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Abstract. Reflections and refractions are important visual effects that have long
been considered too costly for interactive applications. Although most contem-
porary graphics hardware supports reflections off curved surfaces in the form of
environment maps, refractions in thick, solid objects cannot be handled with this
approach, and the simplifying assumptions of environment maps also produce
visible artifacts for reflections.
Only recently have researchers developed techniques for the interactive rendering
of true reflections and refractions in curved objects. This paper introduces a new,
light field based approach to achieving this goal. The method is based on a strict
decoupling of geometry and illumination. Hardware support for all stages of
the technique is possible through existing extensions of the OpenGL rendering
pipeline. In addition, we also discuss storage issues and introduce methods for
handling vector-quantized data with graphics hardware.

1 Introduction

Reflections and refractions are important visual effects that have not been handled ap-
propriately in interactive applications. Highly reflective or transparent objects can be
thought of as a lens that transforms incoming rays into outgoing rays in some new di-
rection. Consider a glass pitcher half full of water. A ray of light entering the pitcher
may be reflected and/or refracted many times, eventually leaving the pitcher in some
new direction. (We will ignore the fact that some of the energy may be absorbed and
the ray may split into a tree of subrays.) Unfortunately, it is not possible to compute this
mapping from rays in to rays out in real time for complex objects. However, for static
objects, this map can be computed offline and reused at each frame at render time if we
can find a way to efficiently represent this mapping and provide fast lookup methods.

The light field [13] and Lumigraph [6] image based rendering approaches faced
a similar problem. In this work it was recognized that one could precompute all the
light leaving the convex hull of an object and then quickly lookup appropriate values to
create any image of the object. This 4D mapping from rays out from an object to colors
was the central structure of these methods.

A key idea in the current work is to replace the mapping from rays to colors as found
in the Lumigraph with a mapping from rays to rays. In other words, replace the RGB
color triplet with four numbers representing a new ray direction. Storing this mapping
in the form of a Lumigraph allows us to use all the methodologies developed in [13]
and [6].

This completely decouples the illumination from the geometry, and allows us to

1



exchange the environment and the refracting/reflecting object independently of each
other. Such a separation also has the advantage that some extra blurring for the indirect
illumination will in most cases be tolerable since direct illumination is visually much
more important than indirect illumination for almost all scenes. This means that one
can get away with a lower resolution light field, which saves memory and reduces the
acquisition cost.

After a discussion of previous work, we first introduce some notation for light fields,
and then describe our technique for rendering reflections and refractions in Section 4.
We then turn to the hardware rendering of vector-quantized light fields [13] in Section 5,
and discuss our approaches in Section 6.

2 Previous Work

Producing approximate reflections and refractions at interactive rates has been done
with environment maps [2]. The inherent assumption is that what is seen in a reflection
is sufficiently far away from the reflector. This assumption breaks down in many scenes.

Environment maps can also be used for refractions at thin surfaces. A thin surface is
one, for which the thin lens approximation holds (see [3]). This approximation assumes
that the entry and exit points of each ray coincide. It does not hold for objects like glass
balls, but it can be used for windows or spectacle lenses.

Only recently have researchers started to develop algorithms that do not have these
restrictions. A commonly used technique for rendering mirror reflections in planar
objects is given in [5]: with a simple affine model/view matrix, the scene is mirrored at
the planar reflector. This mirrored scene is rendered at every pixel where the reflector
is visible in the current view. It is possible to realize multiple reflections by repeating
this process as explained in [5].

For curved objects the geometric transformations yielding the reflected geometry
are more complex. Rather than transforming the complete object with a single affine
transformation, a different transformation is required for each point on the reflected
object. In [16] an algorithm is introduced, in which all vertices of the reflected geometry
are individually transformed in software. This approach only works at interactive frame
rates for relatively smooth objects that are either concave or convex.

