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Abstract

In this paper a system is presented which automatically reg-
isters and stitches textures acquired from multiple photo-
graphic images onto the surface of a given corresponding
3D model. Within this process the camera position, direc-
tion and field of view must be determined for each of the
images. For this registration which aligns a 2D image to
a 3D model we present an efficient hardware-accelerated
silhouette-based algorithm working on different image res-
olutions, which accurately registers each image without any
user interaction. Besides the silhouettes, also the given tex-
ture information can be used to improve accuracy by com-
paring one stitched texture to already registered images re-
sulting in a global multi-view optimization. After the 3D-
2D registration for each part of the 3D model’s surface the
view is determined which provides the best texture. Textures
are blended at the borders of regions assigned to different
views.

Keywords: Texture Acquisition, Image Registration, Object
Calibration, Image-Based Rendering and Modeling

1 Introduction

Throughout the past years 3D rendering solutions have ad-
vanced in rendering speed and realism. Because of this, there
is also an increased demand for models of real world ob-
jects, including both the object’s geometry and its surface
texture. Precise geometry is typically acquired by special-
ized 3D scanners while detailed texture information can even
be captured by consumer quality digital cameras. Only a few
3D scanning devices are built to capture 3D geometry and
2D textures at the same time. And even if texture acquisi-
tion is supported it may be required to take the images under
controlled lighting conditions with a special sensor implying
that the object of interest has to be placed in a fully control-
lable environment while taking the pictures. In cases where
photos and geometry are not acquired by the same sensor the
images must be registered with the 3D model afterwards in
order to connect geometry and texture information.

For this registration task we present a hardware-

accelerated algorithm that aligns an image to the 3D model
as well as to other already registered images. All stages of
the algorithm can run completely automatically. Alterna-
tively, the user can skip some steps in the algorithm provid-
ing a rough alignment.

2 Related Work

In the field of capturing surface appearance (color and tex-
ture) of real world objects there have been a number of re-
cent publications ranging from architectural scenes [3, 22]
to smaller artifacts [10, 11, 13, 17, 18] and even deformable
objects like faces [5, 6, 14]. To acquire a complete texture
for an object the following tasks must be performed.

2.1 Imaging All Visible Surfaces

If an object’s surface should be entirely digitized the first step
is to collect data for all visible surfaces. A set of camera po-
sitions must be determined from which every part of the sur-
face is captured by at least one image. For a given geometric
model and a set of possible positions Matsushita et al. [11]
determine the optimal set of required views respecting the
viewing angle to each surface element. Further, Stuerzlinger
[20] finds a minimal set of view points within the volume of
all possible camera positions. He uses hierarchical visibility
links to first determine optimal subregions using a simulated
annealing approach, and then selects optimal points within
these regions.

2.2 3D–2D Registration

After taking the images the camera position and rotation rel-
ative to the 3D model must be determined for each view.
Only if geometry and texture are acquired at the same time
with the same sensor like in [18] or [16], the images are al-
ready aligned to the model and no further 3D–2D registra-
tion is needed. In all other cases, one can basically follow
two different approaches.

The first approach selects a set of points in each image
which correspond to known points on the model’s surface.
From these correspondences the camera transformation for



the current view can be directly derived using standard cam-
era calibration techniques, e.g. [21]. However, the prob-
lem is to find these pairs of points. Depending on the object
there may be geometric feature points which can be easily
located in the images, and thus can be detected and assigned
automatically. Kriegman et al. [8] use T-junctions and other
image features to constrain the model’s position and orienta-
tion. Others attach artificial landmarks to the object’s surface
which are detected automatically in the images [5]. But these
marks destroy the texture and have to be removed afterwards.
If no extraordinary points can be detected automatically one
may of course select corresponding pixels manually, which
actually is a commonly used but tedious method [14, 17, 3].

Instead of directly searching for 3D–2D point pairs which
are especially hard to find for objects containing no sharp
edges, one may inspect larger image features like the con-
tours of the object within each image. The correct camera
transformation will project the 3D model in such a way that
the outline of the projected model and the outline in the im-
age match perfectly except for small errors due to imprecise
geometry acquisition.

A lot of previous algorithms try to find the camera trans-
formation by minimizing the error between the contour
found in the image and the contour of the projected 3D model
[2, 9, 13, 11, 6]. The error is typically computed as the sum
of distances between a number of sample points on one con-
tour to the nearest points on the other [13, 11]. Another ap-
proach computes the sum of minimal distances of rays from
the eye point through the image contour to the model’s sur-
face which are computed using 3D distance maps [2].

