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Procedural shaders have become popular tools for describing surface reflectance functions and
other material properties. In comparison to fixed resolution textures, they have the advantage
of being resolution-independent and storage-efficient.

While procedural shaders provide an interface for evaluating the shader at a single point, it
is not possible to easily obtain an average value of the shader together with accurate error
bounds over a finite area. Yet the ability to compute such error bounds is crucial for several
interesting applications, most notably hierarchical area sampling for global illumination,
using the finite element approach, and for generation of textures used in interactive computer
graphics.

Using affine arithmetic for evaluating the shader over a finite area yields a tight,
conservative error interval for the shader function. Compilers can automatically generate code
for utilizing affine arithmetic from within shaders implemented in a dedicated language such
as the RenderMan shading language.

Categories and Subject Descriptors: G.1.0 [Numerical Analysis]: General—error analysis,
interval arithmetic; G.1.4 [Numerical Analysis]: automatic differentiation; I.3.7 [Computer
Graphics]: Quadrature and Numerical Differentiation—color, shading, shadowing and tex-
ture-radiosity; I.4.1 [Image Processing and Computer Vision]: Digitization—sampling;
I.4.7 [Image Processing and Computer Vision]: Feature Measurement—texture

General Terms: Experimentation, Graphics, Performance, Theory, Verification

Additional Key Words and Phrases: Affine arithmetic

1. INTRODUCTION

The ability to compute mean reflectance coefficients as well as error bounds
for a shader over a finite area of a surface has several interesting applica-
tions. For example, in radiosity computations [Cohen and Wallace 1993],
the mean reflectance of surface patches is required for setting up a linear
equation system for the global illumination problem. Hierarchical radiosity
[Hanrahan and Salzman 1989] adaptively subdivides the patches in order
to compute interactions between patches exchanging large quantities of
radiosity or energy [Lischinski et al. 1994] with higher precision. The
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known subdivision criteria assume a constant reflection coefficient for each
patch. The ability to compute conservative error bounds for the reflection
function over a patch would allow for improved subdivision criteria based
not only on the amount of energy, but also on the amount of detail in the
reflection function.

Another application for area samples with conservative error bounds is
the generation of texture maps in cases where procedural shaders cannot
be directly supported by the renderer, either due to a limitation of the
renderer (for example, renderers based on libraries like OpenGL), or due to
performance penalties. With the help of error bounds on reflectance values
it is possible to generate hierarchically a precomputed texture from proce-
dural shaders. Starting with a coarsely sampled texture area, we recur-
sively refine those area samples in which the error is above a given
threshold.

This adaptive subdivision yields a piecewise constant approximation of
the shader, where the error in each cell is smaller than the threshold. This
is the case if either the sampling rate is higher than the highest frequency
of the shader (that is, there are no frequencies above the Nyquist limit), or
the amplitudes of these higher frequencies are small enough to be ne-
glected. Using this kind of hierarchical analysis, the number of samples can
be minimized without losing any detail.

Since procedural shaders offer only a point sampling interface, the only
way to generate error estimates for a shader function over a finite area is
Monte Carlo sampling. However, this method only yields an estimate of the
true error bounds, and since Monte Carlo methods only converge with
O(=N) [Kalos and Whitlock 1986], this process can be very expensive. For
applications where truly conservative bounds are required, these methods
cannot be used at all.

In the past, Greene and Kass [1994] have used interval arithmetic for
anti-aliasing shaders. These shaders are programmed in a visual dataflow
language [Kass 1992], which is then compiled to C11.

In this paper, we describe a general method for computing tight, conser-
vative error bounds for procedural RenderMan shaders using affine arith-
metic. Using this method, it is possible to apply procedural shaders to the
application domains mentioned above. We first give a brief overview of
affine arithmetic in general before we describe the details of applying it to
procedural shaders.

2. AFFINE ARITHMETIC

Affine arithmetic (AA), first introduced in Comba and Stolfi [1993], is an
extension of interval arithmetic [Moore 1966]. It has been successfully
applied to several problems for which interval arithmetic had been used
before [Musgrave et al. 1989; Snyder 1992a; 1992b]. This includes reliable
intersection tests of rays with implicit surfaces, and recursive enumera-
tions of implicit surfaces in quad-tree-like structures [Figueiredo 1996;
Figueiredo and Stolfi 1996].
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Like interval arithmetic, AA can be used to manipulate imprecise values
and to evaluate functions over intervals. It is also possible to keep track of
truncation and round-off errors. In contrast to interval arithmetic, AA also
maintains dependencies between the sources of error, and thus manages to
compute significantly tighter error bounds. Detailed comparisons between
interval arithmetic and affine arithmetic can be found in Comba and Stolfi
[1993]; Figueiredo [1996]; and Figueiredo and Stolfi [1996].

