
An Image-Based Model for Realistic Lens Systems
in Interactive Computer Graphics

Wolfgang Heidrich, Philipp Slusallek, Hans-Peter Seidel
Computer Graphics Group

University of Erlangen
Am Weichselgarten 9

91058 Erlangen, Germany

Phone: +49.9131.859926 Fax: +49.9131.859931

e-mail: {heidrich,slusallek,seidel}@informatik.uni-erlangen.de

Abstract

Many applications, such as realistic rendering,
virtual and augmented reality, and virtual studios,
require an accurate simulation of real lens and cam-
era systems at interactive rates, including depth of
field and geometric aberrations, in particular distor-
tions. Unfortunately, camera models used in Com-
puter Graphics are either too simple to describe
these effects or too expensive to simulate for inter-
active use.

In this paper, we introduce an image-based lens
model that is powerful enough to simulate sophisti-
cated properties of real lens systems, yet fast enough
for interactive graphics. By exploiting coherence,
common graphics hardware can be used to yield high
frame rates.

Keywords: Lens Systems, Image-Based Render-

ing, Hardware Acceleration, Interactive Computer

Graphics

1 Introduction

The accurate simulation of properties of com-
plex lens systems, including depth of field and ge-
ometric aberrations, in particular distortions, are of
high importance to many applications of computer
graphics. In the past, most approaches for simulating
these properties have been based on off-line render-
ing methods such as distribution ray-tracing [2, 9].

Efforts for improved lens and camera models for
interactive computer graphics have mainly been re-
stricted to the simulation of depth of field [8, 13].
On the other hand, a model that allows for a more
accurate simulation of real lens systems would be
particularly useful for interactive graphics, because
it could not just be used for photorealistic rendering,
but also for combining real and synthetic scenes, for
example in augmented reality and virtual studios.
For these environments it is necessary to simulate
real lens systems, so that real-world and synthetic
objects can be merged into a single image.

In this paper, we describe an image-based camera
model for interactive graphics, which is capable of
simulating a variety of properties of real lens systems
at high frame rates. Similarly to [9], the model uses
the real geometry of lenses and computes an accu-
rate approximation of the exposure on the film plane.
However, instead of using ray-tracing, our model ap-
proximates the light field [10, 6] between the lens
and the film plane. By making use of the coherence
in ray-space, common computer graphics hardware
can be used for sampling the light field and rendering
the final image.

2 Existing Lens Models

We start by briefly reviewing existing camera
models, before we describe our new model, and re-
late it to the older ones.

2.1 Pinhole Model

The pinhole model of a camera is by far the most
frequently used camera model in computer graphics.
The pinhole camera is a box with a small hole of
negligible size in one of its sides. Light falls through
this hole and projects an upside-down image onto the
film on the opposite side of the box. The situation is
depicted in Figure 1.

Figure 1: A pinhole camera

The advantage of this model is its simplicity. Be-
cause the size of the hole is negligible, the light falling
through it can be assumed to be projected through

a single point. This projection can be described as
a perspective transformation, whose parameters are
the dimensions of the film and the distance of the
film plane from the hole, along with additional near
and far clipping planes (see, for example [4]).

Usually, when dealing with perspective transfor-
mations, we do not think of it in terms of a pinhole
camera, but as of a perspective projection with a
center of projection (COP) and some virtual image
plane in front of it. Throughout this paper, we use
the term ”image plane” for a virtual plane in front of
the COP of a perspective projection, while the term
”film plane” refers to the plane containing the film
in a camera model.

Although it is actually possible to construct a
physically working pinhole camera, this is not prac-
tical for several reasons. Most importantly, only very
little light falls on the film since the hole is so small,
and thus the exposure time has to be very long.

2.2 Thin Lens Model

Real lenses have a larger opening, called aperture,
whose size can no longer be neglected. The simplest
model of lenses with circular symmetry and finite
aperture is the thin lens approximation. This model
is used in optics and lens design to describe some of
the properties of simple lens systems [1].

The fundamental assumption of the thin lens
model is that the lens is of negligible thickness. As
a consequence, light passing through the lens is re-
fracted only in a single plane, the principal plane,
and moves in a straight line otherwise.

Light coming from a single point Q in object
space is focused in a single point in image space and
vice versa. Incident light from object space parallel
to the optical axis is focused in the focal point F ′ in
image space, while parallel light from image space
focuses in the focal point F in object space. Both
F and F ′ lie on the optical axis of the lens. The
situation is depicted in Figure 2.

