
Shape from Contours and Multiple Stereo –
A Hierarchical, Mesh-Based Approach

Hendrik Kück and Wolfgang Heidrich Christian Vogelgsang
Department of Computer Science Computer Graphics Group
University of British Columbia Universität Erlangen-Nürnberg

Abstract

We present a novel method for 3D shape recovery
based on a combination of visual hull information
and multi image stereo. We start from a coarse trian-
gle mesh extracted from visual hull information. The
mesh is then hierarchically refined and its vertex po-
sitions are optimized based on multi image stereo in-
formation. This optimization procedure utilizes 3D
graphics hardware to evaluate the quality of vertex
positions, and takes both color consistency, and oc-
clusion effects as well as silhouette information into
account.

By directly working on a triangle mesh we are
able to obtain more spatial coherence than algo-
rithms based entirely on point information, such as
voxel-based methods. This allows us to deal with ob-
jects that have very little structure in some places,
as well as small specular patches.

Keywords: image based modeling, surface recon-
struction, multi view stereo, triangle meshes, visual
hull, mesh deformation, hardware accelerated

1 Introduction

Visual hull algorithms (e.g. [11, 13]) provide a fast
way of extracting approximate shape information
from multiple images. Under the assumption of Lam-
bertian surfaces, these approximate shapes can be re-
fined with voxel coloring [18] and other space carving
methods [10, 19] that make use of color consistency
of points across the images. Unfortunately, these
voxel-based methods have problems in the presence
of larger surface areas with little or no structure or
even small specular patches. Noisy image data also
presents a challenge. These limitations are due to
the use of a very local color consistency test that
does not make use of neighborhood information.

To address these issues, researchers have looked
into cross-correlation of color values in some local
neighborhood representing a continuous approxima-
tion of the target shape. The work in this area can

roughly be grouped into two categories: methods
based on triangle meshes, and methods based on
level sets. Both approaches have their distinct ad-
vantages and disadvantages: level set methods [4, 20]
easily handle topology changes and thereby avoid
self intersections. Mesh-based approaches, on the
other hand, are more suitable for adaptive refine-
ment. They start with an initial mesh, providing a
rough approximation of the general shape of the ob-
ject, such as a planar grid [5], a sphere [21], or the
visual hull [2, 14, 12, 6, 3]. The mesh is then de-
formed as to maximize the consistency of the shape
with the given images. Because vertex positions in
meshes are not confined to a regular grid, the mesh-
based methods can handle thin structures such as
sheets of cloth (see Figure 5 for an example) more
easily than approaches based on voxels or level sets.

In this paper, we describe a hierarchical, mesh-
based algorithm for extracting geometry from a com-
bination of silhouette and stereo information from
calibrated cameras. We first extract a coarse tri-
angular mesh for the visual hull from silhouette in-
formation. To this end, we develop a new implicit
formulation of the visual hull that we subsequently
convert into a triangle mesh (Section 2). We then
optimize the position of all vertices in the mesh tak-
ing stereo information into account. For this step
we develop a cost function for the location of every
vertex that is based on color consistency on the fan
of triangles surrounding that vertex. In addition to
color consistency, we take visibility and mesh qual-
ity (both smoothness and triangle shape) into ac-
count, and prevent interpenetrations. We also make
sure that the optimization process preserves the sil-
houettes in the images by preventing the mesh from
growing beyond the silhouette, but also from shrink-
ing away from it. The details of the cost function
are presented in Section 3. Based on this cost func-
tion, we then perform a hierarchical optimization,
where we recursively subdivide the mesh once the
positions for the coarser mesh resolution start to con-
verge (Section 4). Finally, to make all this feasible,

we utilize 3D graphics accelerators for helping with
the evaluation of the cost function (Section 5).

By employing this triangle-based approach, we
can obtain good geometry even for objects that have
virtually no structure in some areas. In contrast
to voxel-based approaches, a small number of fea-
tures or a slight gradient within the triangle fan
around a vertex is sufficient to optimize the posi-
tion of that vertex (although additional features do
help in practice). Because we also employ a hierar-
chical approach, we can still represent fine details in
areas where enough structure is available. In con-
trast to other mesh-based algorithms, our approach
combines the correct treatment of occlusions, the use
of silhouette information in the optimization stage,
prevention of self-intersections, and hierarchical sub-
division. While most other methods evaluate color
consistency and visibility only at points during the
mesh optimization (or even ignore the visibility), we
integrate over a local region of the surface, yielding
a more robust optimization process with fewer local
minima.

