 42.846 1.709 5.603 1.284 0.987 0.003

KAUST

No regular. 14.294 8.487 26.772 6.636 13.486 4.079 0.752 0.105
TV 4.640 3.056 36.500 6.243 6.483 2.665 0.938 0.039

Neural 1.555 0.500 44.622 2.584 3.887 2.450 0.989 0.002

TABLE IV
QUANTITATIVE PERFORMANCE COMPARISON WITH THE DIFFERENT METHODS ON THE CAVE AND KAUST DATASETS WITH TWO TYPES OF PSF. THE

BEST METHOD IS HIGHLIGHTED IN BOLD.

Kernel
Sizes

Datasets Metrics
Non-blind Semi-blind Blind

uSDN UMAG NLSTF LTTR LRTA CUCaNet UAL HyCoNet Hysure DBSR Ours

8

CAVE

RMSE↓ 2.964 1.343 2.041 1.299 2.066 1.607 1.557 1.949 16.73 3.789 1.284
PSNR↑ 38.84 45.61 41.97 45.88 41.86 44.08 44.40 42.52 29.77 36.99 46.04
SAM↓ 10.74 5.424 4.998 4.305 9.705 4.844 4.838 5.166 17.51 7.844 4.493
SSIM↑ 0.964 0.991 0.985 0.992 0.977 0.992 0.991 0.990 0.826 0.976 0.993

KAUST

RMSE↓ 2.863 1.104 1.504 1.029 1.858 1.463 2.394 0.794 10.80 6.863 0.954
PSNR↑ 39.76 47.74 45.23 48.09 43.68 45.68 41.93 45.47 32.74 34.87 48.79
SAM↓ 9.428 3.621 3.993 3.441 5.770 3.890 5.683 3.915 12.22 4.808 3.427
SSIM↑ 0.973 0.991 0.987 0.992 0.981 0.991 0.977 0.991 0.885 0.949 0.993

32

CAVE

RMSE↓ 3.842 2.130 2.131 1.865 3.522 3.058 1.720 3.531 18.57 3.204 1.696
PSNR↑ 36.57 41.70 41.65 42.77 37.26 38.52 43.49 37.27 27.11 38.02 43.70
SAM↓ 12.60 6.896 6.079 6.059 17.71 9.146 5.414 10.86 19.12 7.076 5.255
SSIM↑ 0.948 0.982 0.986 0.988 0.965 0.983 0.989 0.975 0.808 0.977 0.990

KAUST

RMSE↓ 5.493 2.025 1.714 1.723 2.948 2.767 2.111 3.405 5.39 2.035 1.546
PSNR↑ 33.92 42.76 44.01 43.85 39.59 39.91 43.02 38.79 34.34 41.98 44.64
SAM↓ 16.51 5.724 4.794 5.279 9.182 8.686 4.925 8.339 9.27 5.007 4.808
SSIM↑ 0.802 0.981 0.986 0.986 0.975 0.977 0.985 0.978 0.940 0.975 0.988

C. Simulation

Then we compared our BUSI-FusionNetwith several state-
of-the-art unsupervised HSI and RGB image fusion methods,
including UMAG-Net [47], NLSTF [36]3, uSDN [48]4, LRTA
[31]5, LTTR [39]6, CUCaNet [29]7, UAL [30]8, HyCoNet
[28]9, Hysure [23]10 and DBSR [24]11 on two synthetic
datasets. The first five methods are all non-blind; the CU-
CaNet, HyCoNet and UAL are used as the semi-blind method,
which treats the SSF as a known parameter and estimates the
PSF only; while Hysure and DBSR are blind methods like
ours. Note that the SSFs in CUCaNet [29] and HyCoNet [28]
are not explicit trainable matrices by their default settings, for

3https://github.com/renweidian/NLSTF
4https://github.com/aicip/uSDN
5https://openremotesensing.net/knowledgebase/hyperspectral-restoration-

and-fusion-with-multispectral-imagery-by-recasting-low-rank-tensor-
approximation/

6https://github.com/renweidian/LTTR
7https://github.com/danfenghong/ECCV2020 CUCaNet
8https://github.com/JiangtaoNie/UAL
9https://github.com/saber-zero/HyperFusion
10https://github.com/alfaiate/HySure
11https://github.com/JiangtaoNie/DBSR

fair comparisons, we treated their SSFs as known parameters
and fixed them to the ground truth, and ran them as semi-blind
fusion methods.

The settings of the comparison methods are conducted by
default settings. The PSFs and the SSFs of the blind methods
are initialized randomly when they are trainable, except DBSR.
We initialized the SSF of DBSR to ground truth since this
method is very sensitive to initialization, and easily gets
trapped in local minima, making it difficult to generate good
SSFs or fused high-resolution HSI.