F’

Q

f

F Q’

s s’

f’

Figure 2: The geometry of a thin lens system

If both object space and image space are in the
same medium, the distances f and f ′ of the focal
points from the principal plane are equal, and the
distance is called focal length. From this property it
follows that rays passing through the center of the
lens are not bent, but pass straight through the lens
system.

With these informations it is possible to con-
struct the image of a scene on a film plane at dis-
tance s′ from the principal plane, given the aperture
and the focal length f . For rendering it is often con-
venient to specify the distance s of the focal plane
(the plane that contains all points that are focussed
on the film plane) instead of the focal length. This
distance can be easily derived from the well-known
relationship

1

s
+

1

s′
=

1

f
.

2.3 Rendering Thin Lenses

Typically, rendering of thin lenses is done using
distribution ray-tracing [2]. For each sample point on
the film, rays are cast through random sample points
on the principal plane, and the resulting color values
are averaged. Casting of the rays is done by comput-
ing the point on the focal plane that corresponds to
the point on the film by shooting a ray through the
center of the lens. The intersection point is then con-
nected to the chosen sample point on the principal
plane.

An alternative approach is to select a fixed set
of sample points on the principal plane [8]. All rays
passing through a single sample point pi on the prin-
cipal plane represent a perspective projection with
pi as the COP (see Figure 3a).

Each of the images generated by these perspec-
tive projections represent a 2-dimensional slice of the
4-dimensional light field in front of the lens system,
as described in [10, 6]. In the following we call this
light field the scene light field. Due to the properties
of the thin lens model, this slice is identical to a slice
of the camera light field between the lens system and
the film plane, defined by the refracted rays. For the
light field, we use the same parameterization as [10].
Each point in this 4-dimensional space corresponds
to a ray from the film plane (two parametric direc-
tions) to the principal plane (another two parametric
directions).

Because each slice of the light field can be com-
puted using a standard perspective projection, com-
puter graphics hardware can be used to render

s

film

light field
camera

light field
scene

focal plane

ss’ s’

d

focal plane

film

Figure 3: (a) Rendering using the thin lens approximation. The rays from all points on the film through a
single sample on the aperture form a perspective transformation, which can be used to render a slice of the
light field. (b) Rendering of a thick lens approximation is similar to rendering of thin lenses, except that an
additional displacement of the ray is necessary. In both figures rays with the same line style originate from
different points on the film, but pass through the same sample point on the lens. All rays with the same
line style form a slice of the respective light field.

the slices. Averaging of slices from different sample
points pi to form the final image can be done using
an accumulation buffer [8].

It should be noted that the simple averaging of
the slices of the light field does not yield the cor-
rect exposure on the film, as pointed out by [9]. In
Section 3.5 we will show how the algorithm can be
extended to compute the correct exposure on the
film.

Another approach to rendering depth of field ef-
fects of thin lens models is post-filtering as used
in [12] and [13]. These methods require a filtering
step to be performed in software, which causes high
CPU loads and additional data transfers between
the graphics board and main memory, and there-
fore leads to performance penalties. Moreover, post-
filtering methods assume that each point in object
space is mapped onto a circle of confusion on the im-
age plane. This, however, is not a valid assumption
for off-axis points in real lens systems.

2.4 Thick Lens Model

An improved model for circular symmetric lenses,
where the thickness cannot be neglected, is the thick

lens model. It is frequently used in optics for complex
lens systems composed of several lenses and allows
for a more exact approximation.

In contrast to the thin lens, a thick lens has two
principal planes. The (signed) distance d between
the two planes is called the thickness of the lens.

Rays from object space hit the object-sided principal
plane, then move in parallel to the optical axis, until
they hit the image-sided principal plane, where they
leave the lens (see Figure 3b).

From a rendering point of view, a thick lens can
be treated very much like a thin lens, except for the
shift in parallel to the optical axis. Both the thin
and the thick lens model yield perfectly undistorted
images. Real lenses, however, always show aberra-
tions. Although lens designers usually try to mini-
mize aberrations, they are often not negligible. Vi-
sualization and simulation of these effects requires a
more sophisticated lens model.

2.5 Geometric Lens Model

The geometric lens model is based on the com-
plete geometric description of the lenses together
with their index of refraction. The model is evalu-
ated by tracing rays through the true lens geometry,
bending it at lens surfaces according to the change
in the index of refraction.