To recover the different camera parameters any kind
of non-linear optimization algorithm like Levenberg-
Marquardt, simulated annealing, or the downhill simplex
method can be used, which are described in [15]. During
the optimization a lot of different settings for the camera pa-
rameters are tested in order to guide the algorithm towards
a minimum. For each test the error function has to be eval-
uated which is quite costly for contour-based distance mea-
surement since the model must be projected and the point
distances to the projected contour must be calculated for a
sufficient number of points. In Section 5 we present a dif-
ferent, more efficient algorithm to calculate the distance be-
tween silhouettes instead of contours.

Beside geometry-based 3D–2D registration, the tex-
ture/image information itself may be used to register the
different views among each other. For 2D–2D image reg-
istration a number of techniques have been developed [1].
Based on this pairwise registration a global optimization for
all incorporated views can be performed as demonstrated by
Neugebauer et al. [13], whereas Rocchini et al. [17] use the
image information only to align the textures in those regions
where different textures have to be blended during rendering.

2.3 Texture Preparation and Rendering

After exact registration the mapping from surface parame-
ters to texture coordinates is known for each view. A single
image can be mapped onto the object by common graph-
ics hardware supplying projective texture mapping [19]. If
multiple views are incorporated one must determine which
image is best to be mapped onto which part of the surface.
Here, the angle between the viewing direction during acqui-
sition and the surface normal may be considered [17, 11],
or the textures are selected depending on the rendering view
point [3, 4, 16]. Special care must be taken at boundaries of
surface regions which are textured with data from different
images. To create a smooth transition between the regions
the textures must be blended appropriately. Rocchini et al.
[17] even precomputed this blending into a new texture to
speed up the entire rendering process. Additionally, all rele-
vant parts of the original images are packed into one single
large texture to provide easier handling.

3 Overview / Contributions

Out of the set of the different tasks necessary to acquire
a complete texture mentioned in the previous section, we
present new solutions for the following ones:

• single view registration based on silhouettes (Section 5
and Section 6)

• global registration of multiple views with respect to im-
age features (Section 8)

• view-independent assignment of surface parts to the im-
ages providing the best texture for the single part (Sec-
tion 7)

• blending between textures at assignment boundaries
(Section 7)

Although we briefly explain all necessary steps from image
acquisition to rendering of the textured model, the main fo-
cus within this paper is on novel techniques for image regis-
tration.

4 Camera Transformation

Figure 1: Recovering the camera parameters for one image
allows to map the image correctly onto the model.



During registration the camera settings must be deter-
mined for each image mapping it correctly onto the 3D
model (Figure 1). In our system a pinhole camera model
is assumed. Altogether up to seven camera parameters are
recovered: the field of view which is the only intrinsic pa-
rameter and is related to the focal length, and six extrinsic
parameters describing the camera pose and orientation. All
other intrinsic parameters like aspect ratio, principal point, or
radial lens distortion are assumed to be constant and known
since they can be obtained easily using common camera cal-
ibration tool kits, or they are simply ignored and set to rea-
sonable approximative values.

The camera position is expressed by the translation vector
tc ∈ IR3, while the orientation of the camera is described by
(φx, φy, φz), the rotation angles about the coordinate axes,
which form a 3 × 3 rotation matrix R. These extrinsic pa-
rameters determine a rigid body transformation that maps a
point in world coordinates xw ∈ IR3 into camera coordinates
(xc, yc, zc)

T :




xc

yc

zc



 = Rxw + tc (1)

For a camera far away from the object this representation has
the disadvantage that a small rotation around the camera re-
sults in a large displacement of the object in camera coordi-
nates. If the point xw is rotated around the center of gravity g

of the object instead the effects of rotation and translation are
much easier to distinguish, thus simplifying the optimization
[13]. The translation is now given by t = Rg + tc which
actually is the position of the center of gravity in camera co-
ordinates.
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 = R(xw − g) + Rg + tc = R(xw − g) + t (2)

To fully describe the camera transformation the points
(xc, yc, zc)

T are further mapped to 2D image space (u, v):
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where (u0, v0) is the principle point (in our case the center
of the image), α the aspect ratio of width to height which
must be provided by the user, and f the field of view. Thus,
the camera transformation is determined by f and the vector
π = (φx, φy, φz, tx, ty, tz)

T . For each image these seven pa-
rameters are have to be recovered by a non-linear optimiza-
tion of a similarity function comparing the projected model
to the object found in the image.