As mentioned above, the light field [13] and Lumigraph [6] approaches are based
on a dense sampling of the plenoptic function [1], which describes the flow of light in
a scene. This way, the light field outside the convex hull of an object in empty space
can be represented as a 4-dimensional function in the parameters u, v, s, and t. The
parameterization of this function is a topic of ongoing research [4], but typically the
2-plane parameterization explained in Section 3 is used [6, 13]. The advantage of the
light field approach is that images of the scene from new camera positions can simply be
computed by interpolating radiance values in 4 dimensions. This is a very inexpensive
operation that can be further accelerated through the use of OpenGL-compliant graphics
hardware, as has been shown in [6] and [19].

The disadvantage of this method is that it involves large memory requirements to
store the 4D data structures. A light field of moderate resolution can easily have a size
of multiple Gigabytes. The authors of [13] have proposed to use vector quantization
(VQ) to compress the data. VQ has some interesting advantages over other compres-
sion methods that make it attractive for compressing light fields. Firstly, decompression
is a constant time operation, and secondly the different entries can be decompressed in-
dependently of each other and in arbitrary order (random access). In Section 5 we
describe how the hardware accelerated rendering algorithm for light fields [6] can be
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extended to the direct rendering of vector-quantized light fields. This means that the
light fields do not have to be decompressed before hardware rendering, which is partic-
ularly interesting since texture RAM is typically a scarce resource.

The Lumigraph [6] extends the concept of a light field by adding some geometric
information which helps compensating for artifacts that arise from the use of quadri-
linear interpolation for the reconstruction. A coarse polygon mesh is stored together
with the images. The mesh is used to first find the approximate depth along the ray to
be reconstructed, and then this depth is used to correct the weights for the interpolation.
This depth corrected rendering can also be accelerated with graphics hardware [6].

Miller [15] attempts to overcome blurring artifacts by introducing a parameteriza-
tion in which the u and v parameters of the light field are the surface parameters of the
reflecting object, and s and t parameterize the hemisphere of directions over the surface
point (u, v). The authors call this a surface light field because the (u, v) parameters are
directly attached to the surface of the reflector. This is particularly well suited to mostly
diffuse objects with well defined surface parameters.

In addition to this different parameterization, [15] also introduces a block-based
compression scheme which achieves higher compression ratios than VQ, but is also
more complicated and requires the decompression of a complete block of values. This
decompression has to be performed in software during the resampling process used for
generating the texture maps.

Both light field representations reach their limits when it comes to mirror reflections
and narrow specular highlights from light sources. These will in both approaches still
result in some amount of unwanted blurring, due to the limited (s, t) resolution of the
light field.

This problem is fixed by another approach for using light fields to render reflec-
tions [14]. There, the authors introduce the concept of image-based ray-tracing to
render mirror reflections. In this work, a light field not only stores radiance values, but
also geometric information such as depth and normal. The method proceeds by tracing
rays through a light field of layered depth images [18]. This method is computationally
expensive and cannot be performed in real time on contemporary hardware.

3 Light Fields

Our work builds strongly on the light field [13], and the Lumigraph [6]. A light field
is a dense sampling of the 5-dimensional plenoptic function [1], which describes the
radiance at every point in space in every direction. Since radiance does not change along
a ray in empty space (e.g., outside the convex hull of an object), the dimensionality
can be reduced by one, if an appropriate parameterization is found, that reflects this
property.

The so-called 2-plane parameterization used by [13] and [6] representation fulfills
this requirement. It represents a ray via its intersection points with two parallel planes.
Since each of these points is characterized by two parameters in the plane, this results
in a 4-dimensional function that is sampled through a regular grid on each plane (see
Fig. 1).

One useful property of the 2-plane parameterization is that all the rays passing
through a single point on the (s, t)-plane form a perspective image of the scene, with
the (s, t) point being the center of projection. Thus, a light field can be considered a
2-dimensional array of images with eye points regularly spaced on the (s, t)-plane.
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(u,v) plane

(s,t) plane

Fig. 1. A light field can be parameter-
ized as a 2-dimensional array of images
taken from a regular grid of eye points
on the (s, t)-plane through a window on
the (u, v)-plane.