Affine arithmetic operates on quantities known as affine forms, given as
polynomials of degree one in a set of noise symbols e i.

x̂ 5 x0 1 x1e1 1 x2e2 1 · · · 1 xnen .

The coefficients xi are known real values, while the values of the noise
symbols are unknown but limited to the intervals U :5 [21, 1]. Thus, if all
noise symbols can independently vary between 21 and 1, the range of
possible values of an affine form x̂ is

@ x̂# 5 @ x0 2 j, x0 1 j#, j 5 O
i51

n

uxiu.

Computing with affine forms consists of replacing each elementary
operation f(x) on real numbers with an analogous operation f*(e1, . . . , en) :5
f( x̂) on affine forms.

If f is itself an affine function of its arguments, we can apply normal
polynomial arithmetic to find the corresponding operation f *. For example,
we get

x̂ 1 ŷ 5 ~ x0 1 y0! 1 ~ x1 1 y1!e1 1 · · · 1 ~ xn 1 yn!en

x̂ 1 a 5 ~ x0 1 a! 1 x1e1 1 · · · 1 xnen

ax̂ 5 ax0 1 ax1e1 1 · · · 1 axnen

for affine forms x̂, ŷ, and real values a.

2.1 Nonaffine Operations

If f is not an affine operation, the corresponding function f *(e1, . . . , en)
cannot be exactly represented as a linear polynomial in the e i. In this case,
it is necessary to find an affine function f a(e1, . . . , en) 5 z0 1 z1e1 1 . . .
1 znen approximating f *(e1, . . . , en) as well as possible over Un. An
additional new noise symbol ek has to be added to represent the error
introduced by this approximation. This yields the following affine form for
the operation z 5 f( x):

ẑ 5 f a~e1 , . . . , en! 5 z0 1 z1e1 1 · · · 1 znen 1 zkek ,k [y $1, . . . , n%.
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The coefficient zk of the new noise symbol has to be an upper bound for the
error introduced by the approximation of f * with f a:

zk $ max$ uf *~e1 , . . . , en! 2 f a~e1 , . . . , en! u : e i [ U%.

For example, it turns out (see Comba and Stolfi [1993] for details) that a
good approximation for the multiplication of two affine forms x̂ and ŷ is

ẑ 5 x0 y0 1 ~ x0 y1 1 y0 x1!e1 1 · · · 1 ~ x0 yn 1 y0 xn!en 1 uvek ,

with u 5 (i51
n uxiu and v 5 (i51

n uyiu. In general, the best approximation f a

of f * minimizes the Chebyshev error between the two functions.
The generation of affine approximations for most of the functions in the

standard math library is relatively straightforward. For a univariate
function f( x), the isosurfaces of f *(e1, . . . , en) 5 f( x0 1 x1e1 1 . . . 1
xnen) are hyperplanes of Un that are perpendicular to the vector ( x1, . . . ,
xn). Since the isosurfaces of every affine function f a(e1, . . . , en) 5
z0 1z1e1 1 . . . 1 znen are also hyperplanes of this space, it is clear that
the isosurfaces of the best affine approximation f a of f * are also perpendic-
ular to ( x1, . . . , xn). Thus, we have

f a~e1 , . . . , en! 5 ax̂ 1 b 5 a~ x0 1 x1e1 1 . . . 1 xnen! 1 b

for some constants a and b. As a consequence, the minimum of maxe i[Uuf a

2 f * u is obtained by minimizing maxe i[Uuf( x̂) 2 ax̂ 2 b u 5 maxx[[a, b]uf( x)
2 ax 2 b u, where [a, b] is the interval [ x̂]. Thus, approximating f * has
been reduced to finding a linear Chebyshev approximation for a univariate
function, which is a well-understood problem [Cheney 1966]. An example
for such an approximation is outlined in the Appendix. A compilation of
affine approximations for common math library functions can be found in
Heidrich [1997].

Most multivariate functions can be handled by reducing them to a
composition of univariate functions. For example, the maximum of two
numbers can be rewritten as max(x, y) 5 max0(x 2 y) 1 y, with max0(z) :5
max( z, 0). For the univariate function max0( z), we can use the scheme
above.