The inclusion of the cost term that forces the
mesh to maintain the original silhouette proves es-
sential for dealing with objects that have large areas
of very little structure, since it counters the tendency
of the smoothing term (similar to curvature flow in
level set methods) to excessively shrink the mesh in
these areas.

2 The Visual Hull

As the starting point for our mesh-based optimiza-
tion method we use a triangle mesh generated from
silhouette information. There are several approaches
available that generate a triangle mesh for the vi-
sual hull directly by intersecting polygonal silhou-
ette cones (e.g. [13]). Unfortunately, the meshes
produced by these algorithms tend to be unsuit-
able for our purposes, since they contain many long,
skinny triangles, and triangles of strongly varying
size. These meshes are also not water-proof, in gen-
eral.

We therefore developed a new way of generating
an approximate triangle mesh of the visual hull by
using an implicit formulation of the silhouette cones.
The visual hull is described by the Boolean opera-
tions

VH =
⋂
i

[(⋃
l∈OCi

Ci,l

)
∩

(⋂
m∈HCi

Ci,m

)]
, (1)

where OCi is the set of outer object contours in im-
age i, HCi is the set of hole contours and Ci,j is the
silhouette cone for contour j in image i.

Figure 1: Visual Hull as the intersection of 3 contour
cones

Our implicit formulation makes it straightforward
to express these operations. On every point of a voxel
grid, we can compute the signed distance function
D(V,x,d), which represents the distance of a point
x from the boundary of a volume V along direction
d (where d is any of the three coordinate axes in our
case). The distance is negative inside the volume,
and positive outside. We can compute D(Ci,j ,x,d),
the signed distance of any point from the silhouette
cone Ci,j efficiently by projecting x and d into image
i and performing a 2D ray intersection with contour
j. The sign of the result is determined by a point in
polygon test.

The directed distance function for the visual hull
can then be expressed by transforming the Boolean
operations from Equation 1 into min/max opera-
tions:

D(VH,x,d) = max
i

[max(D(Oi,x,d), D(Hi,x,d))]

with
D(Oi,x,d) = min

l∈OCi

D(Ci,l,x,d)

D(Hi,x,d) = max
m∈HCi

D(Ci,m,x,d)

To generate a triangle mesh from this represen-
tation, we sample this implicit function at a regular
voxel grid, and apply the extended marching cubes
algorithm [8], which makes use of the signed distance
function to preserve sharp features.

Note that the resulting mesh is not the exact vi-
sual hull, and that it also is not conservative (i.e.
it does not necessarily enclose the true visual hull
or the actual object) because of the discretization:
only feature sizes larger than the voxel spacing will
be captured. This is not a big concern in our ap-
plication, since we only use the resulting mesh as a
starting point for an optimization. It does mean,
however, that our optimization algorithm will also
have to consider locally growing the object instead

of just carving parts away. For objects that have a
lot of detail in some places, but are smooth in other
areas, we can also create the visual hull surface at a
high resolution initially, but then use polygonal sim-
plification to reduce the complexity in the smooth
areas before going to the next step of our algorithm.

3 Cost Function

The triangle mesh computed in the first stage repre-
sents a first approximation of the shape of the object.
In the optimization stage, we use both color and sil-
houette information from the images to improve this
initial approximation.

The goal of the optimization is to move the ver-
tices to obtain a mesh that is photo consistent with
the original images. As defined by Kutulakos and
Seitz [10], this requires that two conditions are met:

• The projection of the mesh exactly covers the
silhouettes of the object in all images.

• A radiance function can be assigned to every
point on the mesh, which is consistent with the
color information in every image that sees this
point.

For Lambertian materials it follows that each point
on the mesh has to project to pixels of the same
color in all images in which that surface point is
not occluded. Reversing the direction of projection,
this means that the color information in all images,
projected onto the mesh, must be consistent on the
mesh’s surface. We use graphics accelerators to per-
form this occlusion aware projection of the images
onto the mesh (see Section 5). At the same time we
also enforce consistency with the silhouettes, avoid
interpenetrations, and include regularization terms
for curvature and triangle shape for improved sta-
bility. All these aspects are combined into a single
function describing the cost of any vertex v in de-
pendence of its position:

E(v) =
λiEi(v) + λsEs(v) + λdEd(v) + λcEc(v) + Ep(v),

where Ei measures the inconsistency of the in-
tensity/color information in a neighborhood of the
vertex. Es associates a cost for the difference be-
tween the object’s and the mesh’s silhouettes in the
images with the vertex. Ed measures the distortion
(skinniness) of triangles and Ec the local curvature
of the mesh. Ep is a penalty associated with self-
penetration of the mesh. The λs are user defined
weights. In general, they are chosen so that Ei and
Es dominate. The individual terms are described in
more detail in the following.