The full geometric model correctly simulates all
kinds of geometric aberrations, and is the only model
that is capable of handling lenses without rotational
symmetry, for example bi-focal or progressive addi-
tion lenses (PALs) used for eye glasses[11].

This model has been used in [9] to generate accu-
rate simulations of complex lens systems using distri-
bution ray-tracing. Unfortunately, the model is too
expensive in terms of rendering time to be used for

interactive graphics.

3 An Image-Based Camera Model

In following, we describe a new image-based
model for arbitrary lens systems, which is capable
of simulating aberrations, based on the geometric
description of the lens. Despite this flexibility, it is
possible to use computer graphics hardware to ren-
der images based on this model. As a result it is
well suited to interactive applications requiring high
frame rates.

Instead of directly using the full geometry of the
lens, our model describes a lens as a transformation
of the scene light field in front of the lens into the
camera light field between the lens and the film. Ev-
ery property of a lens system is completely described
by such a transformation.

Computer graphics hardware can efficiently gen-
erate slices of light fields. Therefore, our model de-
scribes a lens system as a mapping from slices of the
scene light field into corresponding slices of the cam-
era light field. The mapping consists of two parts:
selection of an appropriate slice of the scene light
field for a given slice of the camera light field, and
a morphing operation correcting for distortions due
to the aberrations of the lens system.

We represent a slice of the scene light field as a
perspective projection of the scene onto a suitable
image plane. Thus, a lens is represented as a set of
perspective projections and corresponding morphing
operators.

Similar to the rendering of thin lenses, the final
image is a composite of a number of slices of the cam-
era light field. These slices are defined by a number
of sample points pi on the image-sided surface of the
lens system.

3.1 Approximating Lens Systems

The approximation of real lens systems within
the new model consists of two steps. For each slice
of the camera light field, a corresponding slice in the
scene light field has to be selected. Unfortunately,
the 2-manifold in the scene light field corresponding
to a given slice of the camera light field is not in gen-
eral a planar slice, and therefore cannot be exactly
represented as a perspective projection.

This fact can easily be observed by tracing rays
from multiple points on the film through a single
point on the lens surface. The rays leaving the sys-
tem need not intersect in a single common point
(which could be used as the COP of a perspective
projection, see Figure 4). However, in many cases a
perspective projection can be found that is a good

approximation to the refracted rays.
In order to find the approximating perspective

projection, rays are shot from a regular grid on the
film through the point pi on the image-sided sur-
face of the lens system. Rays are bent as they pass
through the lens, yielding a set of rays leaving the
lens system on the object side, as shown in Figure 4.

pi

film

Figure 4: Tracing rays from a grid on the film
through a single point pi on the lens surface yields
a set of refracted rays in object space. These do not
in general intersect in a single point, and thus an
approximate virtual center of projection has to be
found.

This set of rays is then approximated with a pro-
jective transformation, which requires us to select a
virtual image plane, and to find an appropriate cen-
ter of projection. This is described in Section 3.3. An
alternative way of interpreting this approximation is
that the corresponding 2-manifold in ray space is
linearly approximated with a plane.

The remaining parameters of the perspective
transformation, in particular the upper, lower, left
and right boundaries on the image plane can then
be found by computing the bounding box of the in-
tersections of the rays with the chosen virtual image
plane.

Rendering the scene with the computed perspec-
tive transformations yields an image containing a
slice of the scene light field. At the same time, this
also is a distorted slice of the camera light field, with
the distortions directly corresponding to the aberra-
tions of the lens. We compensate these distortions
using morphing with bilinear interpolation. This is
achieved by texture-mapping the slice onto the grid
on the film, from which the rays had been shot be-
fore. The intersections of the rays with the image
plane are used as texture coordinates.

It is important to note that the ray-tracing step,
as well as the computation of the COP and the tex-

ture coordinates only has to be performed once, as
long as the geometry of the lens does not change.
Only if the lens system is re-focused, or the aperture
of a lens element changes, for example when adjust-
ing an aperture stop, these calculations have to be
repeated.

3.2 Hierarchical Subdivision

Lens systems with relatively small aberrations
are usually well approximated by a single projec-
tive transformation, as described above. For exam-
ple, this is true for lens systems that have a reason-
able thick lens approximation.

However, for lens systems with strong aberra-
tions, an approximation with a single perspective
projection introduces a large error. In these cases,
the grid on the film can be recursively subdivided
and refined using a quad-tree structure. The algo-
rithm is then applied recursively. This corresponds
to finding a hierarchical, piecewise linear approxima-
tion of the 2-manifold in ray-space.