3. APPLICATION TO PROCEDURAL SHADERS

In order to apply AA to procedural shaders, it is necessary to investigate
which additional features are provided by shading languages in comparison
to standard math libraries. In the following, we restrict ourselves to the
functionality of the RenderMan shading language [Harahan and Lawson
1990; Pixar 1989; Upstill 1990], which is generally agreed to be one of the
most flexible languages for procedural shaders. Since its features are a
superset of most other shading languages (for example, Alias/Wavefront
[1996] and Molnar et al. [1992]), the concepts apply to these other lan-
guages as well.
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Shading languages usually introduce a set of specific data types and
functions exceeding the functionality of general-purpose languages and
libraries. Most of these additional functions can be easily approximated by
affine forms using techniques similar to the ones outlined in the previous
section. Examples of this kind of domain-specific function are continuous
and discontinuous transitions between two values, like step functions,
clamping of a value to an interval, or smooth Hermite interpolation
between two values.

The more complicated features include splines, pseudo-random noise, and
derivatives of expressions. The latter two are discussed in Sections 3.2 and
3.3 in detail.

New data types in the RenderMan shading language are points and color
values; both are simply vectors of scalar values. Affine approximations of
the typical operations on these data types (sum, difference, scalar-, dot-,
and cross product, as well as the vector norm) can easily be implemented
based on the primitive operations on affine forms.

Every shader in the RenderMan shading language is supplied with a set
of explicit, shader specific parameters that may be linearly interpolated
over the surface, as well as fixed set of implicit parameters (global vari-
ables). The implicit parameters include the location of the sample point, the
normal and tangents in this point, as well as vectors pointing towards the
eye and the light sources. For parametric surfaces, these values are
functions of the surface parameters u and v, as well as the size of the
sample region in the parametric domain du and dv.

For parametric surfaces, including all geometric primitives defined by
the RenderMan standard, the explicit and implicit shader parameters can
therefore be computed by evaluating the corresponding function over the
affine forms for u, v, du, and dv. The affine forms of these four values
have to be computed from the sample region in parameter space. For many
applications, du and dv are actually real values on which the affine forms
of u and v depend: û 5 u0 1 du z e1 and v̂ 5 v0 1 dv z e2.

3.1 Control Statements

Like most other programming languages, shading languages provide a set
of control statements. These can be grouped into two categories: conditional
statements and loops. Both use Boolean expressions composed of equalities
and inequalities to choose between different execution paths.

In the context of affine arithmetic or interval arithmetic, the use of
inequalities has the problem that as soon as two values with overlapping
ranges are compared, the inequality is neither true nor false. Therefore,
some form of three-state logic or fuzzy logic has to be used. In case an
expression is not decidable, both execution paths have to be executed and
the results have to be merged.

We have developed a method to deal with this problem by replacing each
inequality with a step function. For example, x , y becomes step( y 2 x),
where step( x) :5 0 for x , 0 and step( x) :5 1 otherwise. It is
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straightforward to find an optimal affine approximation for this step
function. Because of the discontinuity, there is a whole family of linear
functions passing through the point (0, 1/2), for which the Chebyshev error
is 1/2, the optimum value. One of these functions is f( x̂) 5 1/ 2, so that ẑ :5
1/ 2 1 1/ 2ek is an optimal implementation of the step¼ function.

After this replacement, Boolean expressions in inequalities can be writ-
ten as arithmetic expressions. For example, x1 , y1 and x2 , y2 becomes
step( y1 2 x1) z step( y2 2 x2). The following example is an excerpt of the
“screen” shader [Upstill 1990] using an if-statement to compute the opacity
value.

if(mod(s, 1.0) , density i mod(t, 1.0) , density )
Opacity:5 1.0;

else
Opacity:5 0.0;

endif

Using the transformations for Boolean expressions as described above, the
if-statement is translated into the following piece of code. Loops are treated
in a similar fashion.

condition:5 1.0 2 (1.0-step(density-mod(s,1.0))) * (1.0-step(density-mod(t,1.0)));
(min,max)5 range(condition);
if(min.5 1.0)

Opacity:5 1.0;
else if(max,5 0.0)

Opacity:5 0.0;
else

Opacity1:5 1.0; Opacity2:5 0.0;
Opacity:5 condition*Opacity1 1 (1-condition)*Opacity2;

endif

The variables Opacity1 and Opacity2 hold the temporary values of the
opacity for the two execution paths. This kind of temporary variable has to
be introduced for all variables that may change in either the if or the else
part of the conditional.