5 Similarity Functions

Since we want to optimize seven parameters
(φx, φy, φz, tx, ty, tz, f) we define a function s : IR7

→ IR

which returns a scalar value for the specified camera
transformation expressing the similarity of the projected
model and an image, i.e. with a small value indicating high
similarity while the value increases when the projected
model and the image are misaligned. As this function s will
be evaluated quite often during the optimization process it is
necessary that it can be computed very quickly.

At first we have to define in which way we want to mea-
sure the similarity, which feature space to be used. Since the
3D geometric model does not yet carry any color informa-
tion we are restricted to geometric properties. In contrast to
Neugebauer et al. [13] and Matsushita et al. [11] who com-
pared the contour of the projected model to the contour in
the image, we decided to directly compare the silhouettes,
which requires less computation. A silhouette is the object
projected onto a plane filled with uniform color while a con-
tour is the outline of the silhouette.

5.1 Segmentation

When rendering the model for a given view the silhouette
can be generated simply by choosing a uniform white color
in front of a black background which is very simple. If in-
stead of the silhouette the contour had to be extracted further
processing would be necessary which we can avoid.

To compare silhouettes the second silhouette must be ex-
tracted from the image data. If the object is captured in front
of a black background the image can be segmented auto-
matically by histogram-based thresholding. The threshold is
chosen right after the first peak in the histogram which cor-
responds to the number of very dark pixels. If the contrast
between the object and the background is too low (like in
less controllable environments) other image processing tech-
niques must be applied. For example the semi-automatic al-
gorithm presented by Mortensen and Barret [12] may be used
to trace the contour in the image which afterwards can be
filled automatically. This segmentation has to be done only
once for each image before starting the actual optimization
and thus user interaction seems acceptable.

5.2 Silhouette Comparison

After extracting the silhouettes some kind of distance mea-
surement between the silhouettes has to be defined. The
technique presented here can be carried out completely by
use of commonly available graphics hardware supporting
histogram evaluation.

The first step renders the silhouette of the projected 3D
model into the framebuffer. The result is then combined with
the segmented image using a per-pixel XOR-operation. This
process is visualized in Figure 2 where the silhouettes are
computed for the photo and for one view of the 3D model
and combined afterwards. After the XOR-operation exactly
the pixels between the outlines remain white. Their number
can be counted by simply evaluating the histogram of the
combined image which is computed very efficiently by the



Figure 2: Measuring the difference between the photo (left)
and one view of the model (right) by the area occupied by
the XOR-ed foreground pixels.

graphics hardware. For exact matches a value close to zero
will be returned while the number of remaining pixels will
be much larger if the rendered view of the model is different
from that in the photo.

The computation time for the similarity function is domi-
nated by two quantities. The more important one is the reso-
lution selected for rendering since each pixel of the XORed
image will be processed during the computation of the his-
togram. The other quantity is the complexity of the 3D
model in terms of the number of geometric primitives that
have to be rendered to produce the model’s silhouette.

5.3 Blurred Silhouettes

Until now, we have assumed monochromatic images with a
sharp transition between the intensity of pixels belonging to
the object and those belonging to the background. Suppose
two sharp intensity transitions which are slightly displaced
like depicted in Figure 3a. As the displacement is increased,
the integral of the differences of the two curves grows lin-
early while the differences are either one or zero. This is
exactly the result of the presented similarity measurement
based on XORed monochromatic silhouettes.

More desirable is a measurement that is proportional to
the squared distance between points on the outlines. This
behavior can be approximated for small displacements using
blurred edges. As can be seen in Figure 3b, even for blurred
transitions the integral of the differences between the curves
is proportional to the displacement. But in this case also the
magnitude of the differences is linear to the displacement
in regions where the transitions overlap. These differences
can be squared prior to the integration. By this, a quadratic
distance measurement is approximated for edges as long as
the displacement of the edges is smaller than the size of the
filter kernel applied to blur the edges. Larger displacements
are emphasized compared to smaller ones. This behavior can
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Figure 3: a) The integral of differences between a sharp in-
tensity edge and the same edge slightly displaced (dashed) is
proportional to the displacement. Blurred edges b) also pro-
duce a linear distance measure. But the differences between
blurred edges can be squared before integration approximat-
ing a quadratic measurement (white line).

guide the optimization algorithm faster to the minimum. But
computing the differences between blurred images is slightly
more expensive than just applying the XOR-operation and
one can decide if it is worth the cost (see Section 9).