All quad-tree cells corresponding to a single sam-
ple point on the lens form a partition of the film.
Combined, they contain the slice of the camera light
field required for rendering.

Of course, the hierarchical subdivision introduces
an additional rendering cost, since the scene has to
be rendered once for every subdivision. Thus, the
level of subdivision is a tradeoff between rendering
time and image quality.

The complete pseudo-code for determining the
perspective transformations is given below.

/∗ Perspective Projection ∗/
generate rays from film plane

compute virtual COP from the refracted rays

if COP is good enough

determine lower left and upper right

of the image by intersecting the

rays with the image plane

else
subdivide the grid

foreach subgrid

recursive

3.3 Computing the Center of Projection

The sets of rays exiting the lens on the object side
represent samples of a possibly complicated transfor-
mation that characterizes the lens system. The cen-
tral task in approximating this transformation with
a perspective projection is to find a good virtual
COP.

This problem is also known in computer vision,
where the aberrations of camera lenses have to be

removed based on the measured distortions on a cal-
ibration grid [7]. The approach proposed by the au-
thors of [7] is to choose the COP so that its distance
from all rays is minimal in the least-squares sense.

For our purposes, this approach works well as
long as there is no hierarchical subdivision. As soon
as subdivision is performed, however, intolerable dis-
continuities occur between adjacent quad-tree cells.
An analysis of the problem shows that the angle be-
tween the original rays and the corresponding rays
in the perspective projection can be relatively large.

As a solution, we found that minimizing the an-
gle between the original rays, and those generated
by the perspective transformation yields much bet-
ter results. This way, the maximum angle of the ap-
proximation could be reduced by a factor of up to
10. This maximum angle is also a good error cri-
terion for terminating the hierarchical subdivision.
The minimization process is outlined in the follow-
ing.

p

e

d

Figure 5: The center of projection is determined by
minimizing the angle between the direction d of the
original ray, and the vector p − e, where p is the
intersection point with the image plane.

Given the intersection point p of a ray with the
image plane and the normalized direction d of the
ray, we would like to find a virtual COP e that min-
imizes the angle between d and p − e over all rays
(see Figure 5). Instead of minimizing this angle, it is
also possible to maximize its cosine. The square of
this cosine c2 is given as

c2 =
1

||p − e||2
〈d|p − e〉2 (1)

A least-squares maximum of c is obtained by
maximizing the sum

∑

c2 over all rays using Newton
iteration. To this end, we need the first order Tay-
lor polynomial of the derivative of c2 around some
initial guess e0 for a COP. It can be easily verified
that

∂

∂ex

∑

c2 =
2

a3

[

∑

ab (apx − bdx) +

∑

(

b2
(

4f2

x − a
)

+ adx (ab − 4bfx)
)

·

(ex − e0,x) +
∑

(

−2ab (dyfx + dxfy) + 4b2fxfy + a2dxdy

)

·

(ey − e0,y) +
∑

(

−2ab (dzfx + dxfz) + 4b2fxfz + a2dxdz

)

·

(ez − e0,z)
]

+

O((ex − e0,x + ey − e0,y + ez − e0,z)
2),

where a = ||f ||2, b = 〈d|f〉
2

and f = p−e0. Simi-
lar formulas can be derived for ∂c2/∂ey and ∂c2/∂ez.
These three equations define a 3×3 system of linear
equations that can be used to compute one step of
a Newton iteration.

On the highest level of the subdivision, we use
the center of the lens as an initial guess for e0 in
the first step of the iteration. For all other levels of
subdivision, we use the virtual COP computed in
the previous level as a starting point.

In practice, we have found that two or three iter-
ations are usually sufficient. Again it is important to
note that the computation of such an COP only has
to be done once as a preprocessing step, or whenever
the lens configuration changes.

3.4 Aperture Stops and Vignetting

So far, we assumed that every ray from a point
on the film plane through one of the sample points
on the lens actually passes through the whole lens
system. This, however, is not a valid assumption for
many lens systems. Camera lenses usually have an
aperture stop. Rays may also be absorbed by other
parts of the lens system, especially when they are
shot from the outer regions of the film. This effect is
called vignetting.

Thus, it is necessary to deal with occasions when
a ray cast from one of the grid points on the film
does not pass through the lens. In this case the grid
has to be adjusted so that every ray passes through.