Moreover, since we assume that the sam-
pling is dense, the radiance along an arbi-
trary ray passing through the two planes can
be interpolated from the known radiance val-
ues in nearby grid points. Each such ray passes
through one of the grid cells on the (s, t)-plane
and one on the (u, v)-plane. These are bounded
by four grid points on the respective plane, and
the radiance from any of the (u, v)-points to any
of the (s, t)-points is stored in the data struc-
ture. This makes for a total of 16 radiance val-
ues, from which the radiance along the ray can
be interpolated quadri-linearly. As shown in [6],
this can also be done in hardware.

For each eye point on the (s, t)-plane, the
hardware rendering algorithm draws the grid
cells surrounding the eye point using graphics
hardware. The alpha values of the polygon ver-
tices are set to 1 at the eye point and to 0 every-
where else. Furthermore, each rendered poly-
gon is textured with the (u, v)-slice corresponding to the eye point, and these textures
are weighted by the alpha values of the polygons. This combination of alpha blend-
ing and texture mapping with bi-linear interpolation yields the desired reconstruction.1

This hardware algorithms is many times faster than a purely software-based approach.
For example, on an SGI O2 the hardware renderer can achieve approximately 25 frames
per second in full screen resolution. This number is almost independent of light field
resolution.

The possibility to use graphics hardware for rendering is also what distinguishes the
2-plane parameterization from most other parameterizations that have been proposed
for light fields (see, for example [4]). For us, this is the reason to use the 2-plane
parameterization.

4 Decoupling Geometry and Illumination

As stated above, the core of the proposed method is to separate the geometry and the
illumination of an object into two distinct image-based data structures. The first data
structure is a 2-plane parameterized “light field” containing a mapping from incoming
rays to outgoing rays based on the geometry and refractive properties of the object.
The outgoing rays are stored in the form of a color coded direction. The illumination
corresponding to this outgoing ray can either be provided in the form of an environment
map or in the form of another light field.

Thus, to render a complete image, first the geometry light field is rendered, yielding
an image of color coded ray directions. These can then be used to look up the illumina-
tion from an environment map, to trace new rays into a scene, or lookup a color from a
second light field describing the surrounding scene.

When using environment maps, the geometry light field can directly contain the
2D texture coordinates for the entry in the environment map that corresponds to the

1As pointed out in [6] quadri-linear interpolation is not possible due to the use of Gouraud shading for the
interpolation of the alpha values across polygons. However, the described algorithm yields a close approxi-
mation.
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refracted ray direction. The format for these values depends on the specific param-
eterization used for the environment map. For example, for a spherical environment
map [7], the texture coordinates are given as the x and y components of the normalized
halfway vector ~h = (hx, hy, hz)

T between the refracted viewing ray ~v and the z-axis
(see Fig. 2).

v➞z➞

h
➞

h
➞

v➞z➞

Fig. 2. The texture coordinates that correspond to a certain ray direction ~v in a spherical envi-
ronment map are given by the normalized halfway vector ~h between ~v and the z-axis (left). This
is because a spherical map is the image of a small, reflective sphere as seen by an orthographic
camera looking into the negative z-axis. The vector ~h corresponds to both the point on the sphere
where ~v is the reflection of ~z, and to the sphere’s surface normal in that point.

In our implementation we use the parabolic parameterization presented in [10]. It
has the advantage of providing a more uniform sampling of the hemisphere of direc-
tions than the spherical parameterization, and the texture coordinates are less expensive
to compute. The texture coordinates of the parabolic parameterization are given as
hx/hz and hy/hz, which means that a simple division suffices to compute the texture
coordinates instead of a vector normalization. While the advantage of a uniform sam-
pling is essential, the performance benefits are not significant in our case.

