
A Unified Approach to
Prefiltered Environment Maps

Jan Kautz† Pere-Pau Vázquez? Wolfgang Heidrich† Hans-Peter Seidel†

Max-Planck-Institut für
Informatik†

Saarbrücken, Germany

Institut d’Informàtica i
Aplicacions – UdG?

Girona, Spain

Abstract. Different methods for prefiltered environment maps have been pro-
posed, each of which has different advantages and disadvantages. We present a
general notation for prefiltered environment maps, which will be used to classify
and compare the existing methods. Based on that knowledge we develop three
new algorithms: 1. A fast hierarchical prefiltering method that can be utilized
for all previously proposed prefiltered environment maps. 2. A technique for
hardware-accelerated prefiltering of environment maps that achieves interactive
rates even on low-end workstations. 3. Anisotropic environment maps using the
Banks model.

1 Introduction

Environment maps [3] are a widely used technique to approximate reflections in inter-
active rendering. Although environment maps make the assumption that the reflected
environment is far away — thus being an approximation — they often nevertheless
achieve convincing reflections.

Recently environment maps have been introduced as a means to render glossy re-
flections [5, 7, 8, 9, 11]. All of these methods prefilter a given environment map with
either a fixed reflection model [7, 8, 9] or a certain class of BRDFs (bidirectional re-
flectance distribution functions) [5, 11]. Although these methods are similar, they have
different strengths and weaknesses, which are worthwhile to discuss. In order to be
able to compare these methods we present a general notation of prefiltered environ-
ment maps, which allows us to classify and contrast all the well-known prefiltering
techniques.

Based on the insights we have gained from this comparison we have developed three
new techniques:

1. A general fast hierarchical prefiltering method that can be used to compute all
known types of prefiltered environment maps, and which is much faster than
brute force prefiltering.

2. A hardware-accelerated prefiltering method that prefilters environment maps at
interactive rates even on low-end workstations. It works for all reflectance models
that translate to constant and radially symmetric filter kernels (like the Phong
model [18] or approximations with the said properties [11]).

3. An anisotropic environment map. We use the Banks model [1] to create an
anisotropic prefiltered environment map.

After a brief discussion of related work, we introduce our general notation of pre-
filtered environment maps and classify the previously proposed prefiltered environment
map techniques with regard to that general notation in Section 4. This leads to our new
environment map algorithms presented in Section 5. Section 6 concludes the paper with
a discussion of the new techniques.

2 Related Work

The environment maps technique to produce mirror-like reflections on curved objects
was first introduced by Blinn and Newell [3]. This is the basis on which most environ-
ment map methods — including ours — are based on [5, 7, 8, 9, 11]. We will discuss
these techniques in great detail in Section 4.

Since environment maps are defined over the sphere, a way has to be found to repre-
sent them in two dimensional textures. A commonly used format in software renderers
are cube maps, which now also start becoming supported by graphics hardware. A
spherical parameterization, which is directly supported by OpenGL, was introduced
by Blinn and Newell [3]. Heidrich and Seidel [10] proposed dual paraboloid map-
ping which uses two texture maps, one for the front facing hemisphere and one for the
backfacing. This parameterization is now also supported by a variety of newer graphic
boards.

Other techniques have been proposed for the interactive rendering of glossy re-
flections, which are not based on environment maps. Diefenbach and Badler [6] used
multi-pass methods (Monte Carlo integration) to generate glossy reflections. Photon
maps were used by Stürzlinger and Bastos [20]; photons were “splatted” and weighted
with an arbitrary BRDF. Miller et al. [15] stored precomputed glossy reflections in sur-
face light fields. Bastos et al. [2] used a convolution filter in screen-space to produce
glossy reflections. Lischinski and Rappoport [13] used a large collection of low resolu-
tion layered depth images to store view-dependent illumination.