First, rays are cast from all grid points on the
outer border of the grid. If one of these rays does
not pass through the lens, bisection between the grid
point an the center of the grid is used to move the
grid point closer to the optical axis. Then the inner
points of the grid are placed inside this border at
approximately equal distances.

3.5 Radiometry

In the above description of both our algorithm
and the algorithm for rendering thin and thick
lenses, the final image has been generated by simply
averaging the 2-dimensional slices of the light field.
It has been pointed out in [9], that this is actually
not a correct model for the exposure on the film.

Exposure is the integral of irradiance incident on
the film over time. Assuming that a scene is static,
that is, that the irradiance is constant over the expo-
sure time, and that the shutter opens and closes in-
stantaneously, the exposure is simply the irradiance
times the exposure interval. Following the notation
in [9], the irradiance E(x′) at a point x′ on the film
is given as

E(x′) =

∫

x′′

L(x′′, x′)
cos θ′ cos θ′′

||x′′ − x′||2
dA′′, (2)

where x′′ is a point on the image-sided surface
of the lens, and dA′′ is the differential area around
this point. θ′ and θ′′ are the angles between the line
connecting x′ and x′′, and the normal vectors in x′

and x′′, respectively. This integral is approximated
as a discrete sum over the radiance contributed by
the sample points on the image-sided surface of the
lens:

E(x′) =
A

n

n
∑

i=1

L(x′′
i , x′)

cos θ′i cos θ′′i
||x′′

i − x′||2
, (3)

where A is the area of the lens.
The term L(x′′

i , x′) can be reconstructed from the
camera light field for every sample point x′′

i = pi and
every point x′ on the film. The function Wi(x

′) :=
cos θ′

i
cos θ′′

i

||x′′

i
−x′||2 is usually smooth and does not vary too

much over the film plane. Thus, it is sufficient to
evaluate this function at discrete points on the film,
and then use linear interpolation in between.

Therefore, the irradiance as given in Equa-
tion 3 can be rendered by alpha-blending every slice
L(x′′

i , x′) with a Gouraud-shaded grid of textured
polygons having Wi(x

′) as the alpha values at the
vertices.

The combination of this technique with the meth-
ods from previous sections results in the following
preprocessing steps for rendering:

/∗ Preprocessing ∗/
choose sample points pi = x′′

i

foreach sample point pi on the lens

generate grid points x′

i on the film

generate perspective projection from

the rays through pi

generate grid Wi of polygons with

alpha values Wi(x
′

j)

After preprocessing, the following steps have to
be performed in order to render every single frame:

/∗ Rendering ∗/
clear the accumulation buffer

foreach sample point pi on the lens

foreach projection j

render the scene

store the image as a texture Ti,j

foreach sample point pi on the lens

foreach texture Ti,j belonging to pi

map Ti,j onto a 2D grid on the film

alpha-blend the image with grid Wi

add the image to the accumulation buffer

4 Results

We have tested our new lens model with several
different lens systems. In particular, we have used
an achromatic doublet as shown in the top row of
Figure 6, as well as a simple bi-convex lens, shown
in the bottom row.

The achromatic doublet is a real lens system that
has been developed and used in real cameras in the
1920s [3]. The top left of Figure 6 shows an image
rendered with the algorithms described in this paper,
while the top right shows reference images of the
same scene rendered using distribution ray-tracing.

In both images the barrel distortions of the lens
are obvious. Moreover, in both images the outer re-
gions of the film are blurred due to aberrations of
the lens. Our method is the first one to allow for the
simulation of this effect at interactive rates.

The hardware-rendered image was generated on
a RealityEngine2 using 10 sample points on the lens
with a frame rate of approximately 14 frames per
second. A single perspective projection was used.
The ray-traced image uses distribution ray-tracing
with 10 samples per pixel, and took roughly 4.5 min-
utes for a 256 × 256 resolution on an Onyx with
an R8000 processor. Note that the ray-traced image
does not contain indirect illumination or shadows to
allow for performance comparisons between the two
algorithms.

The bottom row of Figure 6 shows the same scene
rendered using a simple, uncorrected bi-convex lens.
The image demonstrates the barrel distortion of the
lens as well as significant depth of field effects. The
scene was again rendered with 10 sample points, but
this time the film plane was subdivided. As a cri-
terion for the subdivision, we enforced a maximum

angle of 0.05 degrees between an original ray and
the corresponding approximated ray as described in
Section 3.3. This resulted in a total of 40 perspec-
tive projections to be rendered for one frame. As a
result, the frame rate decreased by approximately a
factor of 4 to roughly 3 frames per second.