3.1 Color Term
We measure the inconsistency of the color informa-
tion from the different images for the neighborhood
of a given vertex v by using a criterion similar to the
one introduced by Fua and Leclerc [5]. We sample
the surface and then for each sample xj first average
the color information in the images that see xj :

Ī(xj) =
∑n

i=1 si(v)γi(xj)Mi(ξi(xj))Ii(ξi(xj))∑n
i=1 si(v)γi(xj)Mi(ξi(xj))

,

where si(v) is the sampling rate at which image i
samples the triangle fan around v and γi is the vis-
ibility function for image i; it is 1 if the sample is
visible in image i and 0 otherwise. ξi is the projec-
tion that maps from world space to the image space
of image i, and Mi is the binary silhouette image.
The value of Mi is 1 for object pixels and 0 for back-
ground pixels. Finally, Ii denotes the color informa-
tion in image i.

The contributions of the images are weighted by
their sampling rate (image pixels per mesh area) for
this part of the mesh. The error for each sample is
then taken to be the sum of the squared differences
between the color in the individual images and the
average color, again weighted by the sampling rates:

e(xj) =∑n
i=1 si(v)γi(xj)Mi(ξi(xj))[Ii(ξi(xj)) − Ī(xj)]2∑n

i=1 si(v)γi(xj)Mi(ξi(xj))
.

To generate the sample locations, we first deter-
mine the largest sampling rate for the triangles ad-
jacent to v in any of the images which actually see
this part of the mesh. We then sample the triangle
fan around v accordingly using this rate. Given the
e(xj) for all samples, Ei is then computed as

Ei =
1

|V m|
∑

j∈V m

e(xj),

where V m is the set of samples that are visible in
multiple images.

3.2 Silhouette Mismatch
The term Es penalizes a mismatch between the sil-
houettes of the current mesh and the actual object
silhouettes. A penalty is associated with vertex v, if
that vertex is assumed to be (at least partially) re-
sponsible for this difference. Es is composed of two
contributions

Es = λ>
s E>

s + λ<
s E<

s ,

where E>
s penalizes the mesh growing outside the

original silhouettes, whereas E<
s indicates shrinkage

Figure 2: From left to right: original image, silhouette mask, outside distance field Di, and inside distance
field di(v).

that results in the mesh’s silhouette being smaller
than the true object silhouette. The λs are user de-
fined weights.

As no part of the mesh is allowed to project out-
side the original objects silhouette, it is straightfor-
ward to determine which vertices are in violation of
this condition. We use the same sampling as de-
scribed in Section 3.1 and define a distance field Di

for each image, which encodes the distance from the
object’s contour in image space. Its value is 0 inside
the contour and linearly increasing outside. E>

s is
then computed as

E>
s =

1
ns · n

ns∑
j=1

n∑
i=1

Di(ξi(xj)),

where ns is the number of samples, so that the num-
ber of samples outside the silhouette, weighted by
their distance to it, forms the cost of the vertex.

Similarly, for E<
s , we define a distance field di(v)

inside the silhouettes, which measures the distance
of a point in image space from the object’s contour.
Its value linearly increases from 0 on the contour to
1 on the inside. We compute E<

s for each vertex v
as

E<
s = min

i
di(ξi(v)).

This term causes the mesh’s vertices to be at-
tracted to the closest contour cone. However, not all
vertices are required to lie on a contour cone. Photo
consistency only requires that every part of the real
silhouette from every image is covered by the projec-
tion of some part of the mesh. For this reason, we
choose λ<

s to be small compared to λi, so that the
E<

s term is clearly dominated by Ei in textured areas
of the object. In areas without color variation how-
ever, this term effectively keeps the mesh close to the
visual hull surface and prevents it from shrinking.