3 General Prefiltered Environment Maps

Generally speaking, prefiltered environment maps capture all the reflected exitant radi-
ance towards all directions ~v from a fixed position x:

Lglossy(x;~v, ~n,~t) =

∫

Ω

fr(~ω(~v, ~n,~t), ~ω(~l, ~n,~t))Li(x;~l) < ~n,~l > d~l, (1)

where ~v is the viewing direction and ~l is the light direction in world-space, {~n,~t, ~n×~t}
is the local coordinate frame of the reflective surface, ~ω(~v, ~n, ~t) represents the viewing
direction and ~ω(~l, ~n,~t) the light direction relative to that frame, fr is the BRDF, which is
usually parameterized via a local viewing and light direction. A prefiltered environment
map stores the radiance of light reflected towards the viewing direction ~v, which is
computed by weighting the incoming light Li from all directions ~l with the BRDF fr.
Note, that Li can be viewed as the unfiltered original environment map. This map
should use high-dynamic range radiance values to be physically correct. As you can
see, in the general case we have a dependence on the viewing direction as well as on
the orientation of the reflective surface, i.e. the local coordinate frame {~n, ~t, ~n× ~t}.

This general kind of environment map is five dimensional. Two dimensions are
needed to represent the viewing direction ~v (a unit vector in world coordinates) and

three dimensions are necessary to represent the coordinate frame {~n, ~t, ~n×~t}; e.g. three
angles can be used to specify the orientation of an arbitrary coordinate frame.

The prefiltered environment maps which we will examine usually drop some depen-
dencies (e.g. on the tangent ~t) and are often reparameterized (e.g. indexing is not done
with the viewing direction ~v, but the reflected viewing direction).

4 Classification of Known Techniques

In this section we will classify diffuse environment maps [14], Phong environment maps
[9, 14], and environment maps prefiltered with isotropic BRDFs [5, 11]. Note that we
will define the BRDFs using global viewing and light directions.

Diffuse Environment Maps. Miller [14] has proposed to use a purely diffuse BRDF
to prefilter environment maps. A diffuse BRDF can be written as:

fr(~v,~l) := kd,

where kd ∈ [0, 1] describes the absorption of the surface. Moving this into Equation 1,
we get:

Ldiffuse(x;~v, ~n,~t) =

∫

Ω

kdLi(x;~l) < ~n,~l > d~l.

We can drop all dependencies except the one on the normal ~n and we get the following
two dimensional environment map:

Ldiffuse(x;~n) = kd

∫

Ω

Li(x;~l) < ~n,~l > d~l.

This environment map accurately stores the diffuse illumination at the point x. It is
only two-dimensional and it is indexed by the surface normal.

Phong Environment Maps. Heidrich [9] and Miller [14] used the original Phong
model [18] to prefilter environment maps. The Phong BRDF is given by:

fr(~v,~l) := ks

< ~rv(~n),~l >N

< ~n,~l >
,

where ~rv(~n) = 2(~n · ~v)~n − ~v is the reflected viewing-direction in world-space. The
parameters ks and N are used to control the shape and size of the lobe. Using the Phong
model, the Equation 1 becomes

Lphong(x;~v, ~n,~t) =

∫

Ω

ks

< ~rv(~n),~l >N

< ~n,~l >
Li(x;~l) < ~n,~l > d~l

= ks

∫

Ω

< ~rv(~n),~l >N Li(x;~l) d~l.

Obviously the tangent ~t is not used and can be discarded. Instead of indexing the en-
vironment map with ~v and ~n, it can be reparameterized so that it is directly indexed by
the reflection vector ~rv :

Lphong(x;~rv) = ks

∫

Ω

< ~rv ,~l >N Li(x;~l) d~l.

Although the Phong model is not physically based, the reflections make a surface
look metallic, only at glancing angles one expects sharper reflections. This indexing via
the reflection vector ~rv is the one used to access environment maps without prefilter-
ing and is therefore supported in OpenGL via the spherical, parabolic and cube map
parameterizations.

Miller [14] and Heidrich [9] proposed to use a weighted sum of a diffuse and a
Phong environment map to get a complete illumination model. They also propose to
add a Fresnel term so that the ratio between the diffuse and glossy reflections can vary
with different viewing angles:

Lo(~rv , ~n) = Fd(< ~rv, ~n >)Ldiffuse + Fp(< ~rv , ~n >)Lphong (2)

This way a wider range of materials can be created.