To blur the silhouettes a n × n low-pass filter is applied.
While this is no problem with respect to the photo since it is
done before the optimization, the silhouette of the projected
3D model must be filtered again for each view. Although
convolution can be computed by the graphics hardware, it
requires processing the entire framebuffer and thus slows
down the evaluation of the similarity function. After blurring
the silhouettes the absolute difference values between them
must be computed on a per-pixel basis. A special OpenGL
extension allows to compute the positive difference of the
framebuffer contents and an image by specifying a particular
blending equation. Since only positive values are computed
while negative values are clamped against zero we first ren-
der the silhouette of the 3D model minus the photo into the
red channel and then the photo minus the 3D model’s sil-
houette into the green channel of the framebuffer as can be



Figure 4: XORed sharp silhouettes (left) and subtracted
blurred silhouettes (right).

seen in Figure 4. The histogram of the red and of the green
channel are then combined to obtain the sum of the absolute
values, and the approximate quadratic distance is computed.

5.4 Erroneous Pixels

For real photos the defined similarity function will always
return values much larger than zero no matter how close the
determined view comes to the original view of the photo.
There are always some pixels of the silhouette in the photo
which are not covered by the projected 3D model or vice
versa, originating from different sources of error. On one
hand the 3D model may be somewhat imprecise due to the
acquisition. There may be even parts of the object visible in
the image which are not part of the 3D model. On the other
hand some pixels in the image may be wrongly classified
by the automatic segmentation due to unfavorable lighting
conditions. Additionally, in some views parts of the object
will be hidden by other objects.

a) b)

Figure 5: Large regions of wrongly segmented pixels apart
from the silhouette (a) and penetrating the silhouette (b).

There are several possible ways to deal with these erro-
neous pixels: If the regions of erroneous pixels do not pen-
etrate the silhouette of the object like holes within the sil-
houette or bright regions in the image apart from the object
(Figure 5a) the optimization is not affected since these pix-
els only add a constant bias to the histogram. If erroneous
pixels disturb the outline they may lead to slight misregistra-
tion (Figure 5b). But the error may be corrected afterwards
by comparing the registered texture to the texture of other
views as explained in Section 8, or it may simply be ignored

if it is only small. In cases where the error is too large to
be acceptable the erroneous pixel can be masked out and the
histogram is evaluated only over regions providing reliable
information. But masking out the bad regions requires user
interaction and thus should be avoided.

6 Non-linear Optimization

Let’s assume a similarity function s as defined in the previ-
ous section. To recover the correct transformation for a given
image we have to find the pair (πmin, fmin) that minimizes
s. Since s typically is non-linear and possesses a bunch of
local minima, an appropriate optimization method must be
applied. We chose the downhill simplex method as it is pre-
sented in [15] and extended it by some aspects similar to
simulated annealing since the pure simplex method tends to
converge too fast into local minima. Of course, also other
optimization techniques may be used instead but we found
the simplex method easy to control and it does not require
any partial derivatives, which makes it very efficient, even if
the cost for evaluating the similarity function is high, like in
our case.

a)

b)

c)

d)

lowhigh

Figure 6: Possible results after one optimization step: a)
The initial simplex which was constructed around the start-
ing point or it is the result of a previous step. b) The high
point is reflected and perhaps further expanded. c) Contrac-
tion along one dimension from the high point. d) The high
point is perturbed randomly.

6.1 Downhill Simplex Method

The method works for N -dimensional problems albeit we
use it only for 6 dimensions to optimize the camera pose and
orientation. The field of view is optimized afterwards using
another optimization technique since a good approximation
can be derived from the applied lens, and further, the effect



of changing the field of view is too similar to changing the
distance making the optimization less stable. To initialize the
algorithm a starting point must be given around which N fur-
ther points are arranged in such a way that these N +1 points
span a simplex in IRN which encloses a N -dimensional in-
ner volume. For example, given the starting point p0 in IR3

the simplex (p0, p1, p2, p3) may be built with p1 = p0 + ex,
p2 = p0 +ey, p3 = p0 +ez where ex, ey and ez are the three
unit vectors. In N dimensions the point pn (1 ≤ n ≤ N)
is constructed by displacing p0 by the nth unit vector. The
displacement can also be scaled with respect to the expected
distance to the yet unknown minimum. For each point the
similarity function s is evaluated and stored with the point.