Independent of how the illumination is represented, the first step in the algorithm is
the hardware-based rendering of the geometry light field as described in [6] and [19].
Afterwards, the framebuffer contains an image with the color coded texture coordinates
for the environment map holding the illumination information. Now the framebuffer
contents are read back to main memory and for each pixel the texture coordinates need
to be used to look up the illumination from the environment map, before the resulting
image is written back to the framebuffer, yielding the final image.

The texture lookup can be achieved in one of the following two ways. Firstly, it
can be performed in software. This is a relatively inexpensive operation, that is feasible
even on low end platforms, as shown below. Alternatively, the graphics hardware can
be employed for the texture lookup, using an extension that is available from SGI. The
so-called pixel texture extension [17, 8] modifies the rendering pipeline in such a way
that the color values of the pixels in an image can be interpreted as texture coordinates,
which are then in turn used to texture each individual pixel. This feature can be applied
during so-called pixel transfer operations, that is, during the transfer of images to and
from the framebuffer, and is exactly the functionality required for our algorithm. Al-
though pixel textures are currently a proprietary extension from SGI, their usefulness
is demonstrated by several applications, and will hopefully result in a more widespread
availability of this extension.

Fig. 3 shows images that were generated using this approach. The left image rep-
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resents the color coded texture coordinates reconstructed from the geometry light field.
The light field itself was generated using ray-tracing. Center and right represent the
final result after the application of the environment map. This method is very fast, and
achieves between 15 and 20 fps. on an Octane MXE using the pixel texture extension.
The same images can be rendered with the software method at about 10 frames per
second on an SGI O2 with a 175 MHz R10k (images are of size 400× 400 pixels).

Fig. 3. Light fields rendering with decoupled geometry and illumination, the latter being provided
through an environment map. Left: color coded texture coordinates for the environment map, as
extracted from the geometry light field. Center/right: final renderings.

4.1 Illumination from Light Fields

Instead of using an environment map to store the illumination, it is also possible to
use a second light field. The advantage of this approach is the additional dependency
on the surface location, which allows for the proper handling of objects close to the
refractor. As stated above, the use of environment maps for illumination is typically
not of interest for implementing reflections. If the illumination is stored in light fields,
however, the situation is different, because the near field effects that can be achieved
with this method exceed the possibilities of traditional geometry-based rendering with
environment maps.

To store the illumination in a light field, the geometry light field has to contain
the correct 4-dimensional ray direction u, v, s, and t referencing into the illumination
light field. The ray direction can be color coded into the R, G, B and A channels
of the geometry light field. The exact coordinates, of course, again depend on the
parameterization of the illumination light field.

The rendering algorithm proceeds similarly to the case where the illumination is
stored in an environment map. First, the geometry light field is rendered using hardware
acceleration. Then, the framebuffer contents are read back to main memory. The ray
lookup for determining the illumination is either performed in software, or using pixel
textures and 4-dimensional texture mapping. The latter method will be described in
more detail in Section 5.

4.2 Realistic Materials

So far, we have only considered either reflections or refractions, which is mandated by
the fact that the geometry light field can only store either the coordinates for the reflec-
tion or for the refraction part. However, it is possible to combine the two parts using
multi-pass rendering, and also to develop models for more complicated materials, such
as glossy reflections and the inclusion of a Fresnel term. These multi-pass techniques
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have been introduced for geometry-based rendering in [11] and [9], but they directly
translate to the image-based rendering techniques presented in this paper. Please refer
to the listed publications for the details. Fig. 4 gives an example of these techniques.

Fig. 4. The glossy torus on the left is the result of a geometry rendering with a prefiltered environ-
ment map. The torus in the center represents the refraction part. Both parts have been weighted
by the appropriate Fresnel term. The right image shows the combination of the two parts.