Environment Maps with Isotropic BRDFs – I. Kautz and McCool [11] extended
the Phong environment maps idea to other isotropic BRDFs by approximating it with a
special class of BRDFs:

fr(~v,~l) := p(< ~n,~rv(~n) >, < ~rv(~n),~l >),

where p is an approximation to a given isotropic BRDF, which is not only isotropic, but
also radially symmetric about ~rv(~n) = 2(~n · ~v)~n − ~v, and therefore only depends on
two parameters.

Now consider Equation 1 using this reflectance function:

Lisotropic(x;~v, ~n,~t) =

∫

Ω

p(< ~n,~rv(~n) >, < ~rv(~n),~l >)Li(x;~l) < ~n,~l > d~l.

Then the authors make the assumption that the used BRDF is fairly specular, i.e. the
BRDF is almost zero everywhere, except when ~rv(~n) ≈ ~l. Using this assumption they
reason that < ~n,~rv(~n) > ≈ < ~n,~l >. Now the equation can be reparameterized and
rewritten the following way:

Lisotropic(x;~rv , < ~n,~rv >) = < ~n,~rv >

∫

Ω

p(< ~n,~rv >, < ~rv ,~l >)Li(x;~l) d~l,

which is only three dimensional. They also proposed to use the following approxima-
tion to a given isotropic BRDF:

fr(~v,~l) := F (< ~n,~rv(~n) >)p(< ~rv(~n),~l >).

This approximates a BRDF with a constant lobe (defined by p) that is scaled by a factor
which depends on the angle between ~n and ~rv(~n). An environment map prefiltered with
this model is only two dimensional:

Lisotropic(x;~rv , < ~n,~rv >) = < ~n,~rv > F (< ~n,~rv >)

∫

Ω

p(< ~rv ,~l >)Li(x;~l) d~l.

It is two dimensional only, because the dependence on < ~n,~rv > can be moved outside
the integral. It is sufficient to multiply the two factors onto the prefiltered environment
map during rendering.

This technique has the big advantage that it can use approximations of arbitrary
isotropic BRDFs and achieves interactive frame rates. Off-specular peaks can also be
incorporated into this technique. An additional Fresnel factor like Miller [14] and Hei-
drich [9] proposed is not needed because real physically based BRDFs can be used. The
2D approximation is directly equivalent to Phong prefiltered environment maps with a
separate Fresnel factor, but a more generally shaped lobe is used and the Fresnel fac-
tor was computed from a real BRDF. In contrast to that, the 3D approximation does
not compute a separate Fresnel factor, instead it is incorporated into the approximation,
which allows to vary the shape of the lobe not only with a scale factor.

Depending on the BRDF, the quality of the approximation varies. For higher qual-
ity approximations Kautz and McCool also propose to use a multilobe approximation,
which basically results in several prefiltered environment maps which have to be added.

For instance, if a BRDF is to be used, which is based on several separate surface
phenomena (e.g. has retro-reflections, diffuse reflections, and glossy reflections) each
part has to be approximated separately, since no radially symmetric approximation can
be found for the whole BRDF. This again corresponds to the technique by Miller or
Heidrich, just that it is based on a real BRDF, see Equation 2.

Environment Maps with Isotropic BRDFs – II. Cabral et al. [5] use a similar tech-
nique, which also assumes an isotropic and radially symmetric BRDF. They prefilter
an environment map for different fixed viewing directions, resulting in view-dependent
environment maps. In contrast to the previous approach, they actually use a four di-
mensional environment map:

Lisotropic2(x;~v, ~n) =

∫

Ω

p(< ~n,~rv >, < ~rv ,~l >)Li(x;~l) < ~n,~l > d~l

This four dimensional environment map is sparsely sampled in ~v. A two dimensional
spherical map is extracted from this four dimensional map for every new viewpoint.
This map corresponds to one specific viewing direction and is generated using warping.
This new view-dependent environment map is then applied to an object. The warping
compensates for the undersampled viewing directions, and no visible artefacts occur.

This method can also use approximations of arbitrary isotropic BRDFs. Using a
sparse four dimensional environment map makes it unnecessary to approximate the
factor < ~n,~l >. The necessary warping requires high-end graphics hardware to achieve
interactive frame rates.

Warping is done based on an assumption what the central reflection direction of the
BRDF is (the reflected viewing direction and the surface normal are mentioned). This
assumption fails for BRDFs that have off-specular reflections.