Figure 1 shows an image of the screen shader including the illumination
effects from a single point light source, sampled on a 512 3 512 grid using
this substitution. Each pixel represents an area sample of the correspond-
ing grid cell. The left side of the figure shows the color-coded range size for
the affine form of each color value. Darker color values mean larger range
sizes. Ninety-one percent of the color values have errors of less than 5
percent. Still, 90 percent have an error smaller than 1 percent.

It is clear that high errors occur only at locations with high color
gradients, where the sample area covers both bright and dark areas of the
shader. The oval region in the right half of the texture image represents
the front-facing part of the sphere. For points outside this region, the
normal vectors are inverted to point towards the eye. This, together with
the high specular component of the shader, results in a larger color
gradient.
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3.2 Noise and Turbulence

In order to generate interesting-looking detail, procedural shaders require
a pseudo-random function which is both reproducible and continuous. This
function is typically called noise [Ebert et al. 1994]. Many algorithms for
noise functions have been proposed, starting with value noise, which
interpolates pseudo-random data values at the grid points of an integer
lattice [Lewis 1989], over gradient noise [Perlin 1985; Perlin and Hoffert
1989], which enforces a pseudo-random gradient at the lattice points, to
hybrid methods [Ward 1991] and sparse convolution noise [Lewis 1989].

The choice of a specific noise function has a significant impact on the
characteristics of the shader. In particular, the base frequency of the noise
influences the size of the features and irregularities on the shader. For
proper shader-driven anti-aliasing, this base frequency has to be known to
the shader [Ebert et al. 1994]. Because most published RenderMan shaders
implicitly assume gradient noise as introduced by Perlin and Hoffert
[1989], we decided to use this version of the noise function, too.

To evaluate gradient noise at a sample point in 3-dimensional space, first
pseudo-random gradient vectors and scalar values are generated in each
vertex of an integer lattice. At each vertex ( x0, y0, z0), the pair of gradient
g and scalar d defines a linear function f with f( x0, y0, z0) 5 d and ¹f( x0,
y0, z0) 5 g. The eight linear functions corresponding to the vertices next to
the sample point are combined using smoothed trilinear interpolation
[Ebert et al. 1994]:

gradientNoise(x, y, z)
begin

ix :5 floor(x);iy :5 floor(y);iz :5 floor(z);
fx :5 x 2 ix; fy :5 y 2 iy; fz :5 z 2 iz;
wx :5 smoothstep(fx);wy :5 smoothstep(fy);wz :5 smoothstep(fz);
look up gradients g000, g001, . . . 111 and d000, d001, . . . , d111 in points

(ix, iy, iz), (ix, iy, iz 1 1), . . . , (ix 1 1, iy 1 1, iz 1 1).

Fig. 1. The screen shader, including illumination effects, sampled on a sphere. The if-
statements in the shader have been replaced by step functions, as described in the text. The
left image shows the size of the error interval as a color-coded error plot (dark regions mean
large errors), the center image shows the sampled texture, and the right image shows the
texture mapped onto a sphere.
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each pair of gradient and scalar defines a linear function:
fijk(fx, fy, fz) :5 ^gijku(fx 2 i, fy 2 j, fz 2 k)& 1 dijk, i, j, k [

{0, 1}
trilinear interpolation of the fijk(fx, fy, fz), using wx, wy, and wz as

weights.
end

In this algorithm, smoothstep( x) :5 3x2 2 2x3 defines a smooth transi-
tion between 0 and 1 over the interval [0, 1]. An affine approximation for
the noise function over a single lattice cell can be derived quite easily by
replacing the real valued versions of smoothstep, the linear functions, and
the trilinear interpolation by functions operating on affine forms.

It is, however, significantly harder to find a good affine approximation if
the vector of affine forms representing the 3-dimensional point of evalua-
tion spans multiple lattice cells. In this case we decided to fall back to
interval arithmetic for the evaluation of the noise function. The resulting
interval is stored as an affine form z0 1 zkek, so that subsequent
computations can still use AA to keep track of the dependency of other
expressions on the error introduced by the noise function.