Based on the values of s the points are sorted yielding
the worst point phi, the next better point pnhi, and the best
point plo with s(phi) ≥ s(pnhi) ≥ s(pi) ≥ s(plo) for all
remaining i < N + 1. For phi a new position p′ must be
found with s(p′) ≤ s(pnhi) in order to prevent the point from
being selected again in the next iteration. The search strategy
for finding a better position in the case of three dimensions
is depicted in Figure 6. For each point a number of possible
positions are tried for which s is evaluated and compared to
s(pnhi). At first phi is reflected through the opposite face of
the simplex yielding p′. If s(p′) is even smaller than s(plo)
then a position is tried that expands the simplex further in the
reflected direction (Figure 6b). If reflection does not improve
the result another point p′′ is tested, this time moving phi

a bit nearer to the center of the simplex which makes the
simplex shrink in this direction (Figure 6c). In the case that
s(p′′) still is not satisfying the shrinking step is repeated, but
only once. If a better point than pnhi has been found during
these tries phi is replaced by determined point. Otherwise,
if neither reflection nor shrinking succeeded phi is set to a
point calculated by random perturbation of plo in one or two
dimensions using a multiple of the diameter of the simplex
as the maximum displacement.

Afterwards the sorting is repeated with the improved phi,
another phi is determined, improved, and so on, until all
other vertices except phi have converged to a region with
radius smaller than a user-defined threshold.

During the optimization the simplex moves through the
search space while continuously changing its shape like an
amoeba. The reflection and expansion of the worst point
(Figure 6b) let the simplex move through the space towards a
minimum. New impulses for the direction of the movement
are created by the random perturbation (Figure 6d). And fi-
nally, convergence to a small region around a minimum is
achieved by contraction (Figure 6c).

6.2 Hierarchical Optimization

The algorithm still converges very quickly to a minimum that
is not necessarily the global minimum. In order to find the
global minimum we restart the optimization process several
times. Hereby, the minimum found by the previous opti-
mization is used as the next starting point. The radius of the

initial simplex is of course reduced before each iteration to
speed up the convergence.

Another method to speed up the optimization and even to
increase robustness is to run the optimization at different im-
age resolutions. As pointed out in Section 5 the evaluation
time for our similarity measurement depends on the used im-
age resolution since the histogram has to count all pixels.
Starting with low resolution the view can be approximated
roughly but very quickly. For accurate registration the reso-
lution is increased. At the same time also the tessellation of
the object can be varied to gain a speedup.

6.3 Generating a starting point

For the optimization it is extremely important to have an ap-
propriate starting point. A starting value for the field of view
can be derived directly from the focal length of the applied
lens which is reported by some digital cameras. This typ-
ically won’t be the correct focal length since it is slightly
changed by selecting the focal distance. Assuming that the
entire object is visible in the image, an initial guess for the
distance can be computed using the field of view and the
size of the object. The x and y displacements are initially
assumed to be neglectable.

What remains is to make a guess for the orientation. This
is done by sparsely sampling the space of possible angular
directions. We try three different angles for φx and four for
both φy and φz yielding 48 samples. From each of these
samples we start the simplex algorithm running at a rather
low resolution and stop already after a few evaluations of
the similarity function. The best five results are selected and
further optimized this time allowing more evaluations at the
same resolution. It turned out that the best of the computed
minima is already quite close to the one we are searching for.
With this value the final optimization can be started.

Of course the generation of the starting point takes some
time, but it does not require any user interaction. Especially,
there is no need to select pairs of corresponding points. How-
ever, time can be saved by manually moving and rotating the
3D model very roughly into a position similar to the photo.

For a fixed field of view the following steps are performed
to recover the translation vector t and the rotation R given by
φx, φy, φz : generate a starting position automatically like de-
scribed above or select it manually, run the simplex method
two times at low image resolution and then two times at the
final resolution.

6.4 Optimizing the Field of View

Given the optimized π, the field of view fstart obtained
from the camera and the result of the similarity function
s(π, fstart) we now try to find the best field of view fmin

that further minimizes s(π′, fmin) where π′ is only slightly
changed compared to the previous π. This problem is a
search in only one dimension for which we implemented a
simple algorithm.



