Applications of Pixel Textures
in Visualization and Realistic Image Synthesis

Wolfgang Heidrich, Ridiger Westermann,
Hans-Peter Seidel, Thomas Ertl

Computer Graphics Group
University of Erlangen
{heidrich,wester,seidel,ertl } @informatik.uni-erlangen.de

Abstract

With fast 3D graphics becoming more and more available even on
low end platforms, the focus in developing new graphics hardware
is beginning to shift towards higher quality rendering and addi-
tional functionality instead of simply higher performance imple-
mentations of the traditional graphics pipeline. On this search for
improved quality it is important to identify a powerful set of or-
thogonal features to be implemented in hardware, which can then
be flexibly combined to form new algorithms.

Pixel textures are an OpenGL extension by Silicon Graphics that
fits into this category. In this paper, we demonstrate the benefits of
this extension by presenting several different algorithms exploiting
its functionality to achieve high quality, high performance solutions
for a variety of different applications from scientific visualization
and realistic image synthesis. We conclude that pixel textures are a
valuable, powerful feature that should become a standard in future
graphics systems.

CR Categories: 1.3.3 [Computer Graphics]: Picture/Image
Generation—Bitmap and framebuffer operations 1.3.3 [Computer
Graphics]: Picture/Image Generation—Display algorithms 1.3.6
[Computer Graphics]: Methodology and Techniques—Standards
1.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, Shading, Shadowing and Texture

1 Introduction

Until recently, the major concern in the development of new graph-
ics hardware has been to increase the performance of the tradi-
tional rendering pipeline. Today, graphics accelerators with a per-
formance of several million textured, lit triangles per second are
within reach even for the low end. As a consequence, we see that
the emphasis is beginning to shift away from higher performance
towards higher quality and an increased feature set that allows for
the use of hardware in a completely new class of graphics algo-
rithms.

Recent examples for this development can be found in version
1.2 of the OpenGL API [17]: both 3-dimensional textures [2, 23],

which can be used for volume rendering, and the imaging subset, a
set of extensions useful not only for image-processing, have been
added in this version of the specification. Bump mapping and pro-
cedural shaders are only two examples for features that are likely to
be implemented at some point in the future.

On this search for improved quality it is important to identify a
powerful set of orthogonal building blocks to be implemented in
hardware, which can then be flexibly combined to form new algo-
rithms. We think that the pixel texture extension by Silicon Graph-
ics [9, 12] is a building block that can be useful for many applica-
tions, especially when combined with the imaging subset.

In this paper, we use pixel textures to implement four different
algorithms for applications from visualization and realistic image
synthesis: fast line integral convolution (Section 3), shadow map-
ping (Section 4), realistic fog models (Section 5), and finally en-
vironment mapping for normal mapped surfaces (Section 6). Not
only do these algorithms have a practical use by themselves, but
they also demonstrate the general power of pixel textures.

The remainder of this paper is organized as follows. In Section 2
we first describe the functionality added by the pixel texture ex-
tension as well as the imaging subset, which we also use for our
algorithms. Then, we introduce our algorithms for the above ap-
plications in Sections 3-6. Finally, in Section 7, we conclude by
discussing some observations we made while using pixel textures.

2 Pixel Textures and the OpenGL 1.2
Imaging Subset

The imaging subset consists of a number of extensions that have
been around for some time. It introduces features such as his-
tograms, convolutions, color lookup tables and color matrices.
These are standard operations in image processing, but also have
applications in many other areas, as we will show below.

Of the many features of this subset, we only use color matrices
and color lookup tables. A color matrix is a 4 x 4 matrix that can
be applied to any RGB« pixel group during pixel transfer (that is,
while reading images from or writing images to the framebuffer,
but also while specifying a new texture image).

In addition, separate color lookup tables for each of the four
components can be specified both before and after the color ma-
trix. These allow for non-linear transformations of the color com-
ponents. Scaling and biasing of the components is also possible at
each of these stages. For a detailed discussion of these features and
the whole imaging subset, refer to [17].