5 Hardware Rendering of Vector-quantized Light Fields

One of the fundamental problems of light fields and Lumigraphs is the large memory
consumption. For practical applications of these techniques it is therefore mandatory
to compress the data sets. The problem with current implementations of compression
schemes is that the hardware cannot directly deal with the compressed data. As a conse-
quence, the required parts of the light field have to be decompressed before the hardware
can be used. This is unfortunate since the texture RAM is a particularly scarce resource
in many systems. If it is too small to hold the required parts of the light field, these need
to be swapped in and out for every frame, which consumes large amounts of bandwidth,
and results in serious performance penalties. The major reason why the hardware ren-
dering of light fields performs so well on O2s (see Section 3), is that on this platform
the texture RAM resides in main memory and is thus almost unlimited.

In the following we describe two slightly different methods for rendering vector-
quantized light fields directly in hardware without the need to decompress them before-
hand. VQ compresses a light field by replacing the color values of an adjacent block of
pixels by a single index into a lookup table containing the color values. An often used
configuration is to choose the block size as 24 and the table size as 216, meaning that 2
samples in each of the parametric directions u, v, s, and t are subsumed in a block, and
all 16 RGB colors in the block are replaced by a single 2 Byte color index. This yields
a compression ratio of 1 : 24 (neglecting the size of the lookup table). The advantage
of VQ over other compression techniques is that the basic structure of the data set is
preserved: a light field is a 4-dimensional array of samples. A vector-quantized light
field with the above parameters is a 4-dimensional array of color indices, but the resolu-
tion is reduced by a factor of 2 in each parametric direction. Instead of having a single
lookup table that yields the complete 24 block of color values for each index, it is also
possible to use 16 different tables, where each only returns a single color value. This
is one table for all combinations of odd/even sample locations in the four parametric
directions u, v, s, and t.

This property can be used for two related algorithms of rendering compressed light
fields, using a hardware extension that is currently available. This extension is the so-
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called texture color table, which, in contrast to all the other color tables in the OpenGL
pipeline, is not a pixel transfer operation, but takes place after the texture lookup and
filtering. This extension is available on all SGI systems, and has in the past been used
primarily for volume rendering (see, e.g. [20]).

This extension allows us to store the light field as a set of one-component textures.
Then, multiple rendering passes with different color lookup tables are used to recon-
struct the colors. Special care has to be taken for the interpolation of these color values.
The difficulty is that the color in each pixel needs to be interpolated from the col-
ors resulting from lookups in all the color tables. This can be achieved through alpha
blending, as described below.

Fig. 5. Top: the 2 × 2 texture
used to render the basis func-
tions into the alpha buffer. Bot-
tom: The set of basis functions
for one color table. This image
was generated by applying bi-
linear texture filtering to several
replicated copies of the texture
from the left.

Let us assume for a moment that only the resolution
on the (s, t)-plane, the plane of eye points, has been
halved by the VQ algorithm. Then, the rendering is a
trivial extension of the algorithm described in Section 3.
The only difference to the algorithm there is that the cor-
rect texture color table needs to be loaded before poly-
gons surrounding the (s, t)-sample point are rendered.
Since in this situation there are only four different color
tables, the (s, t)-samples can be ordered in such a way
that only 4 changes of the color table are required for ev-
ery frame (all samples with even s and even t have one
table, all samples with even s and odd t another, and so
forth).

Now, if the resolution on the (u, v)-plane is also
halved, then it is necessary to interpolate the color val-
ues for a pixel in the (u, v)-plane between images gen-
erated by four different table lookups. This is achieved
by rendering the basis functions for a bi-linear interpo-
lation into the alpha channel, and then multiplying this
basis function with the result of a nearest-neighbor sam-
pled image resulting from a single table lookup. Repeat-
ing this process four times with four different lookup
tables and the four corresponding basis functions, and
summing up the results in the framebuffer, yields the
correctly reconstructed image.