3.3 Curvature
We use a mesh based measure for the local curvature
in the neighborhood of vertex v. For all vertices in a
1-ring neighborhood around v, we compute the sum
of the dihedral angles across the edges adjacent to
them. Ec is then taken to be the average of these
angles. As a consequence, Ec depends on the posi-
tion of vertices in a 2-ring neighborhood of v. This
measure has the advantage that it is more efficient
to compute than for example a curvature measure
based on polynomial interpolants, and it is also in-
dependent of local parameterizations.

3.4 Triangle Distortion
For the stability of the optimization algorithm, but
also for the quality of the resulting mesh, it is es-
sential to prevent degenerate triangles. We use the
following triangle quality measure, which is based on
the Frobenius norm of the triangle edge matrix [15]:

τ =
a2 + b2 + c2

4
√

3A
− 1,

where a,b and c are the lengths of the triangles edges
and A is the area of the triangle. For an equilateral
triangle the value of this measure is 0. For degenerate
triangles it approaches infinity. In combination with
the color consistency term, the distortion term tends
to push vertices sideways across the surface, so that
the overall geometric shape remains unchanged, but
the distribution of vertices on the geometry is rela-
tively uniform. To compute Ed for a vertex v, we
average the τ values for the triangles adjacent to v.

3.5 Self Intersection
During the optimization it is possible for originally
distinct parts of the mesh to approach each other

and intersect. While it would be possible to adapt
the topology of the mesh accordingly [1], we assume
that the topology of the object has been correctly
established by the visual hull computation. Thus,
we penalize self intersections by associating a very
large cost with them. After vertex v has been moved
during the optimization, we test the adjacent edges
and triangles for intersection with parts of the mesh
that are close in 3D space. We use an axis-aligned
bounding box (AABB) tree to efficiently determine
a small subset of the triangles in the mesh that have
to be tested for interpenetration.

4 Optimization Procedure

The actual optimization procedure consists of two
parts: given an initial mesh, we first optimize the
vertex positions to minimize the total cost function
across all vertices

E =
nv∑

v=1

E(v),

where nv is the number of vertices in the mesh. Once
the average local improvement drops below a given
threshold we refine the mesh using

√
3-subdivision

[7] and start optimizing the higher resolution mesh.
This is repeated until the desired degree of detail has
been reached.

At every mesh resolution, we have 3nv degrees
of freedom, where nv is typically fairly large. It is
therefore impractical to solve for all unknowns in a
global optimization approach similar to [17]. We
thus perform local optimization for one vertex at
a time, iterating over all vertices until convergence,
or until a certain maximum of iterations has been
reached. The local optimization is implemented us-
ing the downhill simplex method [16]. This method
moves the selected vertex v at each iteration and
evaluates E(v) at the new position. As E(v) depends
not only on the position of v, but also on those of
its neighbors and potentially any other vertex in the
mesh, it does not make sense to run the local op-
timization until convergence. Instead, we terminate
once the step size of the simplex method gets small
enough (smaller than a fixed fraction of the average
length of the edges connected to v).

While we could simply process the vertices in or-
der, we exploit the fact that the interdependencies
between vertex positions due to visibility and cur-
vature are mostly local, and prioritize vertices ac-
cordingly. We choose an approach that takes into
account that the interdependencies between the ver-
tices are mainly, but not exclusively local. After
a vertex has been moved a substantial amount, it

therefore makes sense to first optimize the positions
of its neighbors. This is especially true if the change
in position resulted in a large improvement of the
cost function, since then it is likely that a similarly
large improvement is possible for adjacent vertices.
At the same time, we also have to make sure all ver-
tices are visited eventually. To this end, we organize
the vertices in a priority queue and update their pri-
orities as follows: processed vertices are inserted into
the queue with an initial priority that is linearly de-
creasing over time. This is equivalent to increasing
the priority of all unprocessed vertices and ensures
that each vertex will be processed eventually. After
optimizing the position of a vertex, we furthermore
increase the priority of all its neighbors proportional
to both the moved distance and the achieved im-
provement in terms of the cost function.

5 Utilizing Graphics Hardware

The cost function (see Section 3) contains several
terms that are expensive to compute. As the cost
has to be calculated multiple times during each of
the local optimization steps, it is crucial to evaluate
it efficiently. To this end, we utilize the computing
power and specialized features of graphics accelera-
tors by expressing some of the computations involved
in terms of OpenGL operations.