The pixel texture extension adds an additional stage to this
pipeline, which is located after the second color lookup table (see
Figure 1). This stage interprets the color components R, G, B, and
« as texture coordinates s, t, r, and g, respectively. Pixel textures
only apply during the transfer of pixels to and from the framebuffer,
but not to the loading of textures.

lookup table
lookup table

conversion
to fragments

texture blend

per-fragment
operations

texture
mapping

Figure 1: Part of the rendering pipeline including pixel textures
and the imaging extension. Only features used in this paper are
depicted.

A number of other restrictions apply. The dimensionality of the
texture has to match the number of components of the original pixel
(that is, before any lookup tables or color matrices are applied). For
example, if the original pixel has two components, luminance and
alpha, then the texture has to be 2-dimensional. On the other hand,
if the format of the original pixels is RGBq, then a 4-dimensional
texture is required. While 4-dimensional textures are not part of the
OpenGL standard, they are also available as an extension from SGI.
An additional restriction of the current pixel texture implementation
is that 1- and 2-dimensional textures are not directly supported, but
can be simulated using degenerated 3-dimensional textures.

It is also important to note that R, G, B, and « are directly used
as texture coordinates s, t, v, and ¢. A division by ¢ does not take
place. This means that perspective texturing is not possible with
pixel textures.

In a sense, pixel textures provide a limited form of deferred shad-
ing [15], in that they allow one to interpolate color coded texture
coordinates across polygons. These can the be used to evaluate ar-
bitrary functions of up to four variables on a per pixel basis.

3 Line Integral Convolution

Now that we have introduced the basic functionality of pixel tex-
tures and the imaging subset, we will demonstrate their effective
use in several examples from realistic image synthesis and scien-
tific visualization. We start by introducing a hardware-accelerated
method for 2D line integral convolution (LIC), which is a popular
technique for generating images and animations from vector data.

LIC was first introduced in [3] as a general method to visual-
ize flow fields and has been further developed to a high degree of
sophistication in [22]. The basic idea consist of depicting the direc-
tional structure of a vector field by imaging it’s integral curves or
stream lines. The underlying differential equation to be solved for
obtaining a path o(s) through an arbitrary point = whose orienta-

tion coincides with the vector field is given by

d
La(s) = f(o(s)). ®

By solving Equation 1 with the initial condition o(0) = =, the
stream line of a particle starting at position x thereby undergoing
the interior forces of the vector field can be computed.

In order to show the directional structure of the vector field, the
intensity for a pixel located at xo = o(so) is computed by convolv-
ing an input texture T (usually given by a random noise field) with
a filter kernel & along the stream line:

so+L
I(z0) = / k(s —s0)T(o(s))ds ()

so—L

Thus, along the stream curves the pixel intensities are highly cor-
related, whereas they are independent (see Figure 2) in the perpen-
dicular direction.

Figure 2: The random noise input texture and the LIC image after
20 iteration steps.

The performance of LIC-algorithms depends on the methods
used to update particle positions, and to perform the integral con-
volution. To solve Equation 2 numerically the input texture is sam-
pled at evenly spaced points along the curves. These points are
interpolated from the vector field which is usually given at discrete
locations on an uniform grid. Although higher-order interpolation
schemes have been exploited to obtain accurate curves, we only use
bilinear interpolation for the update of particle positions. This leads
to less accurate results but it allows us to compute pixel intensities
in real-time, which is of particular interest for previewing purposes
and animations.

In order to exploit pixel textures for line integral convolution the
following textures are generated: The noise values are stored in a
luminance-texture (T) and the 2-dimensional vector field is stored
in the RG color components of a RGB-texture. Since texture val-
ues are internally clamped to [0. .. 1] the vector field is split into
it’s positive (V+) and negative (V-) parts. Their absolute values are
stored in two separate textures. Negative vectors can then be simu-
lated by mapping the negative parts but with a subtractive blending
model.