If the range of one of the components of the point of evaluation spans
more than two lattice cells, we simply return the maximum interval of the
noise function ([0, 1] in the RenderMan shading language) as an affine
form. Although this approach might seem overly simplified at first glance,
it does not usually have a strong impact on the quality of the error bounds,
since in this case the sample contains frequencies above the Nyquist limit.
Moreover, a few grid cells are usually enough for the noise function to use
its full dynamic range. On the other hand, many of the more involved
shaders avoid this problem altogether by removing frequencies above the
sampling rate using clamping [Norton et al. 1982]. Also, in algorithms that
hierarchically subdivide the parameter range, the ranges of all components
eventually span no more than two adjacent grid cells.

More care has to be taken in cases where the ranges of the components
only span up to two adjacent cells in either direction. In a hierarchical
algorithm, this case occurs no matter how finely the parameter range has
been subdivided. If in this case the full interval [0, 1] is returned, the
shader bounds will not converge around points located on the boundaries of
noise grid cells.

Therefore, we restrict the range of the point to each of the covered cells
and evaluate noise over the restricted intervals. The ranges of the result-
ing affine forms are combined for the final result. A potential problem with
this approach is that, although the range for the resulting affine form is a
relatively tight bound for the true range of the noise function around the
sample point, the dependencies of the value on the noise symbols are lost.
This can lead to problems when computing derivatives, as described in
Section 3.3. In shaders without derivatives, we found that this method
produces very tight error bounds; see Figure 2, where the “wood” shader
[Upstill 1990] is applied to a sphere.
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The example shows again that errors occur only in areas of high gradi-
ents in the shader function and on the transition from lit to unlit areas.
This is also confirmed by the statistics: 98 percent of the pixel values have
an error below 5 percent, and 93 percent of the errors are below 1 percent.

While the wood shader uses noise at a fixed frequency only, a lot of other
shaders use it to generate a stochastic spectral function with a specific
frequency/power spectrum. Such a function is given as (m noise(P z
f m)/f m for some scaling factor f. This function is called fractal noise, or
turbulence. One of the shaders using turbulence is the “blue marble” shader
[Upstill 1990], which is shown at the top of Figure 3.

The blue marble shader uses clamping to eliminate high frequencies, but
still contains frequencies that are close to the sampling rate. This leads to
relatively large gradients, and thus to larger error intervals. In the
example shown in Figure 3, 81 percent of the pixels lie within 5 percent,
and 59 percent within 1 percent of error. These numbers reflect the fact
that the true variation of the shading function over each pixel is relatively
high, which can be seen from the cross section of the blue marble shader in
the lower left of Figure 3. The error bounds produced by AA are still
relatively tight around the true variation of the shader over each sample
area.

A single supersampling step for this function, that is, an increase of the
sampling rate by a factor of two without introducing even higher frequen-
cies into the shader function, yields substantially improved error bounds
(right side of Figure 3). The statistics for this case are 92 percent of the
values below 5 percent and 82 percent below 1 percent error.

3.3 Derivatives

Another feature unique to shading languages is the possibility of calculat-
ing the derivatives of expressions. The RenderMan shading language is
particularly flexible in this respect, since it does not limit the kind of
expressions that can be derived, nor the location in the shader code where a
derivative can be computed. This can often cause severe problems in
implementations [Slusallek et al. 1994].

Fig. 2. The wood shader uses the noise function to generate irregularities in the rings.
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Among the most common reasons for using derivatives is the calculation
of tangent vectors and normal vectors at a particular point:

calculatenormal~P! 5
P

u
3

P

v
.

Note that the point P does not need to be a point on the original surface,
but can be a displaced point generated by a bump-mapping algorithm. A
related application of derivatives is the calculation of the area of the
differential surface element around a point, which is required for proper
shader-driven anti-aliasing.

area~P! 5 icalculatenormal~P!i.

In the RenderMan shading language, derivatives are supported in the form
of divided differences. For example, derivatives of arbitrary expressions
with respect to the change in surface parameters u and v are defined as

Du~ f~u!! :5
f~u 1 du! 2 f~u!

du
and Dv~ f~v!! :5

f~v 1 dv! 2 f~v!

dv
.

Derivatives with respect to arbitrary expressions are computed using the
chain rule: Deriv( f, g) :5 Du( f )/Du( g) 1 Dv( f )/Dv( g).