One especially expensive part is the computation
of color consistency Ei in the presence of possible
occlusions. We implement the sampling of the tri-
angle fan as well as the occlusion aware projection
of color information from the different images onto
the mesh using hardware accelerated operations. To
sample the surface around vertex v, we render the tri-
angle fan around v into an orthographic view, look-
ing onto the fan along the estimated surface normal.
The scale of the projection is chosen such that the
sampling rate of the triangles matches the maximum
sampling rate in the original images. For each im-
age that could potentially see the triangle fan (given
the triangle normals and the viewing directions of
the image’s camera) we then generate a shadow map
that encodes the occlusion information. The AABB
tree already mentioned in Section 3.5 can be used
to restrict the geometry to relevant parts during the
creation of this map.

In addition to the shadow map, we also store the
color and contour information of the original image
in the RGB and alpha channels of a texture. This
allows us to project the color information onto the
triangle fan using texture mapping. By combining
shadow mapping and the contour information in the
alpha channel we then can identify all samples that
are both unoccluded and project to the inside of the

Figure 3: Stuffed puppy mesh before and after optimization. The blurriness of the texture on the original
mesh indicates stereo misalignments due to geometric error.

contour in the given image, giving us the terms γi,
Mi, and Ii for each sample.

At basically no additional cost the same process
also provides us with the distances Di(ξ(xj)) and
di(ξ(v)) required to compute Es. To this end, we
store an Euclidean distance map (instead of a binary
contour mask) in the alpha channel of the textures.
This map encodes the distances from the contour
(both inside and outside) as described in Section 3.2
and is computed in a preprocessing step using the
technique described in [9].

After rendering the triangle fan in this fashion,
we read out the framebuffer, and compute the actual
error terms Ei and Es in software.

6 Results

We tested our method with several datasets from
which we will show results in the following. The
first data set is a stuffed puppy, of which we took
32 images. The visual hull surface generated from
the silhouettes consisted of 2808 triangles. To illus-
trate the reconstruction quality, we show the meshes
texture-mapped, where the texture of every trian-
gle is generated by averaging the projected color
information from all images that see that triangle.
This way, blurry results demonstrate geometric er-
ror, since they indicate a misalignment between the
projected information from different images.

Figure 3 shows the mesh before and after our op-
timization procedure. The blurriness of the texture

on the visual hull image demonstrates the geometric
error in that mesh. After the optimization, the tex-
tures line up very well, indicating a high-quality re-
construction. Note that even small specular patches
such as the eyes and the tip of the nose do not throw
the algorithm off.

Our second example, the Tux mascot, has large
areas with very little visual structure. In particular,
the head is too dark to show any significant shading
effect that could be used as an aid in reconstruction.
But also fairly large chunks of the cloak and the feet
are solid-colored, and the shading is not always dis-
tinctive enough. Tux, just like the stuffed puppy,
has plastic eyes that can produce specular highlights
from certain angles. We took 34 images of this ob-
ject.

Figure 4 shows the progression of the algorithm
for this data set. From left to right, we see the visual
hull surface, the optimization thereof (both 512 tri-
angles), and two levels of subdivided and optimized
meshes at 1536 and 4608 triangles.

Like the stuffed puppy data, the results show sig-
nificant improvements as the algorithm progresses,
yielding better and better texture alignment by suc-
cessively shaping smaller features like the rim of the
hat, and producing significant concavities such as the
space between the belly and the cape. The cape itself
is a very thin structure that our triangle based algo-
rithm represents quite well without requiring exces-
sive detail in other areas. Figure 5 shows the triangle

Figure 4: Progression of the optimization algorithm (left to right): visual hull, optimization at original
resolution, and two refined levels.

mesh for the cape in a close-up.
Finally, we performed experiments to determine

the importance of the term that avoids silhouette
shrinkage. To this end, we ran the algorithm on the
Tux data set with and without this term. As shown
in Figure 6, the omission of the term results in signif-
icant shrinkage of the head area, in which the avail-
able information is simply insufficient for the color
consistency term to take effect. Other areas that are
affected are the right foot and some parts of the cape
and hat.

7 Conclusion

In this paper we have presented a mesh-based ap-
proach for shape recovery based on silhouette and
multiple stereo information. Our approach combines
the correct treatment of occlusions, the use of sil-
houette information in the optimization stage, pre-
vention of self-intersections, and hierarchical subdi-

vision. Our new cost term for preventing shrinkage of
the mesh away from the contours proves essential for
dealing with objects containing large areas with very
little structure. Using our mesh-based approach, we
were also able to recover very thin structures that
would have required fairly large volume resolutions
in level set methods.