Figure 3 outlines the texture based algorithm to compute LIC
images. Each pixel of the image is initialized with a color repre-
senting the location of that pixel within the vector field. This is
accomplished by drawing a quadrilateral that exactly covers the do-
main with appropriately specified vertex colors. In each integration
step the integrand in Equation 2 is evaluated by reading the pixel
values from the framebuffer and writing them back in an additional
buffer with enabled pixel texture T. The result is copied into the
accumulation buffer thereby accounting for the scale factor k. The
update of pixel positions is performed in two passes. First, pixel

(0,1,5) (11,5)

Noise

Pixel Texture

0,0,.5) (1)o,.)

Updated Positions

Vector Field+ *
Pixel Texture
- []—
ield- Noise
g&?ﬂgﬂfe Pixel Texture
—— (O >

Figure 3: Multiple framebuffer operations have to be performed to generate LIC images using pixel textures. Where pixel textures are used
pixel values have to be read and written back into the framebuffer. Arithmetic symbols denote the used blending function.

values are written, thereby mapping into V+ and adding the results
to those color values already in the framebuffer. Second, the same
procedure is applied but now with texture V-. The blending func-
tion is set appropriately in order to subtract the newly generated
fragment colors from the already stored ones.

In this way we take advantage of texture mapping hardware to
perform the interpolation within the input noise field, to interpo-
late within the vector field, to compute new particle positions, and
to perform the numerical integration. Accumulation buffer func-
tionality is used to properly weight the results of each integration
step. Note that in addition to the back buffer a second buffer is
needed temporarily to write intermediate results. In all our imple-
mentations an additional invisible but hardware accelerated buffer,
the so-called “P-buffer”, which can be locked exclusively, was used
to prevent other applications from drawing into pixel values which
have to be read.

Figure 4 shows two LIC images generated with the presented ap-
proach. An artificial vector field was applied in both examples. The
size of the generated images and involved textures was 512x512.
On a SGI Octane MXE workstation with a 250 Mhz R10000 pro-
cessor it took 0.3 seconds to compute the line integral convolutions
with 20 iteration steps.

4 Shadow Maps

In our second example we will outline a method to simulate shadow
effects with respect to parallel light sources and orthographic views.
This algorithm is based on the shadow-map approach[24]. Basi-

Figure 4: Two examples of LIC images generated with the pixel
texture algorithm.

cally, it is similar to the OpenGL shadow-map extension available
on SGI high-end machines [21], but it efficiently takes advantage
of the OpenGL color matrix and pixel textures to generate shadow
masks on a per-pixel basis.

In a first rendering pass the entire scene is rendered in ortho-
graphic mode from the light source position. The resulting z-values
are read and the shadow map is stored as an additional RGB«
texture with values (1,1,1, Zi;4n¢). Now the scene is rendered
from the present viewing position. Again, z-values are read and
copied into the Ba components of a separate framebuffer. RG
components are initialized with the pixel’s screen space coordinates
(Serng, Serny, Zview, Zview)-

Each pixel now stores the information necessary to re-project
into world space coordinates with respect to the present viewing
definition. From there, the projection into the light source space
allows us to obtain the entry in the shadow map whose value has to
be compared for each pixel.

Since the projective matrices Munprojview = M};jojwew
and Mp,o;right are known, it suffices to build a single matrix
CMau = Mprojright - Munprojview Which accomplishes the
transformation. It is loaded on top of the color matrix stack, but
it has to be slightly modified to ensure that the transformed Zj, ..
values are also stored in the a-channel. This allows us to take ad-
vantage of the «-test later on.

We copy the framebuffer once to apply the color matrix multi-
plication:

X% X,
% Y.
/ = CMaun -
Zl,ight Zview
Zlight Z’Uiew

As a result, in each pixel the RG color components specify the entry
in the shadow map, whereas the Ba components contain the z-value
with respect to the light source.