Since radially symmetric BRDFs are used, this method has the same difficulties
with complex BRDFs as the previous method. Different contributions which add to a
BRDF have to be decomposed into their components (e.g. diffuse contribution, glossy
contribution, ...), otherwise this technique fails (just like the previous one).

As mentioned before the generated two dimensional environment map is view-
dependent, so the reflective object needs to be viewed with an orthographic projection
or otherwise the reflections are incorrect, since the reflection directions are computed
based on an infinite viewer.

5 New Algorithms

5.1 Fast Hierarchical Prefiltering

All the methods we discussed in Section 4 need a way to prefilter environment maps.
Brute force methods are effective but prohibitively slow. We propose a fast hierarchical
method, which can be used to filter all types of prefiltered environment map techniques.

source environment map

filter kernel

environment map
dual paraboloid

source environment on spheretarget environment map

pixel to be computed

apply filter

Fig. 1. Filtering of an environment map. A pixel in the target environment map is computed
by applying a filter to the source environment map. Both are usually given in a representation
like the dual paraboloid map. The filter which is defined on the sphere has to be projected to the
environment map space.

Prefiltering of environment maps can be seen as the application of a space variant fil-
ter. Every pixel (p1, p2, . . .) in the (possibly more than two dimensional) target environ-
ment map E(x; p1, p2, . . .) — i.e. the one that we are creating — is a weighted sum of
all the pixels of the given specular environment map Li(x;~l); see Figure 1. This weight-
ing is given by the two-dimensional Filter F (p1, p2, . . .) := fr(p1, p2, . . . ,~l) < ~n,~l >.
Note, that the support of the filter F is usually over the hemisphere, unlike in Figure 1,
where we used a smaller filter size for demonstration purposes.

The filter F is space-variant because it usually varies for every pixel in the target
environment map for two possible reasons. First, the filter is already space-variant on
the sphere, i.e. for different (p1, p2, . . .) we get a differently shaped filter. Second,
any mapping of the sphere to a rectangular texture domain maps a filter that is space-
invariant over the sphere to a space-variant filter in the environment map representation.

Prefiltering is often done with a brute force technique. For every pixel in the target
environment map, the filter is applied to every single pixel in the source environment
map. This makes the prefiltering process very slow, since e.g. even for a two dimen-
sional target environment map (width × height)2 pixels have to be touched and the
same number of BRDF evaluations has to be performed.

Since the filter kernel is basically a two dimensional slice of a reflection model,
which is usually a smooth function, we can use a hierarchical method instead.

Our hierarchical prefiltering method first generates a mip-map of the source envi-
ronment map using a 2× 2 box filter. The corresponding two-dimensional filter kernel
is generated for every target pixel and a mip-map is built also using a 2 × 2 box filter
(it is actually not necessary to compute the full mip-map, see next paragraph). The
computation of one target pixel works as follows. Both, the filter and the environment

Mip-mapped filter
(dual paraboloid).

Mip-mapped environment
map (dual paraboloid).

*

Level 0

Level 2

Level 1 *

Mip-mapped filter
(upper paraboloid).

Mip-mapped env. map
(upper paraboloid).

Fig. 2. Hierarchical filtering of an environment map. The left side shows the mip-maps for the
filter and for the environment map. The right side shows how the hierarchical filtering works (for
one target pixel). For every value in a mip-map level of the filter (done separately for the upper
and lower paraboloid), the difference to the four values in the next higher level is checked. If it
is below some threshold the value is used and multiplied with the corresponding value from the
environment mip-map. All these contributions are added up and result in a single value for the
target pixel.

map are sampled and mip-mapped in environment map space; see left side of Figure 2.
Instead of directly applying the filter kernel to the source environment map, we first
check if it is sufficient to apply the coarsest level of the filter kernel (i.e. one sample) to
the coarsest level of the source environment map (also one sample). We do this check
by computing the differences to the four corresponding values in the next higher mip-
map level. If this difference is greater than some threshold value, we go to the next
finer level in the mip-map hierarchy and check for each of the four finer-grained parts
of the mip-mapped filter kernel (each is one sample) whether the difference to the next
higher mip-map level is above or below the threshold. If it is above we go again to the
next finer level. If not we apply that part of the mip-mapped filter to the corresponding
value from the mip-mapped environment map and add it to our target pixel value; see
right side of Figure 2. We do this until all parts of the filter have been applied to the
environment map.