Fig. 3. Top: The blue marble shader. Bottom: Cross sections of the shader sampled at the
original sampling rate (left) and twice this sampling rate (right) over the interval ue[0, 0.25]
with v 5 0.3. The cross sections show the blue channel of the shader.
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With these definitions, conservative bounds for derivatives according to
the RenderMan standard can be obtained by maintaining the triple
( x̂(u, v), x̂u :5 x̂(u 1 du, v), x̂v :5 x̂(u, v 1 dv)) for each expression
x̂(u, v) during the execution of the shader. The divided difference of each
expression is then available at every time. Each expression of the shader
has to be evaluated at all three points (u, v), (u 1 du, v), and (u, v 1
dv); and of course the parameters of the shader have to be provided at all
three points as well.

Note that for this algorithm to work with if-statements, both the if- and
the else path have to be executed if the Boolean control expressions for the
three points yield different results. A similar problem occurs with loops
where the number of iterations may depend on all three different expres-
sions. If the derivatives are not used within the loop itself, we can simply
generate three independent loops for each of the three parametric points. If
derivatives are used within loops, our current implementation ignores the
problem, and terminates the recursion according to the value of the main
expression. On these rare occasions, this can result in situations where the
bounds on the derivatives are not conservative.

An example of a simple bump-mapped shader implemented using this
approach can be seen in Figure 4. The image shows a sphere modulated
with a sine wave in one parametric direction. The new shading normal has
been computed using the function calculatenormal, with the displaced
surface point, as described above. More than 98 percent of the pixel values
are within 5 percent of error, and 94 percent of the pixels have an error
smaller than 1 percent. The error plot shows that the largest errors are due
to singularities at the poles of the sphere. Due to bump mapping, there are
also several areas in this shader for which the normal is inverted with
respect to the eye. Around these areas there are also fine lines of medium-
sized errors.

The method of divided differences works fairly well for relatively simple
expressions, but the errors become larger as the complexity of the expres-
sions grows. The quality of the bounds degrades distinctly when noise is
used at high frequencies as, for example, with the “eroded” shader [Upstill
1990], shown in Figure 5.

Fig. 4. A sphere with a simple bump-mapped surface. The normal vector has been computed
using derivatives with respect to the parametric directions u and v.
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It can be seen from the error plot in Figure 5 that large errors occur at
the boundaries of noise lattice cells, due to the way noise values for affine
forms that span multiple grid cells are computed. Since divided differences
use differences of highly correlated values, it is important for the affine
forms to reflect this correlation. However, with the current method of
computing noise this correlation is lost at grid boundaries. Roughly 77
percent of the pixel values are within 5 percent of error, and 53 percent of
the pixels have an error smaller than 1 percent. These values could
certainly be improved with a better affine approximation of the noise
function.

Alternative Ways to Compute Derivatives

Conformance with the RenderMan standard is a major reason for using
divided differences as an approximation for derivatives. If this is not an
important issue, we can use other ways to implement derivatives. One is to
use information contained in the affine forms as an estimate for derivatives
directly. In Section 3 we mentioned that du and dv are often real values,
and u and v depend on them: û 5 u0 1 du z e1 and v̂ 5 v0 1dv z e2. In
this case we can use the coefficients z1 and z2 of any affine form ẑ 5 f(û, v̂)
as an estimate for its partial derivatives f/u and f/v. If f is differentia-
ble, the mean value of f/u is contained in the interval z1 6 1/ udu u(3

n zi.
This does not yield conservative bounds for the derivative over the whole
range of u and v, but neither do divided differences. This approach is
obviously much faster than divided differences, where each expression has
to be evaluated three times.

However, this way of estimating derivatives causes problems in discon-
tinuous areas, which occur quite frequently in procedural shaders. As an
example, consider the step¼ function mentioned above. If the range of û
contains zero, the true range of derivatives for step(u)/u is [0, `).
Divided differences yield the range [0, 1/du], which converges to the
correct range as the parameter domain is subdivided. The approach de-
scribed above, however, yields the range [21/du, 1/du], which is not
useful in practice. Similar problems can even arise in continuous areas of
the shader, for example at grid boundaries of the noise function. Since we

Fig. 5. A sphere with “encoded” shader applied.
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use interval arithmetic to evaluate the noise function in these areas, the
resulting affine forms do not depend on e1 and e2 at all: noise( x̂) 5 z0 1
zkek. Thus the resulting range for the derivative is [2 uzku/du, uzku/du],
which does not, in general, converge to a single scalar value.