Finally, the framebuffer is read and written once more, thereby
texturing pixel values with the pre-computed shadow map. By
choosing the blending function appropriately the texture values are
subtracted from those already in the framebuffer and clamped to
0...1)

X! 1 0

y! 1| | o
Ziignt | 1 1 0
Zlight Ziight Zaiff

Only where the object is in shadow the generated pixel values have
a-values larger than zero.

All pixels are now copied onto each other. However, by ex-
ploiting the OpenGL a-test, those pixels where o # 0 will be re-
jected. All pixels which are drawn are biased with (1,1,1,0) using
the OpenGL imaging subset. In this way the result can be directly
used as a shadow mask for the rendered scene on a per-pixel basis.

Due to the lack of projective pixel textures, this shadow-map
algorithm is currently restricted to orthographic views and paral-
lel light sources. Nonetheless, it can be very useful, for example
in volume rendering applications. For other applications, an ad-
ditional pixel texture mode that provides the perspective division
would allow for point lights and perspective views.

5 Complex Fog Models

The next application we are going to look at is fog. In flight simu-
lators and other outdoor sceneries, fog can significantly contribute
to the realism of a scene.

Most graphics boards offer two kinds of fog simulation: the sim-
pler version computes the absorption using a linear color ramp that
depends on the z-coordinate of a point in eye space, and the sec-
ond, more expensive version computes an exponential decay along
the z-direction. The color of a pixel is then chosen as

Cp := (1 — absorption) - C¢ + absorption - C,, 3)

where C is color of the object, and C' is a global fog color, which
is used to fake emission and scattering effects.

It is well known [14, 5] that the intensity of a point in a partici-
pating media should decay exponentially with the distance d from
the point of view:

d
absorption = e~ Jo 7Vt (4)

For a homogeneous medium, that is, for a constant fog density o
throughout space, this equation simplifies to

. —d-.
absorption = e~ “7.

Of course, a linear ramp is only a very crude approximation of
this function, but even the exponential version of hardware fog ap-
proximates the distance of a point from the eye by the point’s z-
coordinate.

5.1 Euclidean Distance Fog

This exponential version does produce more realistic images, but
is still insufficient for several applications, since the distance (and
hence the obstruction by fog) is underestimated for objects on the
periphery of the image (see Figure 5). As a consequence, the bright-
ness of objects changes with the viewing direction, even if the eye
point remains the same. This results in seams when multiple im-
ages of the scene are warped together to form a composite image,
for example for large projection screens.

viewing dir. 2

viewing dir. 1

distance estimate 1

Figure 5: Simple fog systems that use the z-coordinate as an esti-
mate for the distance of a point from the eye underestimate the dis-
tance in particular for points on the periphery of the image. More-
over, the distance estimate changes with the viewing direction.

In the following we introduce an algorithm that computes fog
based on the true Euclidean distance of a point from the eye. This
Euclidean distance is computed via lookup tables and the color ma-
trix, and finally an exponential fog function is applied through the
use of pixel textures. The method requires two passes in which the
geometry is rendered, one framebuffer read, and one framebuffer
write with pixel textures.

As a first step, the scene is rendered with the world coordinates
Tw, Yw, aNd z,, being assigned as colors to each vertex. These coor-
dinates have to be normalized to the range [0 . .. 1] through a linear
function. Similar linear mappings are required in several of the fol-
lowing steps, but will be omitted in this discussion for reasons of
simplicity.

Then, a color matrix containing the viewing transformation is
specified, a color lookup table containing the function f(x) = 2>
is activated, and the framebuffer is read to main memory. At this
point we have an image containing z2, y2, and z2, the squares of
each point’s coordinates in eye space, as a RGB color.

We write this image back to the framebuffer after loading a color
matrix that assigns the sum of R, G, and B to the red component
and specifying a color table that takes the square root. Now the
Euclidean distance of each point is coded into the red component.
Consequently, it can be used to reference into a pixel texture con-
taining Equation 4. This 1-dimensional texture has to be specified

as a degenerate 3-dimensional texture, since the initial format of the
image is RGB.