The main speed up is due to the fact that the filter is usually very smooth and fades
out quickly from its peak (BRDFs tend to have a slim lobe). Furthermore it is not
necessary to compute the finest mip-map level(s) of the filter, since it is hardly used. If
it is needed, it can either be evaluated on the fly or interpolated from the next coarser
level.

In Figure 2 you can see an example for this algorithm. We have used a dual
paraboloid environment map, which uses two faces, one for the front-facing part of
the environment map and one for the back-facing part.

The right side of Figure 2 shows two steps in the filtering process (for the upper
paraboloid). The differences between the pixel in level 0 and the pixels in level 1 are
too big, so we cannot multiply the pixel of level 0 with the corresponding pixel of the
environment mip-map and use that value, but we have to go to the next level. In level 1
we compute the differences for all four pixels to the pixels from level 2 and find out
that the differences for the two white pixels to next level are below the given threshold,
so we can multiply them with the corresponding pixels from the environment mip-map
and we get the contribution for that region of the environment map. For the other pixels
we have to go the next finer levels of the filter mip-map.

It should be noted that this algorithm is biased, since a given sample is used deter-
mine what it will be used for [12]. For the application of prefiltering environment maps
the introduced bias is not crucial though.

Results. We have validated our algorithm with the Phong model [18] using different
exponents. Filtering a parabolic environment map with 128 × 256 pixels yields the
following results (Pentium II with 350Mhz):

exponent brute force hierarchical speed up
10 413 98 4.2
50 442 83 5.3

100 474 61 7.7
250 545 55 9.9
500 552 39 14.1

The table shows the timings in seconds for the brute force method and our new hier-
archical method. We used a threshold (difference in BRDF values) of 0.001 for the
hierarchical method, which yields the same visual quality as the brute force method,
see Figure 4 (color plates).

We have also tested different sizes of environment maps. The results indicate that
the brute force method has linear complexity in the number of touched pixels, whereas
our hierarchical method is sublinear.

5.2 Hardware accelerated Prefiltering

For interactive applications it would be interesting if environment map prefiltering could
be done on the fly, for example using graphics hardware. This means that if the scene
changes, glossy reflections change accordingly. In this paper, we will only deal with the
accelerated filtering of a given environment map. It has been shown in [19] that envi-
ronment maps can be generated on the fly. Live video capturing of an environment map
is also conceivable. For example the Omnicam [16] directly captures an environment
as parabolic map.

As seen in the previous section, environment map prefiltering always uses a two
dimensional filter kernel, which is shift-variant in general, but depends on the repre-
sentation of the environment map. The OpenGL imaging subset only supports shift-
invariant two dimensional filters of certain sizes [17]. Hence, for hardware accelerated
prefiltering we have to choose an environment map technique that uses only two dimen-
sional environment maps with a BRDF which results in a shift-invariant filter over the
hemisphere, and an environment map representation that keeps the filter shift-invariant.

The Phong model has a shift-invariant filter kernel over the hemisphere, since its co-
sine lobe is constant for all reflected viewing directions ~rv . It is also radially symmetric
about ~rv . The filter size can also be decreased if smaller BRDF values are clamped to
zero (will be necessary due to the restricted filter size of the graphics hardware). The
filter shape is obviously circular, since it is radially symmetric. Therefore Phong envi-
ronment maps fulfill the necessary requirements for hardware accelerated prefiltering.
We still need to find an environment map representation that maps the shift-invariant
circular filter kernel from the hemisphere to a shift-invariant circular filter kernel in
texture space.