Let’s start with f set to fstart. At first f is increased by an
amount d yielding a new f ′. All other parameters are simply
copied from π to π′. Then the distance tz in π′ is updated to
compensate for the change in the field of view in such a way
that the size of the projected object approximately remains
the same for the new f ′. To π′ and f ′ the simplex method
is applied allowing only a few evaluations of the similarity
function. This yields an optimized parameter set π′

opt. This
optimization is necessary to slightly correct π′ since a wrong
field of view will lead to a wrong registration in the other
parameters two. If by increasing f a better field of view was
found (s(π′

opt, f
′) < s(π, f)) the field of view is increased

and the algorithm is repeated, starting with (π′

opt, f
′). Other-

wise we divide the increment d by two, step back to the pre-
decessor of the last field of view and proceed with the search
until d is sufficiently small. If no better field of view can be
found by increasing fstart the algorithm is just applied into
the other direction, decreasing fstart.

Using this algorithm it is possible to determine the best
field of view for each photograph independently. This allows
to select a different focal distance or even different lenses for
each view in contrast to previous approaches in which the
field of view had to be fixed [13, 11].

7 Texture Stitching

After determining the correct viewing parameters for an im-
age, it can be stitched as a texture onto the surface of the 3D
model. In this section a triangular mesh is assumed although
the presented ideas can easily be adapted to other surface
representations as well.

7.1 Single View Processing

Given the viewing transformation the set of visible vertices
of the 3D model can easily be determined either by casting
a ray from the view point to the vertex and testing for oc-
clusion or by a simple z-buffer depth test. For all visible
vertices a texture coordinate into the image is computed by
projecting the vertex into the image plane using the recov-
ered camera transformation. Additionally, the viewing angle
is determined for each vertex. From this data the set of us-
able vertices is derived. A vertex is declared valid only if the
viewing angle at that point is large enough, the depth vari-
ation around that point is not too steep and the point does
not lie exactly on the outline of the projected object. Using
this criterion texture mapping artifacts can be avoided when
viewing the textured object from views than the determined
one.

Based on the set of valid vertices those triangles can be
selected for which reliable texture information is available.
A triangle is used only if all its vertices are valid.

7.2 Combining Multiple Textures

If multiple images are involved the sets of valid triangles will
overlap and the best assignment of triangles to images must
be determined. A static decision can be made by inspecting
again the angle under which the triangle is seen in each im-
age. Each triangle is assigned the texture from that image in
which it possesses the largest viewing angle.

a) b)

c)

Figure 7: a) Adjacent triangles textured using different im-
ages. b) Possibly blended triangles shaded grey. c) Each
boundary vertex is assigned to one image and textures are
blended.

There will be triangles that are assigned to one image
while an adjacent triangle is assigned to another image (Fig-
ure 7a). This often results in a visible discontinuity in the tex-
ture even if the images are taken without changing the light-
ing conditions. A smooth transition is achieved by blend-
ing between the textures across the border triangles. This
requires all boundary triangles to be valid also for adjacent
textures. To ensure this the set of valid triangles for each
image is reduced prior to the assignment to the images. All
those triangles are invalidated which have at least one invalid
triangle as their neighbor.

Next, the triangles must be determined across which to
blend. All triangles containing a boundary vertex are possi-
ble candidates for the blending (Figure 7b). They are ren-
dered once for each adjacent texture using appropriate alpha
values at the vertices to gain correct blending. The assign-
ment of alpha values for each vertex for each image is as
follows. For each boundary vertex it is decided in which im-
age it is best represented. For the best image the vertex is
assigned an alpha value of one, while for all other images
it is set to zero. For all surrounding vertices which are not
boundary vertices the alpha value is set to one if the vertex
belongs to a triangle that was previously assigned to the cur-
rent texture (Figure 7c).



Rendering the textured triangles with these alpha values
results in a smooth transition. Unfortunately, the blending
takes place across the width of only one triangle. If the ob-
ject is finely tessellated the blending area will become rather
small and contrasting textures are still not sufficiently sepa-
rated. This problem can be solved by computing the blend-
ing on an object with coarser tessellation and assigning in-
terpolated alpha values to the vertices of the fine subdivided
mesh.

8 Multiple View Registration

When the texture is combined from multiple views a slightly
misaligned image can produce visible artifacts since image
features blended between two images may not be aligned.
The circumstances which can lead to misalignment when
only one view is considered are mentioned in Section 5. If
we have multiple already registered views an additional sim-
ilarity measurement stex can be defined which does not com-
pare silhouettes but the texture of one view to the texture ob-
tained by another view. This results in a global optimization
taking into account all views.