After this step, the framebuffer contains the absorption factor
from Equation 4 for each pixel. Finally, the scene is rendered again,
this time with its regular textures and lighting, but blending is set
up in such a way, that these colors are blended with the current
framebuffer content according to Equation 3.

Figure 6: Two examples for Euclidean distance fog.

Figure 6 shows images rendered with this method on a SGI Oc-
tane MXI. This scene can be rendered at 15 frames/sec. for a
640 x 480 resolution.

5.2 Layered Fog

Both the traditional hardware fog and the algorithm presented
above have in common that the fog is uniform, that is, its density is
constant for the whole scene. Layered fog is a concept that softens
this restriction, by allowing the density to change as a function of
height [13]. This means that a visual simulation application could
specify a relatively dense layer of fog on the ground, followed by
an area of relatively clear sky, and then a layer of clouds higher up.

The algorithm for layered fog that we present in the following
is similar to the Euclidean distance fog algorithm presented above.
However, instead of a 1-dimensional pixel texture we now have to
use a 2-dimensional or 3-dimensional one. The idea of fog compu-
tation through table lookups is borrowed from [13], but our method
is faster due to the use of pixel textures, which allows us to perform
all computations in hardware.

Due to the restriction to layers of constant fog density, the expo-
nent from Equation 4 simplifies to

/Odff(t)dt S - /yw o(y)dy,)

Yo = Yew| Sy, o

where y.. ., is the y-coordinate of the eye point in world space, y., is
an object point in world coordinates, and d is the Euclidean distance
between the two points as above.

This is merely a scaling of the absorption for a vertical ray from
an object point at height ., to an eye point at height y.. ., (also see
Figure 7).

ye,w_yw

Ye,w'

Figure 7: For layered fog, the absorption along an arbitrary ray can
be computed directly from the absorption for a vertical ray.

An interesting observation is that Equation 5 (and thus Equa-
tion 4) is only a a function of 3 variables: y. ., yw and d. The
latter two of these vary per pixel, whereas the first one is a constant
within each frame. We propose two slightly different methods for
implementing layered fog, both are modifications of the algorithm
presented in Section 5.1.

The first method uses a 3-dimensional texture that directly codes

— — Yw 5 -
¢/ =vew J5, e W4y 14 compute the three texture coordi-

nates, we read the framebuffer to main memory as in Section 5.1,
but this time with a color matrix and lookup tables that store z2, yg,
2% and y,, as an RGBa image in main memory. During the writ-
ing phase, the color matrix and lookup tables are set up so that they
store d and y., in the R and G components. Biasing the blue compo-
nent by the global constant y..., yields the third color component,
and thus the third texture coordinate for the pixel texture. Since the
intermediate format of the image is RGB«, the 3-dimensional fog
texture has to be stored as a degenerate 4-dimensional pixel texture.

Instead of the biasing step, it is also possible to only use d and
Yy to effectively reference a 2-dimensional texture, which then has
to change every time the eye point moves vertically. This has the
advantage that smaller texture RAM sizes are sufficient, but the dis-
advantage that new textures have to be downloaded to texture RAM
if the height of the eye changes.

Figure 8 shows images rendered with layered fog, again on a
SGI Octane MXI. With both algorithms, this scene can be rendered
at 12 frames/sec. for a 640 x 480 image resolution. This time is
marginally larger than the time for Euclidean distance fog presented
above, due to the use of RGB« instead of RGB images.

Figure 8: Two examples for layered fog with a dense layer of
ground fog and a layer of clouds on the top.

Both Euclidean distance and layered fog are most useful in visual
simulation applications where realism is a top requirement. They
allow for a more accurate simulation of visibility in certain situ-
ations. The standard hardware fog which improves the vision in
peripheral regions is not adequate in these situations. The methods
presented here allow for an efficient, hardware based implementa-
tion of both layered and Euclidean distance fog.