Table IV shows the comparison results of our method and
others. Generally, most methods perform better with 8 × 8
PSF kernel than with 32× 32 PSF, and the numerical results
of the metrics on KAUST are better than those on CAVE.
Our method outperforms other state-of-the-art unsupervised
semi/blind methods, and it is even better than these five non-
blind methods on most of the metrics. This illustrates the
advantage of our deep image prior compared to other hand-
crafted priors, such as sparsity, and nonlocal low-rank. These
hand-crafted priors can only express shallow structures and
might fail in challenging cases, while our multi-stage residual
block can provide sufficient approximation capacity.
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Fig. 7. The comparison of fusion error of the eleven methods on four scenes with two PSFs.
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Fig. 8. The comparison of PSF and SSF estimation using the three blind methods with two PSFs (Upper: 8 × 8 PSF kernel on CAVE dataset; Bottom:
32 × 32 PSK kernel on KAUST dataset). Note that the SSFs in semi-blind group are as known, and the SSFs of DBSR are initialized to the ground truth
SSFs because the DBSR is underperforming with other randomly initialized SSFs.

We visualized the spectral error of the reconstructed high-
resolution HSIs of eleven methods in Fig.7. Here the spectral
error of each pixel is calculated by using the Euclidean
distance between the reconstructed spectrum and the target
spectrum. We gave the results on two example scenes, each
was reconstructed with the two types of PSFs. Our results have
the highest fidelity to the ground truth and perform robustly
with the two PSFs.

Fig.8 shows the SSF and PSF estimated by three semi-blind
methods and three blind methods (including ours) with the
two types of PSFs. Our degradation estimation shows superior
performance than the others in the challenging task.

D. Experiments on real data

We also test our BUSI-FusionNeton the real image pairs
dataset. Before feeding the images into the network, we first
roughly match the content of the two images, then crop the
RGB images and low-resolution HSI into 1536 × 1536 and

TABLE V
THE COMPARISON OF THE FOUR BASIS FUNCTIONS OF POSITIONAL

ENCODING ON THE CAVE DATASET. THE BEST METHOD IS HIGHLIGHTED
IN BOLD.

Kernel
sizes Functions PSNR↑ SAM↓ SSIM↑ RMSE↓

8

dirichlet 44.91 5.278 0.991 1.491
rbf 43.91 5.314 0.991 1.633

sawtooth 46.77 5.243 0.993 1.174
sin&cos 46.04 4.493 0.993 1.284

32

dirichlet 43.44 6.251 0.989 1.719
rbf 43.01 6.417 0.987 1.838

sawtooth 42.82 6.835 0.987 1.868
sin&cos 43.70 5.255 0.990 1.696

Input warped RGB image Input LR-HSI Fused HR-HSI Rendered HR-HSI

Fig. 9. The results of our proposed BUSI-FusionNeton real image dataset.
Note that we show the HSIs at the 19th band, and the rendered high-
resolution HSIs are obtained by multiplying the fused high-resolution HSIs
with estimated SSFs. Details are 3× enlarged in the red box. Note that the
details of the highlight regions are well preserved in the fusion result images.

256× 256 patches respectively, lastly we make pixel-to-pixel
registration by applying GMA network [78] to estimate high-
quality optical flow between the two patches, and warp RGB
images to match low-resolution HSI. We used forward and
backward optical flow to evaluate the consistency of the flow
and guarantee the used image pairs have fewer occlusion
regions.

In the fusion step, we set the PSF size to be 6×6, and send
the low-resolution HSI patches with the size of 128×128 and
the corresponding RGB patches with the size of 768× 768 to
BUSI-FusionNet. Two examples of results are shown in Fig.9.
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Although ghost artifacts exist in some regions of the warped
images due to imperfect optical flow estimation, our method
can effectively enhance the spatial and spectral resolution in
most regions through fusion. The details such as highlight ad
edges are preserved in the recovered high-resolution HSIs.

V. CONCLUSION

In this paper, we propose the BUSI-FusionNet for the task
of single image RGB-HSI fusion as well as the PSFs and
SRFs estimation without a training set. The network unrolls
the optimization of a Sylvester equation, and utilizes a spatially
varying denoising network as well as positional encoding to
adequately fit the target high-resolution HSIs while resolving
metamerism issues. The implicit neural representation of the
degradation model shows superior performance compared to
handcrafted priors. Several experiments on both the CAVE
and KAUST synthetic datasets as well as real images demon-
strate the robustness and accuracy of BUSI-FusionNet. We
construct a large real paired RGB and low-resolution HSI
image dataset for evaluation, and the community can use it for
future analysis work. However, the proposed method still has
some limitations. First, it requires a long training time, and
the image registration operation is excluded from our end-
to-end network. Therefore, in the future, we will explore a
unified framework for joint high-resolution HSI fusion and
image registration. We will investigate parameter initialization
methods (such as meta-learning) for faster convergence. Also,
we would like to try other generative models to handle the
challenging unsupervised single blind image fusion task.

REFERENCES

[1] N. Keshava, “Distance metrics and band selection in hyperspectral pro-
cessing with applications to material identification and spectral libraries,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 42, no. 7,
pp. 1552–1565, 2004.