8.1 Texture Comparison

Given the parameters (π1, f1) and (π2, f2) of two registered
views and the sets T1 and T2 of valid triangles, the quality of
the registration can be measured by comparing the textures
mapped, one in turn, onto the set of overlapping triangles
T1 ∩ T2. The triangles are rendered from the view specified

by the averaged parameters
(

π1+π2

2
, f1+f2

2

)

. Choosing the

averaged view yields similar loss of quality due to distortion
and resampling in both textures.

In the case of a perfectly diffuse surface the textures
mapped onto T1∩T2 will look identically, whereas specular-
ity leads to view-dependent highlights which occur in differ-
ent location on the surface for different views. To get less
view-dependent textures the color images are transformed
into the HSV color space which separates the brightness
(value) from the hue and the saturations. Only the hue and/or
saturation-channel are used for comparison avoiding the in-
fluence of view-dependent brightness. Of course, also other
methods can be applied to create view-independent textures
like the one presented in [13], but they tend to be more ex-
pensive. However, the hue channel of the two textures can
now be compared like the intensity values of two different
blurred silhouettes in Section 5. At first, the positive dif-
ference of the first texture minus the second texture is ren-
dered into the red channel of the frame buffer and then the
reversed difference is rendered into the green channel. Sum-
ming up the histogram weighted by the difference values
yields a value that becomes minimal when the two views are
perfectly aligned. This measure stex(π1, f1, π2, f2) allows
to register multiple views with respect to each other.

8.2 Iterative Global Optimization

A registration of multiple views starts with the separate reg-
istration of each view based on the silhouette as described in
Section 6. After the single-view registration the sets of valid
triangles are determined and texture coordinates are com-
puted for the vertices. For each pair of views (i, j) the set
of overlapping triangles Ti ∩ Tj is determined and the aver-
aged parameters (πij , fij) are calculated. For these pairs an
initial measurement sij = stex(πi, fi, πj , fj) is evaluated.

Successively each view i is selected and the set of other
views Vi is determined which are sharing overlapping trian-
gles with i. We can now optimize the following function:

smultiview(πi, fi) =
∑

j∈Vi

stex(πi, fi, πj , fj)

sij

(4)

Again, the extended downhill simplex method presented in
Section 6 can be applied, this time calculating new texture
coordinates and evaluating smultiview(πi, fi) for each try.
Since the changes in πi are expected to be rather small a
simplex with small radius is constructed around πi and the
optimization is already stopped after a few evaluations of
smultiview . Iterating this process several times over all views
until no further updates are performed will produce the best
possible registration regarding the surface textures.

9 Results

The presented methods were applied to two different objects,
a bird and a moose. The models have been acquired using
a Steinbichler Tricolite 3D scanner. The bird’s model con-
sists of around 7000 triangles while the moose is tessellated
more finely with nearly 11000 triangles. The images were
taken with a Kodak DCS 560 digital camera that yields an
image resolution of 3040x2008 pixels which we reduced to
1024x676 since the applied graphics hardware cannot deal
with larger textures. We run the optimization on a SGI Oc-
tane equipped with a MXE graphic board containing 8MB of
texture ram.

In Figure 8 the results after automatic registration and
stitching of several images onto the models are shown and
compared to real photos that have not been used for gener-
ating the texture. The moose texture consist of 15 different
images taken with two different lenses and at different object
distances. The bird was textured using just 10 images.

The synthetic results compare really well to the photos al-
though two kinds of artifacts are visible. At the top of the
antler some triangles are not textured because they are too
close to the outline in each incorporated image. Here, no re-
liable information could be retrieved. The other artifacts are
due to the non-diffuse surface reflectance. Even though the
position of the lights was not changed during the acquisition,
specular highlights result in brightness differences among
the acquired images as can clearly be seen in Figure 9a.



photo texture

Figure 8: Novel viewpoint. Left column: photo that has not been used to generate the texture. Right column: synthetic model
rendered with the generated textures.



a) b)

Figure 9: Texture Alignment. View at the right front wheel. a) Several textures are so accurately aligned that even fine
lines in the wood’s structure are preserved. b) Blended triangles on region boundaries are not displayed revealing six regions
contributing to the wheel’s overall texture

mode x·y value tx ty tz φx φy φz times

avg 7.47554 -5.51689 704.69 -118.956 -43.5465 -119.326XOR 500x330
var 0.00589416 0.00646141 1.97692 0.466394 0.0864301 0.282632

40

avg 7.55476 -5.55964 706.194 -119.32 -43.5189 -119.719XOR 1000x660
var 0.00341098 0.00299123 2.41879 0.215139 0.0937607 0.154695