It turns out that the dual paraboloid mapping proposed by Heidrich and Seidel [10]
comes close to this desired property. A circular filter kernel which is mapped from
the parabolic environment map back to the hemisphere is also (almost) circular. A
distortion occurs depending on the radius and the position of the filter. To visualize the
distortion, we project a circular filter kernel with a radius of r (r = 1 is half the width
of the parabolic map) from the parabolic map back to the sphere and measure the error;
see right side of Figure 3. We measure how much the distances from the center of the

25%

20%

15%

10%

5%

0%

r

0.4

0.2

0 d

10.80.60.40.20

filter kernel

d: distance from center

dual paraboloid
environment map

of paraboloid to center

r: radius of filter kernel

of filter kernel

Fig. 3. Distortion of a circle when projected from a paraboloid map back to the sphere.

projected circle to its border deviate from a constant radius. The maximum deviation
is used as the error, shown on the left side of the same figure. The distortion depends
on the radius of the filter kernel and also on the distance d of the filter’s center from
the parabolic map’s center (i.e. the center of the front- or backfacing paraboloid). The
distortion goes up to 25% for large radii, but in these cases the prefiltered environment
map will be very blurry, so that the distortion will not lead to visible errors. For smaller
radii the distortion remains fairly small and again no visible artefacts occur.

Although the shape of the filter almost remains the same in the parabolic space, the
radius of the filter kernel varies with the distance d. The ratio between the smallest
filter radius and largest filter radius is about 2. We will overcome this problem by
generating two prefiltered environment maps, one with the smallest (yields map S) and
one with the largest necessary filter size (yields map L). Then we blend between both
prefiltered environment maps. The value with which we need to blend between both
maps is different for different pixels in the parabolic environment map, but it depends
only on the distance d and is always d2. For a pixel in the center of the paraboloid this
means that we use 0% of map L and a 100% of map S; for a pixel with distance d = 0.5
to the center of the parabolic map, we use 25% of map L and 75% of map S, and so on.

Algorithm. The actual algorithm is fairly simple. First we create a mip-map of the
parabolic environment map, then we load the environment map (plus the mip-map) into
texture memory. The user has to specify the Phong exponent to be used and a limit when
BRDF values from the Phong model can be clamped to zero, which is used to restrict
the kernel size in the first place. Then we compute the two necessary filter radii, rs for
the small filter and rl for the large filter. If a kernel size is larger then the maximum
supported OpenGL kernel size, we scale the environment map and the filter by 0.5 until
it is within the supported kernel size. Now we get to the actual filtering part:

1. Set the camera to an orthographic projection (so that we can draw the environ-
ment map seen from the top).

2. Draw alpha texture with d2 to alpha channel
3. For both radii rs and rl:
4. While rs (resp. rl) < hardware supported filter size:
5. Divide rs (resp. rl) by 2. Double the shrink factor.
6. Draw environment map shrunk by the shrink factor (uses mip-mapping).
7. Sample Phong model into the filter.
8. Filter the environment map with it (OpenGL convolution).

9. Store it again as texture map (RGBα texture).
10. Draw environment map S.
11. Blend environment map L with it (using d2).
12. Store again as a texture map.
13. Set up real camera.
14. Draw reflective object with generated environment map.

One problem arises when the center of the filter kernel is close to the border of
the environment map. Part of the filter kernel will be outside the actual environment
map, thus including values from outside the environment map. This can be solved by
including a large border in the environment map.

It should also be mentioned, that the graphics hardware clamps all numbers to
the [0, 1] range, and therefore the original environment map cannot have a high dy-
namic range.

Results. We have tested our algorithm on an SGI O2 where it achieves interactive
rates. All the tests were done with parabolic environment maps with 512×1024 pixels.
The border was 64 pixels in each direction (for each face). The maximum kernel size
we used was 7 (larger kernel sizes considerably degrade the convolution speed on an
O2). We measured the following timings (reflective sphere, 2592 triangles):

exponent filter size shrink factor fps 2-pass fps 1-pass
small large small large

10 174 260 32 64 25 33
50 78 136 16 32 20 33

100 56 100 8 16 16 25
250 36 66 8 16 16 25
500 26 48 4 8 9 11

Please note that filtering was performed for every frame, even though the Phong ex-
ponent did not change. We have included timings for the two-pass convolution (i.e. us-
ing the small and the large filter) and for a one-pass convolution (using only the small
filter). Furthermore we have included the filter sizes in pixels that would have been
required (the BRDF clamp value was set to 0.1) and the necessary shrink factor to get
filter sizes within a maximum size of 7 pixels. You can see that for small Phong expo-
nents hardware prefiltering is very interactive. For larger Phong exponents the rendering
speed is slower, because filtering cannot be done with a shrunk environment map. For
a visual comparison please see Figure 4 (color plates). You can see that the hardware
method generates dark borders, which does not pose a problem since these are not used
for rendering. Figure 5 shows renderings with different environment maps and different
Phong exponents; they all run at interactive rates.