References

[1] Y. Duan and H. Qin. A novel modeling algorithm for
shape recovery of unknown topology. In International
Conference on Computer Vision 2001, pages 402–409,
2001.

[2] C. H. Esteban and F. Schmitt. Multi-stereo 3D ob-
ject reconstruction. In International Symposium on 3D
Processing, Visualization, and Transmission, pages 159–
167, 2002.

[3] C.H. Esteban and F. Schmitt. Silhouette and stereo fu-
sion for 3d object modeling. In Proc. 3-D Digital Imaging
and Modeling, 2003, pages 46–53, 2003.

Figure 5: A close-up of the thin geometry represent-
ing the cape (also see Figure 4 for textured version).

Figure 6: Optimization with (left) and without
(right) the term that prevents shrinkage.

[4] O. Faugeras and R. Keriven. Variational principles, sur-
face evolution, PDEs, surface level set methods and the
stereo problem. IEEE Transactions on Image Process-
ing, 7(3):336–344, 1998.

[5] P. Fua and Y. Leclerc. Object-centered surface recon-
struction: combining multi-image stereo shading. In Im-
age Understanding Workshop, pages 1097–1120, 1993.

[6] J. Isidoro and S. Sclaroff. Stochastic refinement of the
visual hull to satisfy photometric and silhouette consis-
tency constraints. In Proc. IEEE International Conf. on
Computer Vision (ICCV), pages 1335–1342, 2003.

[7] L. Kobbelt.
√

3 subdivision. In Siggraph 2000, Computer
Graphics Proceedings, Annual Conference Series, pages
103–112, 2000.

[8] L. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel.
Feature-sensitive surface extraction from volume data. In
Proc. of Siggraph, pages 57–66, 2001.

[9] M. N. Kolountzakis and K. N. Kutulakos. Fast compu-
tation of the euclidean distance map for binary images.
Information Processing Letters, 43:181–184, 1992.

[10] K. Kutulakos and S. Seitz. A theory of shape by space
carving. International Journal of Computer Vision,
38(3):199–218, 2000.

[11] A. Laurentini. The visual hull concept for silhouette-
based image understanding. PAMI, 16(2):150–162,
February 1994.

[12] T. Matsuyama, X. Wu, T. Takai, and S. Nobuhara.
Real-time generation and high fidelity visualization of 3d
video. In Proc. of MIRAGE2003, pages 1–10, 2003.

[13] W. Matusik, C. Buehler, and L. McMillan. Polyhedral
visual hulls for real-time rendering. In Rendering Tech-
niques ’2001, pages 115–126, 2001.

[14] J. Neumann and Y. Aloimonos. Spatio-temporal stereo
using multi-resolution subdivision surfaces. International
Journal of Computer Vision, 47(1/2/3):181–193, 2002.

[15] P. Pebay and T. Baker. A comparison of triangle quality
measures. In Proceedings to the 10th International Mesh-
ing Roundtable, pages 327–340. Sandia National Labora-
tories, Oct 2001.

[16] W. Press, B. Flannery, S. Teukolsky, and W. Vetterling.
Numerical Recipes: The Art of Scientific Computing.
Cambridge University Press, 1992.

[17] A. Rockwood and J. Winget. Three-dimensional object
reconstruction from two-dimensional images. Computer-
Aided Design, 29(4):279–285, 1997.

[18] S. Seitz and C. Dyer. Photorealistic scene reconstruction
by voxel coloring. International Journal of Computer
Vision, 25(3):1067–1073, November 1999.

[19] G. Slabaugh, W. B. Culbertson, T. Malzbender, and
R. Schafer. A survey of volumetric scene reconstruction
methods from photographs. In Proc. of Volume Graphics,
pages 81–100. Springer Computer Science, June 2001.

[20] G. Slabaugh, R. Schafer, and M. Hans. Multi-resolution
space carving using level sets methods. In International
Conference on Image Processing (ICIP), 2002.

[21] L. Zhang and S. Seitz. Image-based multiresolution mod-
eling by surface deformation. Technical Report CMU-RI-
TR-00-07, Carnegie Mellon University, March 2000.

