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Abstract. Fitting of uncertain data, that is, fitting of data points
that are subject to some error, has important applications for example
in statistics and for the evaluation of results from physical experiments.
Fitting in these problem domains is usually achieved with polynomial
approximation, which involves the minimization of an error at discrete
data points. Norms typically used for this minimization include the l1, l2
and l∞ norms, which are chosen depending on the problem domain and
the expected type of error on the data points.

In this paper we describe how the l1 and l∞ norms can be applied
to integral and rational B-spline fitting as a linear programming problem.
This allows for the use of B-splines and NURBS for the fitting of uncertain
data.

§1. Introduction

An important field of applications for approximation techniques is the
fitting of uncertain data that occurs, for example, in statistics or as a result
of measurements in experiments. Approximation techniques in this context
usually involve fitting a polynomial through a set of data points that are
subject to some error. The type of error depends on the specific application
domain, and could for example be uniformly distributed over the data points,
or concentrated in a few outliers.

Depending on the application domain and the expected type of error,
different norms are selected for the minimization process. In particular, the
l2 norm is typically used for data sets in which every data point is subject to
a small, normally distributed error. The l1 norm is well-suited for removing
a small set of outliers from a set of data points with otherwise high precision.
Finally, the l∞ norm is appropriate if every single data point is very precise,
and therefore the approximation error should be evenly distributed amongst
the data points.

In the context of B-spline approximation, the l2 norm has traditionally
been used almost exclusively. Consequently, the form of B-spline approxima-
tion described in most of the literature is not well suited for handling, for
example, uncertain data with outliers.

Proceedings of Chamonix 1996 1
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In the following we will describe how the l1 and l∞ norms can be ap-
plied to integral and rational spline approximation problems using a linear
programming approach. This allows for the efficient combination of B-splines
and NURBS with standard techniques for fitting uncertain data.

§2. Preliminaries

The task of B-spline approximation is fitting a B-spline curve with N

control points c = [c1, . . . , cN ]T through a set of M > N (typically M � N)
data points d = [d1, . . . , dM ]T at given parameter values u1, . . . , uM . Such
an approximation problem leads to an over-determined system of a linear
equations







B1(u1) · · · BN (u1)
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, (1)

where Bi(u) is the ith B-spline basis function.
Since this system of equations is over-determined, in general an exact

solution does not exist. Therefore, instead of directly solving Equation 1, it is
necessary to find an approximate solution by minimizing the error ‖B ·c−d‖
with respect to some norm ‖.‖.

As we have stated above, the typical choice for this norm in the B-spline
literature is the least-squares (l2) norm. It can be shown that a least-squares
solution of (1) can be obtained as the solution of the linear equation system

BT B · c = BT · d. (2)

This square system of size N ×N can be solved efficiently, which is one
reason for the success of this approach.

In contrast to the least-squares norm, the l1 and l∞ minimizations cannot
be obtained as the solutions of a linear equation system. Fortunately, it is
possible to formulate the minimization using these two norms as a linear
programming problem, which also allows for an efficient implementation.

A linear programming problem is a problem of the form

Minimize

qT · x− q0

subject to
A · x = b.

In addition, some of the variables xi may be restricted to non-negative values:
xi ≥ 0.

The expression qT · x − q0, which is to be minimized, is called objective

function, while A · x = b is a set of constraints that are to be fulfilled. The
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name “linear programming problem” reflects the fact that both the objective
function and the constraints are linear in the unknowns x.

Problems of this general form are usually solved using the simplex method [3],
or one of its descendants. It is important to note that optimized versions of
the simplex method exist for various problems of more specific forms.

§3. Integral B-spline Fitting with the l1 and l∞ Norms

The l1 B-spline approximation ‖B · c− d‖1 of a data set can be reduced
to a linear programming problem. Introducing bi as a shorthand notation for
the ith row-vector of the B-spline matrix B, the approximation using the l1
norm can be written as

min
c

M∑

i=1

|bT
i c− di|.