6 Environment Mapping for Normal-

Mapped Surfaces

As a final example for applications of pixel textures, we discuss an
algorithm for applying spherical environment maps [8] to surfaces
with normal maps. Instead of the spherical parameterization we
describe here, it is also possible to use view-independent parabolic
maps [11, 10].

We use the term “normal map” for textures containing color
coded normals for each pixel in object space. Normal maps have
the advantage that the expensive operations (computing the local
surface normal by transforming the bump into the local coordinate
frame) have already been performed in a preprocessing stage. All
that remains to be done is to use the precomputed normals for light-
ing each pixel. As we will show in the following, this allows us to

use a fairly standard rendering pipeline, which does not explicitly
support bump mapping. Another advantage of normal maps is that
recently methods have shown up for measuring them directly [20],
or for generating them as a by-product of mesh simplification [4].

The parameterization used most commonly in computer graphics
hardware today, is the spherical parameterization for environment
maps [8]. It is based on the simple analogy of a small, perfectly
mirroring ball centered around the object. The image that an or-
thographic camera sees when looking at this ball from a certain
viewing direction is the environment map.

With this parameterization, the reflection of a mirroring object
can be looked up using the following calculations (see Figure 9 for
the geometry). For each vertex compute the reflection vector r of
the per-vertex viewing direction v. A spherical environment map
which has been generated for an orthographic camera pointing into
direction vy, stores the corresponding radiance information for this
direction at the point where the reflective sphere has the normal
h := (vo + r)/||vo + r||. If vo is the negative z-axis in viewing
coordinates, then the 2D texture coordinates are simply the x and
y components of the normalized halfway vector h. For environ-
ment mapping on a per-vertex basis, these texture coordinates are
automatically computed by the texture coordinate generation mech-
anism of OpenGL.

Figure 9: The lookup process in a spherical environment map.

An interesting observation is that for orthographic cameras, the
viewing direction v is identical to the reference viewing direction
vo for all vertices, and thus, the halfway vector h is identical to
the surface normal n. This approximation does not work well for
smooth, planar objects, as it causes these objects to receive a single,
solid color. However, the approximation can be used for bump-
mapping algorithms, since these typically introduce a lot of high-
frequency detail, so that the artifacts are rarely noticeable.

This means, that the information from a normal map can be di-
rectly used to look up a mirror reflection term in a spherical en-
vironment map. The algorithm to do this uses pixel textures, and
works as follows: First, the object is rendered with the normal map
as a texture, and all rendered pixels are marked in the stencil buffer.
The resulting image is read back to main memory. During this op-
eration, a color matrix can be used to map the normals from object
space into eye space, where the environment map is specified. This
yields an image containing eye space normals for each visible pixel.

A second rendering pass, in which the 2-dimensional environ-
ment map is applied as a degenerate 3-dimensional texture, is then
employed to look up the mirror reflection for each pixel (only pixels
previously marked in the stencil buffer are considered). Figure 10
shows some images that have been generated with this technique.

In addition to the mirror term, it is also possible to add local

Figure 10: Examples for normal-mapped surfaces with applied en-
vironment maps. In the top row, only the mirror components are
shown. For the bottom row, Phong lighting has been added with
techniques described in [10].

Phong illumination using additional rendering passes. These al-
gorithms require operations from the imaging subset but no pixel
textures, and are therefore not described here. They are discussed
in detail in [10].

Spherical environment maps are widely used in interactive com-
puter graphics, but they have the disadvantage that they need to be
regenerated for every new viewing position and -direction. In [11],
a different, parabolic parameterization has been introduced, which
does not have this disadvantage. Since this parameterization also
uses the halfway vector h for the environment lookup, the same
technique can be applied to these maps. A combination of parabolic
environment maps and pixel textures with support for projective
texturing allows one to apply one environment map to a normal
mapped surface for all viewing positions and -directions (a detailed
discussion of this topic can be found in [10]. Without projective tex-
turing, parabolic environment maps can, like spherical maps, only
be used for one viewing direction.