For the grid on the film plane we used an ini-
tial grid of 10× 10 polygons. Higher grid sizes result
in a higher number of rays that have to be traced
in the preprocessing step. Lower grid resolutions re-
quire more subdivisions, which reduces the frame
rate since more projections have to be rendered per
frame.

5 Conclusion

In this paper, we have presented a novel image-
based model for lens systems. The model allows for
using graphics hardware for rendering, and is there-
fore well-suited for high-quality, interactive render-
ing.

Although the model is capable of simulating a
larger variety of lens properties than previous mod-
els, there are some aspects of real lenses that can-
not be handled. Most importantly, chromatic aber-
rations and frequency dependent refraction coeffi-
cients are not simulated, since contemporary com-
puter graphics hardware only supports RGB render-
ing.

Another limitation of our model is the assump-
tion of instantaneous shutter opening and a constant
irradiance during the whole exposure time. More
complex shutter functions and motion blur could
be implemented by averaging multiple images over
time. This, however would be too costly to achieve
interactive frame rates on contemporary hardware.

In summary, our model adds a significant amount
of realism to the simulation of lens systems in inter-
active graphics. Although it is not capable of simu-
lating every property of real lenses, it constitutes a
good compromise between quality of simulation and
rendering performance.

References

[1] Max Born and Emil Wolf. Principles of Optics. Perga-
mon Press, Oxford, 1993.

[2] Robert L. Cook, Thomas Porter, and Loren Carpenter.
Distributed ray tracing. In Computer Graphics (SIG-
GRAPH ’84 Proceedings), pages 134–145, July 1984.

[3] Johannes Flügge. Das photographische Objektiv.
Springer Wien, 1955.

[4] James D. Foley, Andries van Dam, Steven K. Feiner,
and John F. Hughes. Computer Graphics, Principles
and Practice, Second Edition. Addison-Wesley, Reading,
Massachusetts, 1990. Overview of research to date.

 �� ��

 �� ��

Figure 6: Two examples for lens systems: an achromatic doublet in the top row, and a biconvex lens in the
bottom row. The images in the left column have been rendered using the algorithm described in this paper,
while distribution ray-tracing has been used for the images on the right.

[5] Andrew Glassner. Principles of Digital Image Synthesis,
volume 2. Morgan Kaufmann, 1995.

[6] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski,
and Michael F. Cohen. The lumigraph. In Computer
Graphics (SIGGRAPH ’96 Proceedings), pages 43–54,
August 1996.

[7] Keith D. Gremban, Charles E. Thorpe, and Takeo
Kanade. Geometric camera calibration using systems of
linear equations. In 1988 IEEE International Conference
on Robotics and Animation, volume 1, pages 562–567,
1988.

[8] Paul E. Haeberli and Kurt Akeley. The accumula-
tion buffer: Hardware support for high-quality rendering.
In Computer Graphics (SIGGRAPH ’90 Proceedings),
pages 309–318, August 1990.

[9] Craig Kolb, Don Mitchell, and Pat Hanrahan. A realis-
tic camera model for computer graphics. In Computer
Graphics (SIGGRAPH ’95 Proceedings), pages 317–324,
August 1995.

[10] Marc Levoy and Pat Hanrahan. Light field rendering.
In Computer Graphics (SIGGRAPH ’96 Proceedings),
pages 31–42, August 1996.

[11] J. Loos, G. Greiner, H.-P. Seidel, P. Slusallek, and
E. Wirsching. Advanced spectacle lens design by combin-
ing wavefront tracing and variational design. Technical
report, Computer Graphics Group, University of Erlan-
gen, 1995. Technical Report 3/1995.

[12] M. Potmesil and I. Chakravarty. A lens and aperture
camera model for synthetic image generation. In Com-
puter Graphics (SIGGRAPH ’81 Proceedings), pages
297–305, August 1981.

[13] M. Shinya. Post-filtering for depth of field simulation
with ray distribution buffer. In Proceedings of Graphics
Interface ’94, pages 59–66. Canadian Information Pro-
cessing Society, May 1994.

[14] O. N. Stavroudis. The Optics of Rays, Wavefronts and
Caustics, volume 38 of Pure and Applied Physics. Aca-
demic Press, 1972.