To render the basis functions into the alpha channel,
we specify a single 2 × 2 texture in which exactly one
pixel is one, and the others are zero. By replicating this
texture according to the resolution of the (u, v)-plane
in the original light field, and by using bi-linear texture
mapping, the basis functions for, say, all odd u and all even v samples can be rendered.
If the same texture is shifted by one texel in subsequent rendering passes, the other
basis functions can be rendered as well. Fig. 5 illustrates this method. The cost of this
technique is about four times the cost of rendering an uncompressed light field, so that
the method only pays off if the texture RAM is too small to hold the complete data
set. The color plates show a comparison of the uncompressed light field rendering with
vector-quantized data sets.

Another hardware-accelerated algorithm for rendering light fields that might be-
come interesting in the future, is 4-dimensional texture mapping. Currently, this feature
is supported on some high-end SGI machines. With 4D texture mapping the render-
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ing of 2-plane parameterized light fields becomes extremely simple. The (s, t) grid is
projected down on the (u, v)-plane to compute the texture coordinates for the corner
vertices of the (u, v)-grid. Then (u, v)-plane is rendered as a single polygon with the
precomputed 4D texture coordinates, and the light field as a texture.

4D texture mapping is also interesting in combination with the pixel texture exten-
sion, and can be applied in the reflection and refraction algorithm from Section 4.1.
Here, the R, G, B, and A channels of each pixel in the image are interpreted as 4D
texture coordinates u, v, s, and t.

The disadvantage of 4D texture mapping in the context of light field rendering is,
that the whole light field needs to fit into the texture RAM. For practical applications
this mandates the use of a compression technique, and VQ is again a good choice that
allows us to exploit graphics hardware.

Since 4D texture mapping does not treat the (u, v)-plane differently from the (s, t)-
plane like the algorithm from [6], the implementation is somewhat different than de-
scribed above. What remains is the concept of using the alpha channel to render basis
functions for the different lookup tables. This time, however, the basis functions are
generated by 4D textures of resolution 24. In each of these textures, exactly two pixels
are one and the others are zero. Fig. 6 illustrates this for a 2-dimensional “light field”.

Fig. 6. The textures that comprise the basis functions for a 2D “light field”, and the rays that each
basis function corresponds to.

6 Discussion and Conclusion

In this paper we have explored practical techniques for applying light fields to the ren-
dering of reflections and refractions on curved objects. Firstly, our method separates
geometric and illumination information into two independent, image-based representa-
tions. The advantage of this approach is an increased flexibility for modeling. Image-
based representations of objects can be positioned in a scene and lit by image-based
representations of the illumination in that scene. Existing graphics hardware can be
efficiently utilized for the implementation of the algorithm.

Secondly, we have described a technique for rendering vector-quantized light fields
directly with graphics hardware. This approach is not limited to the rendering of re-
flections and refractions, but is a natural extension of the hardware algorithm presented
in [6], and can therefore be used with all hardware light field renderers.

The techniques presented here rely on some OpenGL extensions that have not yet
become mainstream features in low-end graphics hardware. However, all the exten-
sions used have proven to be useful in several other applications as well [20, 12], so
that it seems likely that some of these features will find their way into future graphics
standards.

This idea of storing geometric information instead of simply color values in a light
field can be extended even further. For example, if normal vectors are stored in the
light field data structure, the local illumination for the object can be computed using the
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very same hardware techniques also applied to normal maps in [11] and [9]. With these
techniques, it is possible to recompute the illumination for each point using complex
materials models. This allows for image-based rendering with changing illumination,
an area that has recently been of increased interest in the research community.
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Light field rendering with decoupled geometry and illumination, the latter being provided through
an environment map. Top: color coded texture coordinates for the environment map, as extracted
from the geometry light field. Bottom: final renderings. Compare Fig. 3.

The glossy torus on the left is the result of a geometry rendering with a prefiltered environment
map. The torus in the center represents the refraction part. Both parts have been weighted by
the appropriate Fresnel term. The right image shows the combination of the two parts. Compare
Fig. 4.

Rendering of vector-quantized light fields. Left: uncompressed, center: reduced resolution on
the (u, v)-plane, right: reduced resolution in all 4 dimensions.
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