130

avg 7.26057 -5.64407 706.565 -117.479 -43.0215 -118.237blurred 500x330
var 0.000732457 0.00421928 0.165303 0.0381274 0.0163896 0.0305439

39

avg 7.3034 -5.67636 706.661 -117.667 -43.0383 -118.386blurred 1000x660
var 0.0041396 0.000900759 0.301037 0.158217 0.0676453 0.150163

104

Table 1: Average value and variance value of the recovered camera parameters and the required time applying the XORed and
blurred silhouette matching algorithm for different resolutions. The optimization has been started several times from different
positions.

image proc. start pos. opt. FoV stitching total

10 images 235 826 239 365 12 1677
average 23.5 82.6 23.9 36.5 1.2 155

15 images 359 1660 536 1250 21 3826
average 23.9 110.6 35.7 83.3 1.4 255

Table 2: Registration timings (in seconds) for the bird (top rows) and the moose (bottom rows).



The precision of the presented algorithm is visualized in
Figure 9a where the right front wheel of the moose is shown.
The wheel is actually textured by at least six different im-
ages. In Figure 9b all possibly blended triangles are removed
and six regions assigned to different images are visible. Al-
though the texture of the wheel is composed using several
different views, the fine lines of the wood’s structure is com-
pletely preserved, indicating a very accurate registration.

When comparing the XOR and blurred matching meth-
ods, it can be seen from table 1 that the blurred silhouette
method leads to superior results. The variance of the recov-
ered parameters is generally decreased, often by one order of
magnitude. From our experiments, it could also be observed
that although the computation of the similarity function is
computationally more expensive, the optimization converges
more quickly for non-ideal starting points.

Table 2 lists the time (in seconds) needed for the regis-
tration task of the bird and moose models. The registration
of the bird took around 28 minutes, while the moose took
64 minutes since more texture information and a more com-
plex geometric model were used and the resolution used for
the final optimization was increased (bird: 500x300, moose:
800x528). The images are first loaded and processed to ex-
tract the silhouettes, then a starting point for the optimiza-
tion is generated, the optimization is run for recovering the
position and orientation, the field of view is determined, and
finally the textures are stitched onto the model. Most of the
time is spent for finding an appropriate starting position and
for determining the field of view.

Time could be saved by manually selecting a good start-
ing position. But it turned out that the optimization of the
pose and orientation after manual alignment consumed more
time (around one minute) since the starting point for the opti-
mization is not as precise as the automatic method. By fixing
the field of view during the acquisition further time could be
saved, since in that case the field of view had to be deter-
mined only once.

All the results presented so far have been computed with-
out using the texture-based multi-view optimization (see
Section 8). It turned out that the purely geometry-based reg-
istration already produces results of very high accuracy, so
that the texture-based matching is only helpful if one of the
input images is misaligned for some reason. In our tests, it
produces comparable results to those shown here, consuming
additional time.

10 Conclusions

We have described a number of novel techniques to regis-
ter and to stitch 2D images onto 3D geometric models. The
camera transformation for each image is determined by an
optimization based on silhouette comparison. If the resulting
alignment is not accurate enough, further optimization based
on texture information is possible. Using the recovered cam-
era transformation, the image is stitched onto the surface.

Finally, for multiple views, an algorithm is presented that
produces smooth transitions between textures assigned to ad-
jacent surface regions on the model.

The presented methods do not require any user interac-
tion during the entire processing. They work efficiently, ex-
ploit graphic hardware features and result in very accurately
aligned textures. Differences in the brightness due to specu-
larity are still visible. To further improve the quality of the
results, the reflectional properties of the surfaces must also
be considered or the algorithm must blend between the tex-
tured depending on the selected view-point.
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In this paper a system is presented which automatically registers and stitches textures acquired from
multiple photographic images onto the surface of a given corresponding 3D model. Within this pro-
cess the camera position, direction and field of view must be determined for each of the images. For
this registration which aligns a 2D image to a 3D model we present an efficient hardware-accelerated
silhouette-based algorithm working on different image resolutions, which accurately registers each
image without any user interaction. Besides the silhouettes, also the given texture information can be
used to improve accuracy by comparing one stitched texture to already registered images resulting
in a global multi-view optimization. After the 3D-2D registration for each part of the 3D model’s
surface the view is determined which provides the best texture. Textures are blended at the borders
of regions assigned to different views.