The techniques discussed in this section provide efficient ways
for applying environment maps to normal mapped surfaces. Com-
bined with techniques for local illumination, described in [11], this
allows for the efficient implementation of normal mapped surfaces.

7 Discussion

In this paper we have used the SGI pixel texture extension in a num-
ber of algorithms for a variety of different applications: hardware-
based line-integral convolution, shadow mapping, complex fog
models and environment mapping for normal mapped surfaces.

These algorithms provide efficient, high quality implementations
for problems in visualization and realistic image synthesis. In addi-
tion to being valuable contributions on their own, they also demon-
strate some techniques for using pixel textures and the new OpenGL
imaging subset. In the following, we will discuss some observations
we have made while working on these algorithms.

Firstly, the OpenGL imaging subset is also useful for many ap-
plications outside traditional image processing. Especially when
combined with pixel textures, the color matrix is a powerful way
for transforming points and vectors between different coordinate
systems. Lookup tables and scaling/biasing additionally allow for
non-linear operations such as the computation of a Euclidean dis-
tance.

Secondly, we should mention the major limitation of pixel tex-
tures in the presented scenarios. The most crucial drawback stems
from the limited depth of the available frame buffers. When data is
stored in a pixel texture and rendered into the framebuffer usually
precision is lost. For example, if the shadow map in which z-values
are stored is mapped and drawn into an 8 Bit display, quantization
artifacts arise which can be seen particularly at shadow boundaries.
The same holds for the simulation of realistic fog models where the
exponential attenuation is quantized into a limited number of bins.
Furthermore, the frame buffer depth strongly determines the size
of textures that can be accessed. Effectively, only textures up to
256x256 can be mapped using 8 Bit displays.

In our applications we therefore used the deeper visuals provided
by the Octane graphics system. With 12 bits per component, these
quantization artifacts are already softened significantly. Nonethe-
less for some applications such as shadow maps, even deeper vi-
suals would be beneficial. As a consequence, we see specifically
designed visuals or additional buffers with limited functionality but
higher precision as one of the dominant features in future genera-
tion graphics hardware.

As a final observation, we found that the flexibility of the pixel
texture extension could be further improved through two minor
changes in the specification. One change regards the support of
projective textures. By introducing a mode that performs a per-
spective division by the ¢ component, this important feature could
be supported. This would, for example, open the door for a general
shadow map algorithm as shown in Section 4 and view-independent
environment maps (Section 6), but other applications are also possi-
ble. Of course it could be argued that a perspective divide for every
pixel is an expensive operation, but on the other hand there are ap-
plications, such as shadow mapping, where this operation has to be
performed at some point. It is then better to have hardware support
for this instead of forcing the user to fall back to software.

The second change regards the coupling of image format and
dimensionality of the pixel texture. We think that there really is no
good reason for this. In many of the methods we have demonstrated
how the number of color components can be expanded or reduced
through the use of color matrices and lookup tables. Therefore it is
reasonable to allow pixel textures with an arbitrary dimension to be
used with images of any internal format.

While these two changes would certainly help to make the pixel
texture extension even more powerful, even the current specifica-
tion has many applications. The described algorithms only show a
small part of these applications of pixel textures, but they demon-
strate the potential of the extension is for achieving high quality,
high performance renderings. We believe that pixel textures should
become a standard component of the graphics pipeline, and that this
extension should become part of the OpenGL standard.

8 Acknowledgments

We would like to thank Peter-Pike Sloan for a discussion of the
shadow map algorithm, and the anonymous reviewers for their valu-
able comments.

References

[1] Kurt Akeley. RealityEngine graphics. In Computer Graphics
(SIGGRAPH 93 Proceedings), pages 109-116, August 1993.

[2] Brian Cabral, Nancy Cam, and Jim Foran. Accelerated vol-
ume rendering and tomographic reconstruction using texture
mapping hardware. In 1994 Symposium on Volume Visualiza-
tion, pages 91-98, October 1994.

[3] Brian Cabral and Leith Casey Leedom. Imaging vector fields
using line integral convolution. In Computer Graphics (SIG-
GRAPH 93 Proceedings), pages 263-272, August 1993.