The first step of transforming this to a linear programming problem is to
make the function linear by removing the absolute value function. This can
be achieved by introducing two vectors p and n of slack variables pi and ni.
Using these two vectors of variables, we can write

bT
i c− di = pi − ni ; pi ≥ 0, ni ≥ 0. (3)

The intention is to have

pi =

{
bT

i c− di ;bT
i c− di ≥ 0

0 ; otherwise
(4)

and

ni =

{
0 ;bT

i c− di ≥ 0
−bT

i c + di ; otherwise
. (5)

Using these equations, the expression

M∑

i=1

pi + ni

becomes the objective function and Equation 3 becomes the constraint. We
define 0N to be a vector of N zeroes, and 1N to be a vector of N ones. The
linear programming problem for the l1 approximation can now be written as

Minimize

[0T
N 1T

M 1T
M ] ·





c

p

n



 (6)

subject to

[B −IdM IdM ] ·





c

p

n



 = d ; pi ≥ 0, ni ≥ 0
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The constraints take care that Equation 3 actually holds, while the minimiza-
tion of the objective function guarantees Equations 4 and 5.

This linear programming problem can be solved using the normal simplex
method. However, it is also possible to use an optimized version of the simplex
method that makes use of the special structure of this problem [3].

The minimization with respect to the l∞ norm can be expressed as a
linear programming problem in a similar fashion. The l∞ fit to some data
points d is given as

min
c

(

max
i=1...M

∣
∣bT

i · c− di

∣
∣

)

.

By defining c0 := maxi=0...M

∣
∣bT

i · c− di

∣
∣, the approximation process can

be rewritten as a linear programming problem. The expression c0 becomes
the objective function, while the constraints are given as

c0 ≥ 0
c0 ≥ −bT

i · c + di

c0 ≥ bT
i · c− di

⇔
⇔

bT
i · c + c0 ≥ di

−bT
i · c + c0 ≥ −di

(7)

In matrix form this results to

Minimize

[0T
N 1 ] ·

[
c

c0

]

(8)

subject to
[

B 1
−B 1

]

·

[
c

c0

]

≥

[
d

−d

]

; c0 ≥ 0

It should be noted that this is a more general type of linear programming
problem than stated above, since the constraints in this case are inequalities.
By the introduction of additional slack variables, however, this problem can
be transformed so that only equalities are used.

The resulting linear programming problem can again be solved either
using the standard simplex algorithm or a version that is especially optimized
for the structure of this specific problem [3].

§4. Rational B-spline Fitting

While approximations with integral B-splines are often sufficient, it is
sometimes desirable to use rational B-splines (NURBS). In order for the solu-
tion to be useful, it is then essential to ensure that the weights of the rational
B-spline curve remain positive. A clever scheme for rational B-spline fitting
with positive weights has recently been proposed by Ma and Kruth [2].

The basic idea of this approach is to separate the calculation of the
weights from the actual fitting process. The weights are obtained as the
solution of a homogeneous linear equation system. In order to ensure that the
weights remain positive, Ma and Kruth use quadratic programming with con-
straints to compute this solution. Once the weights have been obtained, they
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are substituted into the linear equation system for rational approximation,
and then the usual integral approximation process is applied to the system.

In the following we shall briefly review this approach before we describe
how quadratic programming can be replaced by more efficient linear program-
ming.

The approximation of M data points di with a NURBS curve with N

control points ci and weights wi yields the following set of equations:

dj =

∑N

i=1
wiciBi(uj)

∑N

i=1
wiBi(uj)

; j = 1 . . .M. (9)

Please recall that each of these expressions actually consists of e equa-
tions, where e is the dimension of the space. Following the setting in [2],
we will in the following assume that the space is three-dimensional, that is,
e = 3. This is only to make the notation more readable and comprehensible,
and does not constitute a limitation of the algorithm itself.

Rewriting these linear equations in matrix form, and then performing
some matrix manipulations (see [1] and [2] for details), yields






BT B −BT DxB

BT B −BT DyB

BT B −BT DzB

M




 ·






cx

cy

cz

w




 =






0N

0N

0N

0N




 , (10)

where
M = BT D2

xB + BT D2

yB + BT D2

zB

−(BT DxB)(BT B)−1(BT DxB)
−(BT DyB)(BT B)−1(BT DyB)
−(BT DzB)(BT B)−1(BT DzB)

(11)

In this equation, Dx, Dy and Dz are diagonal matrices holding the com-
ponents of the data points. cx = [cx

1
w1, . . . , c

x
NwN ]T is the vector of the

x-components of all control points in homogeneous form. Similarly, cy and cz

are the vectors of the y- and z-components of the control points, respectively,
and w is the vector of weights. B is the B-spline matrix from Sections 2 and 3.

Thus, the weights have been separated from the control points, as they
can be determined from the homogeneous linear equation system

M ·w = 0N . (12)

These weights are then substituted into Equation (9), and finally Ma and
Kruth propose to apply a standard least-squares approximation, as described
in Section 2, to each component of the control points separately.