It should be mentioned that the two dimensional approximation to an isotropic
BRDF proposed by Kautz and McCool [11] can also be used, since it also fulfills the
necessary requirements (see beginning of this section). Hence their approximation can
be used to prefilter environment maps with arbitrary isotropic BRDFs in real-time.

5.3 Anisotropic Environment Maps

So far, there has not been an environment map technique that can also be applied to
anisotropic BRDF models. Generally, an anisotropic BRDF depends on many parame-
ters, which then results in a five dimensional environment map, see Section 4.

We need to look for a model which allows to create a lower dimensional environ-
ment map. The Banks model [1], which is simple and depends only on dot products,
yields a three dimensional environment map if self shadowing is excluded. The BRDF
is given by:

fr(~v,~l) :=

(
√

1− < ~l,~t >2

√

1− < ~v,~t >2− < ~l,~t >< ~v,~t > −s

)

1

(1− s)2
,

where we have extended the original Banks model with a new parameter s ∈ [0, 1),
which allows to have sharper highlights. The environment map equation becomes:

Lbanks(x;~v, ~n,~t) =

∫

Ω

(
√

1− < ~l,~t >2

√

1− < ~v,~t >2− < ~l,~t >< ~v,~t > −s

)

1

(1− s)2
Li(x;~l) < ~n,~l > d~l.

To decrease the dimensionality of this environment map, we discard the self-shadowing
term < ~n,~l >, and then reparameterization gives us the following three dimensional
environment map:

Lbanks(x;~t, < ~v,~t >) =

∫

Ω

(
√

1− < ~l,~t >2

√

1− < ~v,~t >2− < ~l,~t >< ~v,~t > −s

)

1

(1− s)2
Li(x;~l) d~l.

Now we have an anisotropic prefiltered environment map. In order to render an object
using this environment map it is necessary to compute the 3D texture coordinates at
every vertex by hand, i.e. the two coordinates of the unit vector ~t and the third coordinate
corresponding to < ~v,~t >. This anisotropic environment map can then be rendered
at interactive rates if the hardware supports three dimensional texturing. In Figure 6
we show a teapot with an anisotropic material, which was done with an anisotropic
prefiltered environment.

Since the self-shadowing term is omitted, an object using this environment map
does reflect light from behind it. This is usually not noticeable unless a bright light
source shines “through”.

6 Conclusions

We have proposed a general notation of prefiltered environment maps, according to
which we have classified previously proposed prefiltered environment map techniques.
We have developed three new techniques. First, we have used a new hierarchical pre-
filtering method which is on average about 10 times faster than a brute force prefiltering
method. Second, we have proposed a hardware accelerated prefiltering method, which
can prefilter environment maps in real-time, if the used reflectance model translates to
a constant and radially symmetric filter kernel. Third, we have proposed an anisotropic
prefiltered environment map using the Banks model.

Future research should investigate the possibility to use difference pyramids first
introduced by Burt and Adelson [4] to further speed-up the hierarchical prefiltering.
Anisotropic environment maps using a constant shaped anisotropic lobe (à la Phong)
should be researched as a possible alternative to the Banks model.

7 Acknowledgements

We would like to thank Jonas Jax and Jeff Heath who put their beautiful environment
maps online. This work was partially supported by the SIMULGEN ESPRIT project
#35772 and by the Universitat de Girona under grant BR98/I003.

References

1. BANKS, D. Illumination in Diverse Codimensions. In Proceedings SIGGRAPH (July 1994),
pp. 327–334.

2. BASTOS, R., HOFF, K., WYNN, W., AND LASTRA, A. Increased Photorealism for Inter-
active Architectural Walkthroughs. In 1999 ACM Symposium on Interactive 3D Graphics
(April 1999), J. Hodgins and J. Foley, Eds., ACM SIGGRAPH, pp. 183–190.

3. BLINN, J., AND NEWELL, M. Texture and Reflection in Computer Generated Images.
Communications of the ACM 19 (1976), 542–546.