Another possible algorithm for implementing derivatives is automatic
differentiation [Rall 1981]. In contrast to the other two methods, automatic
differentiation computes conservative bounds for the derivatives in the
mathematical sense. Instead of maintaining x̂u and x̂v, automatic differen-
tiation directly stores the partial derivatives  x̂/u and  x̂/v of every
expression. These partial derivatives are computed by applying the chain
rule to every primitive expression. For example, the logarithm of the triple
( x̂,  x̂/u,  x̂/v) is (ln( x̂), ( x̂/u)/x̂, ( x̂/v)/x̂). This algorithm also
avoids the problems we have with the combination of derivatives and
for-loops when using divided differences.

For normal floating point arithmetic, automatic differentiation is numer-
ically more stable than divided differences. It is not clear whether this also
applies to AA, since the expressions for derivatives tend to be more
complex, and thus a larger error could be introduced by the larger number
of nonaffine operations. However, this is certainly a point worth investigat-
ing in the future.

Of course, both divided differences and automatic differentiation intro-
duce a significant amount of computational overhead, and thus the shading
language compiler should optimize the code to compute x̂u and x̂v or  x̂/u
and  x̂/v only for expressions eventually used in a derivative. This
requires the compiler to perform some sort of dependency analysis, as
discussed by Guenter et al. [1995].

4. RESULTS

In this paper we use affine arithmetic to obtain conservative bounds for
shader values over a parameter range. In principle, we could also use any
other range analysis method for this purpose. It is, however, important that
the method generates tight, conservative bounds for the shader. Conserva-
tive bounds are important so that no small detail is missed, while tight
bounds reduce the number of subdivisions, and therefore save both compu-
tational time and memory.

We have performed tests to compare interval arithmetic to affine arith-
metic for the specific application of procedural shaders. Our results show
that the bounds produced by interval arithmetic are significantly wider
than the bounds produced by affine arithmetic. Figure 6 shows the wood
shader sampled at a resolution of 512 3 512. The error plots show that
interval arithmetic yields errors up to 50 percent in areas where affine
arithmetic produces errors below 1/256. As a consequence the textures
generated from this data, by assigning the mean values of the computed
range to each pixel, reveal severe artifacts in the case of interval arith-
metic.
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The corresponding error histogram in Figure 7 shows that while most of
the per-pixel errors for affine arithmetic are less than 3 percent, most of
the errors for interval arithmetic are in the range of 5–10 percent, and a
significant number is even higher (up to 50 percent).

These results are not surprising. All the expressions computed by a
procedural shader depend on four input parameters: u, v, du, and dv.
Affine arithmetic keeps track of most of these subtle dependencies, while
interval arithmetic ignores them completely. The more complicated func-
tions become, the more dependencies between the sources of error exist,
and the bigger the advantage of AA. These results are consistent with prior
studies in Comba et al. [1993], Figueiredo [1996], and Figueiredo and Stolfi
[1996].

Both affine and interval arithmetic bounds can be further improved by
finding optimal approximations for larger blocks of code, instead of just
library functions. This process, however, requires human intervention and
cannot be done automatically.

The method presented in this paper is thus the only practical choice, as
long as conservative error bounds are required. Other applications, for
which an estimate of the bounds is sufficient, could also use Monte Carlo
sampling. In this case it is interesting to analyze the number of Monte
Carlo samples and the resulting quality of the estimate that can be
obtained in the same time as a single area sample using AA. Table I
compares these numbers in terms of floating point operations (FLOPS) and
execution time (on a 100MHz R4000 Indigo) for the various shaders in this
paper.

The relative performance of AA decreases for more complicated shaders,
since more error variables are introduced due to the increased amount of
nonaffine operations. Table I shows that depending on the shader, 5 to 10
point samples are as expensive as a single AA area sample. To see what
this means for the quality of the bounds, consider the screen shader with a
density of 0.5. This density means that 75 percent of the shader is opaque,
while 25 percent is translucent. If we take 7 point samples of this shader,
which is about as expensive as a single AA sample, the probability that all
samples compute the same opacity is 0.757 1 0.257 ' 13.4 percent. Even
with 10 samples the probability is still 5.6 percent.

Fig. 6. The wood shader sampled at a resolution of 512 3 512. From left to right: Error plot
using interval arithmetic, resulting texture, error plot using affine arithmetic, resulting
texture.
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For the example that uses area samples as a subdivision criterion in
hierarchical radiosity, this means that a wall covered with the screen
shader has a probability of 13.4 (or 5.6) percent of not being subdivided at
all. The same probability applies to each level in the subdivision hierarchy
independently. These numbers indicate that AA is superior to point sam-
pling, even when only coarse estimates of the error bounds are desired.