Note that the null space of M might have a dimension larger than 1, in
which case more than one solution of (12) exists, and a specific one has to be
chosen. On the other hand, the matrix M may also have full rank, in which
case an exact solution of Equation 11 does not exist, so that a minimization
process becomes necessary in order to obtain an approximation.
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The authors of [2] suggest the use of the least-squares norm for deter-
mining the weights. This minimization process yields an approximation in
cases where M is non-singular, and selects a specific set of weights in cases
where multiple solutions exist. A least-squares approximation of (12) can be
obtained from the singular value decomposition (SVD, see [1] for details).

However, it is usually desirable to have only positive weights, because
otherwise singularities in the the resulting curve may arise. Since it is not
clear how a set of positive weights can be obtained from the SVD in an
automated fashion, Ma and Kruth and also propose another approach, which
is based on solving the quadratic programming problem

Minimize
wT ·MTM ·w

subject to
wi > 0.

While this approach works and yields the desired results, it relies on
quadratic programming, which is relatively inefficient. On the other hand,
since M is not geometrically meaningful, it is not clear, why the least-squares
norm should be preferred over other norms for this minimization.

We therefore propose the use of the l1 or l∞ norm, which can be im-
plemented more efficiently as a linear programming problem, similar to the
implementation of the integral fitting process. A modified version of (6) for
determining a set of positive weights with the l1 norm is given by

Minimize

[0T
N 1T

N 1T
N 1T

N ] ·






w

p

n

s




 (13)

subject to

[
M −IdN IdN

IdN −IdN

]

·






w

p

n

s




 =

[
0N

1N

]

; pi ≥ 0, ni ≥ 0, si ≥ 0

The additional vector s of slack variables is used to ensure that the re-
sulting weights obey the condition w = 1N + s, with si ≥ 0. Therefore the
smallest resulting weight will be 1. Since all weights can be scaled by a con-
stant factor without changing the resulting curve, this is not a restriction for
the algorithm.

The linear programming Problem (8) for the l∞ norm can be modified in
a similar fashion, and also allows for the computation of positive weights.

Having computed the weights with one of these norms, it is then possible
to determine the control points of the approximating NURBS curve by apply-
ing one of the l1, l2 or l∞ norms to the Equation 9, similarly to the integral
case.
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§5. Results

There are several differences between the scenario described in this pa-
per and traditional fitting of uncertain data. First of all, splines as described
in this paper define parametric instead of functional curves. However, since
the B-spline approximation treats every component of the vector space sepa-
rately, the parametric approximation can be seen as a composition of several
independent functional approximations.

Another difference is that splines have different approximation properties
than polynomials. Because of the local control property of B-splines, it is
to be expected that a spline approximation locally changes to meet outliers
better, and that the removal of outliers is therefore not as good as in the
polynomial case. On the other hand, with splines it is possible to create
good approximations to data sets with a more complex shape. The negative
effects of the local control property can partly be compensated by using the
error-specific norms.

Figure 1 shows two examples for integral quadratic B-spline approxima-
tion using different norms. From top to bottom the figure contains the original
function, the l1, l2 and l∞ fit.

Fig. 1. Fitting of uncertain data with integral B-splines..

Both data sets consists of 21 points that have been originally sampled
from a sine curve. The image on the left contains a single outlier that is being
removed nicely by the l1 fit. The data set on the right has been generated
by jittering the original points with a normally distributed error. In this
situation, the least-squares fit produces the best results.

The left side os Figure 2 shows another example for an integral quadratic
fit with different norms (from top to bottom: l1, l2 and l∞).

Fig. 2. fitting of precise data (left) and reproduction of a quarter circle (right).
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Under the assumption that the positions of the data points are exact, the
l∞ fit produces the best result, since it manages to distribute the error evenly
across the parameter domain, while the l1 norm treats the second, fifth and
eighth point as outliers, and is therefore not able to correctly represent the
shape of the data set. The quality of the l2 norm is somewhere inbetween
these two results.

We have also implemented rational fitting using the l1 and l∞ norms to
determine the weights. In our experiments, we were not able to find any differ-
ences in the quality of the weights obtained using these two norms compared
to the least-squares approach proposed by the authors of [1].

In particular, experiments show that both the l1 and l∞ norms are capa-
ble of reproducing conic sections and other sampled NURBS curves, as long
as enough data points are provided together with the exact parameterization.
An example for such an approximation is shown on the right side of Figure 2.
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