4. BURT, P., AND ADELSON, E. A Multiresolution Spline with Application to Image Mosaics.
ACM Transactions on Graphics 2, 4 (October 1983), 217–236.

5. CABRAL, B., OLANO, M., AND NEMEC, P. Reflection Space Image Based Rendering. In
Proceedings SIGGRAPH (August 1999), pp. 165–170.

6. DIEFENBACH, P., AND BADLER, N. Multi-Pass Pipeline Rendering: Realism For Dynamic
Environments . In 1997 ACM Symposium on Interactive 3D Graphics (April 1997), M. Co-
hen and D. Zeltzer, Eds., ACM SIGGRAPH, pp. 59–70.

7. GREENE, N. Applications of World Projections. In Proceedings Graphics Interface (May
1986), pp. 108–114.

8. GREENE, N. Environment Mapping and Other Applications of World Projections. IEEE
Computer Graphics & Applications 6, 11 (November 1986), 21–29.

9. HEIDRICH, W., AND SEIDEL, H. Realistic, Hardware-accelerated Shading and Lighting. In
Proceedings SIGGRAPH (Aug. 1999), pp. 171–178.

10. HEIDRICH, W., AND SEIDEL, H.-P. View-Independent Environment Maps. In Eurograph-
ics/SIGGRAPH Workshop on Graphics Hardware (1998), pp. 39–45.

11. KAUTZ, J., AND MCCOOL, M. Approximation of Glossy Reflection with Prefiltered Envi-
ronment Maps. In Proceedings Graphics Interface (May 2000), pp. 119–126.

12. KIRK, D., AND ARVO, J. Unbiased Sampling Techniques for Image Synthesis. In Proceed-
ings SIGGRAPH (July 1991), pp. 153–156.

13. LISCHINSKI, D., AND RAPPOPORT, A. Image-Based Rendering for Non-Diffuse Syn-
thetic Scenes. In Nineth Eurographics Workshop on Rendering (June 1998), Eurographics,
pp. 301–314.

14. MILLER, G., AND HOFFMAN, R. Illumination and Reflection Maps: Simulated Objects in
Simulated and Real Environments. In SIGGRAPH ’84 Course Notes – Advanced Computer
Graphics Animation (July 1984).

15. MILLER, G., RUBIN, S., AND PONCELEON, D. Lazy Decompression of Surface Light
Fields for Precomputed Global Illumination. In Nineth Eurographics Workshop on Render-
ing (June 1998), Eurographics, pp. 281–292.

16. NAYAR, S. Catadioptric Omnidirectional Camera. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (june 1997).

17. NEIDER, J., DAVIS, T., AND WOO, M. OpenGL - Programming Guide. Addison-Wesley,
1993.

18. PHONG, B.-T. Illumination for Computer Generated Pictures. Communications of the ACM
18, 6 (June 1975), 311–317.

19. SGI. Iris performer. http://www.sgi.com/software/performer/brew/envmap.html.
20. STÜRZLINGER, W., AND BASTOS, R. Interactive Rendering of Globally Illuminated Glossy

Scenes. In Eighth Eurographics Workshop on Rendering (June 1997), Eurographics, pp. 93–
102.

Unfiltered original Classic Hardware 2−pass Hardware 1−passHierarchical

Fig. 4. Comparison of the different filtering methods. Filtering was done with the Phong model
and an exponent of 100. From left to right: Unfiltered, the classic method, our new hierarchical
method, the hardware accelerated method with two and one pass(es). The original environment
map is 128 × 256 pixels in size with a border of 16 pixels.

N = 50. 20 Hz. N = 500. 9 Hz. N = 50. 20 Hz. N = 500. 9 Hz.

Fig. 5. Two scenes rendered with a glossy reflective torus (SGI O2). Filtering is done with the
Phong model (exponent of 50 and 500) for every frame, but interactive rates are still achieved.
The original environment maps are 512 × 1024 pixels in size with a border of 64 pixels.

Fig. 6. The two images on the left, show a teapot with an anisotropic environment map using
the Banks model (s = 0.99). The images on the right show slices of the three dimensional
environment map (for ^(~v,~t) = 44◦, 39◦, 35◦).