[4] Jonathan Cohen, Marc Olano, and Dinesh Manocha.
Appearance-preserving simplification. In Computer Graphics
(SIGGRAPH ’98 Proceedings), pages 115-122, July 1998.

[5] Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. \ol-
ume rendering. In Computer Graphics (SIGGRAPH ’88 Pro-
ceedings), pages 65-74, August 1988.

[6] David Ebert, Kent Musgrave, Darwyn Peachey, Ken Perlin,
and Worley. Texturing and Modeling: A Procedural Ap-
proach. Academic Press, October 1994. ISBN 0-12-228760-
6.

[7] Paul Haeberli and Kurt Akeley. The accumulation buffer:
Hardware support for high-quality rendering. In Computer
Graphics (SIGGRAPH 90 Proceedings), pages 309-318, Au-
gust 1990.

[8] Paul Haeberli and Mark Segal. Texture mapping as a funda-
mental drawing primitive. In Fourth Eurographics Workshop
on Rendering, pages 259-266, June 1993.

[9] Paul Hansen. Introducing pixel texture. In Developer News,
pages 23-26. Silicon Graphics Inc., May 1997.

[10] Wolfgang Heidrich. High-Quality Shading and Lighting for
Hardware-Accelerated Rendering. PhD thesis, University of
Erlangen-Nirnberg, 1999. in prepraration.

[11] Wolfgang Heidrich and Hans-Peter Seidel. View-independent
environment maps. In Eurographics/SIGGRAPH Workshop
on Graphics Hardware, pages 39-45, 1998.

[12] Silicon Graphics Inc. Pixel Texture Extension, De-
cember 1996. Specification document, available from
http://www.opengl.org.

[13] Justin Legakis. Fast multi-layer fog. In Siggraph 98 Confer-
ence Abstracts and Applications, page 266, July 1998. Sig-
graph Technical Sketch.

[14] Marc Levoy. Volume rendering using the fourier projection-
slice theorem. In Proceedings of Graphics Interface 92,
pages 61-69, May 1992.

[15] Steven Molnar, John Eyles, and John Poulton. PixelFlow:
High-speed rendering using image composition. In Com-
puter Graphics (SIGGRAPH ’92 Proceedings), pages 231-
240, July 1992.

[16] Jackie Neider, Tom Davis, and Mason Woo. OpenGL Pro-
gramming Guide. Addison Wesley, 1993.

[17] OpenGL ARB. OpenGL Specification, Version 1.2, 1998.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

Mark Peercy, John Airey, and Brian Cabral. Efficient bump
mapping hardware. In Computer Graphics (SIGGRAPH *97
Proceedings), pages 303-306, August 1997.

Ken Perlin and Eric M. Hoffert. Hypertexture. In Com-
puter Graphics (SIGGRAPH ’89 Proceedings), pages 253—
262, July 1989.

Holly Rushmeier, Gabriel Taubin, and André Guéziec. Ap-
plying shape from lighting variation to bump map capture. In
Rendering Techniques *97 (Proceedings of Eurographics Ren-
dering Workshop), pages 35-44, June 1997.

Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran,
and Paul Haeberli. Fast shadow and lighting effects using tex-
ture mapping. In Computer Graphics (SIGGRAPH 92 Pro-
ceedings), pages 249-252, July 1992.

Detlev Stalling and Hans-Christian Hege. Fast and resolu-
tion independent line integral convolution. In SIGGRAPH 95
Conference Proceedings, pages 249-256, August 1995.

Rudiger Westermann and Thomas Ertl. Efficiently using
graphics hardware in volume rendering applications. In Com-
puter Graphics (SIGGRAPH ’98 Proceedings), pages 169—
177, July 1998.

Lance Williams. Casting curved shadows on curved surfaces.
In Computer Graphics (SIGGRAPH 78 Proceedings), pages
270-274, August 1978.

HHH

il
i