[2] G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” Journal
of biomedical optics, vol. 19, no. 1, p. 010901, 2014.

[3] Y. Li, A. Majumder, D. Lu, and M. Gopi, “Content-independent multi-
spectral display using superimposed projections,” in Computer Graphics
Forum, vol. 34, no. 2. Wiley Online Library, 2015, pp. 337–348.

[4] C. Ma, X. Cao, X. Tong, Q. Dai, and S. Lin, “Acquisition of high
spatial and spectral resolution video with a hybrid camera system,”
International journal of computer vision, vol. 110, no. 2, pp. 141–155,
2014.

[5] P.-J. Lapray, X. Wang, J.-B. Thomas, and P. Gouton, “Multispectral filter
arrays: Recent advances and practical implementation,” Sensors, vol. 14,
no. 11, pp. 21 626–21 659, 2014.

[6] S.-H. Baek, H. Ikoma, D. S. Jeon, Y. Li, W. Heidrich, G. Wetzstein,
and M. H. Kim, “Single-shot hyperspectral-depth imaging with learned
diffractive optics,” in Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, 2021, pp. 2651–2660.

[7] B. Uzkent, A. Rangnekar, and M. Hoffman, “Aerial vehicle tracking
by adaptive fusion of hyperspectral likelihood maps,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2017, pp. 39–48.

[8] H. Van Nguyen, A. Banerjee, and R. Chellappa, “Tracking via object
reflectance using a hyperspectral video camera,” in 2010 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition-
Workshops. IEEE, 2010, pp. 44–51.

[9] J. M. Haut, M. E. Paoletti, J. Plaza, J. Li, and A. Plaza, “Active learning
with convolutional neural networks for hyperspectral image classification
using a new bayesian approach,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 56, no. 11, pp. 6440–6461, 2018.

[10] N. Yokoya, C. Grohnfeldt, and J. Chanussot, “Hyperspectral and mul-
tispectral data fusion: A comparative review of the recent literature,”
IEEE Geoscience and Remote Sensing Magazine, vol. 5, no. 2, pp. 29–
56, 2017.

[11] E. Maggiori, G. Charpiat, Y. Tarabalka, and P. Alliez, “Recurrent
neural networks to correct satellite image classification maps,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 55, no. 9, pp.
4962–4971, 2017.

[12] C. Kwan, B. Ayhan, G. Chen, J. Wang, B. Ji, and C.-I. Chang, “A
novel approach for spectral unmixing, classification, and concentration
estimation of chemical and biological agents,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 44, no. 2, pp. 409–419, 2006.

[13] P. S. S. Aydav and S. Minz, “Classification of hyperspectral images using
self-training and a pseudo validation set,” Remote Sensing Letters, vol. 9,
no. 11, pp. 1109–1117, 2018.

[14] G. Vivone, L. Alparone, J. Chanussot, M. Dalla Mura, A. Garzelli,
G. A. Licciardi, R. Restaino, and L. Wald, “A critical comparison
among pansharpening algorithms,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 53, no. 5, pp. 2565–2586, 2014.

[15] X. Fan, H. Rhody, and E. Saber, “A spatial-feature-enhanced mmi al-
gorithm for multimodal airborne image registration,” IEEE transactions
on geoscience and remote sensing, vol. 48, no. 6, pp. 2580–2589, 2010.

[16] H. Chui and A. Rangarajan, “A new point matching algorithm for non-
rigid registration,” Computer Vision and Image Understanding, vol. 89,
no. 2-3, pp. 114–141, 2003.

[17] Y. Zhou, A. Rangarajan, and P. D. Gader, “Nonrigid registration of
hyperspectral and color images with vastly different spatial and spectral
resolutions for spectral unmixing and pansharpening,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops, 2017, pp. 86–94.

[18] S. Li, B. Yang, and J. Hu, “Performance comparison of different multi-
resolution transforms for image fusion,” Information Fusion, vol. 12,
no. 2, pp. 74–84, 2011.

[19] H. Zhang, H. Xu, X. Tian, J. Jiang, and J. Ma, “Image fusion meets
deep learning: A survey and perspective,” Information Fusion, vol. 76,
pp. 323–336, 2021.

[20] L. Loncan, L. B. de Almeida, J. M. Bioucas-Dias, X. Briottet, J. Chanus-
sot, N. Dobigeon, S. Fabre, W. Liao, G. A. Licciardi, M. Simões, J.-
Y. Tourneret, M. A. Veganzones, G. Vivone, Q. Wei, and N. Yokoya,
“Hyperspectral pansharpening: A review,” IEEE Geoscience and Remote
Sensing Magazine, vol. 3, no. 3, pp. 27–46, 2015.

[21] L. Hou and X. Zhang, “Pansharpening image fusion using cross-channel
correlation: A framelet-based approach,” Journal of Mathematical Imag-
ing and Vision, vol. 55, no. 1, pp. 36–49, 2016.

[22] C. Ballester, V. Caselles, L. Igual, J. Verdera, and B. Rougé, “A
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