5. APPLICATIONS AND CONCLUSION

We have presented a method to generate conservative error bounds for area
samples of procedural shaders. The algorithm is based on affine arithmetic
and works by evaluating the compiled shader using affine forms instead of
normal floating point values. We have described how the functionality of
the popular RenderMan shading language can be implemented with affine
arithmetic and how affine approximations of the various functions can be
generated.

We have implemented a hierarchical subdivision scheme for procedural
RenderMan shaders using the methods described in this paper. Given a
tolerance value, the algorithm hierarchically subdivides the parameter
domain of the shader, until the area samples for all subdivision cells are
within the tolerance, or a maximum recursion level is reached. This
algorithm results in a hierarchical analysis of the shader and allows us to
find an optimal resolution for representing the resulting texture. Figure 8

Fig. 7. Error histograms for the wood shader for interval arithmetic (left) and affine
arithmetic (right).

Table I. FLOPS per Sample and Timings for 4096 Samples (for stochastic point sampling
(ps) and AA area sampling (aa).

Shader FLOPS (ps) FLOPS (aa) Ratio Time (ps) Time (aa) Ratio

screen 24 214 1:8.92 4.57 33.48 1:7.32
wood 803 6738 1:8.39 8.34 86.53 1:10.38
marble 4386 28812 1:6.57 9.46 88.52 1:9.36
bumpmap 59 487 1:8.25 3.76 20.43 1:5.43
eroded 2995 26984 1:9.01 18.85 193.33 1:10.27
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shows the result of such a subdivision for the wood shader with a tolerance
of 5 percent and a maximum recursion depth of 8 (resolution 256 3 256).

Using this hierarchical subdivision scheme, it is possible to precompute
textures from procedural shaders with an unknown amount of detail
information. These textures can then be applied (for example, with the
OpenGL renderer we used to generate the images in this paper). We are
currently working on integrating the subdivision scheme into the Vision
rendering system [Slusallek and Seidel 1995] for supporting finite element-
based global illumination. The level of subdivision shown in Figure 8 is
sufficient for this purpose, but clearly the tolerance has to be decreased for
textures directly used in OpenGL renderers.

In Stamminger et al. [1997], an algorithm is described for bounding form
factors and lighting computations. This yields conservative bounds for both
the geometric and the lighting computations in a radiosity system, but
ignores potential variations of surface materials. In this sense, our method
for bounding the error for area samples of procedural shaders now fills in
the missing parts for bounds on global illumination simulations. The two
algorithms combined mean that neither geometric nor material details can
be missed. We think that the ability to generate conservative bounds for
procedural shaders will also be useful in a variety of other applications,
such as ray-tracing of displacement shaders.

APPENDIX. An Affine Approximation of f(x) 5 1/x

In Section 2.1 we saw that the best affine approximation of a function
f *(e1, . . . , en) 5 f( x̂) is f a(e1, . . . , en) 5 ax̂ 1 b, for some a and b.

As an example, consider the function f( x) 5 1/x for x . 0. The
Chebyshev alternation theorem (see Cheney [1966]) states that the best
linear Chebyshev approximation of f( x) over an interval [a, b] is uniquely
determined. Moreover, the maximum error occurs at three points on the
interval [a, b], and since f( x) is convex, two of these points, a and b, are
the boundaries of the interval. Therefore a is the slope of the line connect-

Fig. 8. The hierarchically subdivided wood shader for a maximum resolution of 256 3 256.
Cells with an error of over 5 percent were subdivided at each level. This resulted in a total of
19512 samples instead of 65536 for the full resolution (29.8 percent).
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ing (a, 1/a) and (b, 1/b): a 5 21/(ab). The third point x9 of maximal error
is the point on f where the tangent is parallel to line x9 5 1/=2a.

Finally, first degree Chebyshev approximation is the line with slope a
centered between the first line and the tangent (see Figure 9). Thus, with
b1 :5 1/a 2 aa and b2 :5 1/x9 2 ax9, the value of b is b 5 (b1 1 b2)/2,
and the maximum error on [a, b] is d 5 ub1 2 b2u/2. Thus the best affine
approximation for 1/x is

ẑ 5 ax̂ 1 b 1 dek 5 ~ax0 1 b! 1 ax1e1 1 · · · 1 axnen 1 dek .

Linear approximations for other functions can be derived easily using
similar techniques.
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