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Abstract

Traditional volume rendering is computationally
expensive and can therefore only be performed at
low frame rates. In recent years algorithms have
been developed that are specifically tailored to-
wards the use of graphics hardware for volume
rendering. On systems equipped with the appro-
priate hardware, these algorithms are capable of
rendering volumes at interactive rates.
Unfortunately, existing algorithms rely on ad-
vanced graphics features like texture mapping,
which are not available on contemporary low-
end systems. In this paper we describe a novel
approach for the hardware based rendering of
emissive volumes, which only requires very basic
support by the graphics hardware, such as flat
shaded polygons, depth cueing and depth buffer.
Therefore the algorithm is capable of exploiting
low-end graphics hardware without support for
texture mapping and other advanced features.

1 Introduction

Volume rendering is concerned with the genera-
tion of images that reveal the internal structures
of volume data sets obtained by simulations or
measurements. Volume rendering achieves this
goal by interpreting the values in the data set as
coefficients for the emission ¢ and absorption u
of light at a given point in 3-D space. These data
points are treated as discrete samples of continu-
ous volumetric functions ¢(#) and u(%). The data
set can therefore be rendered by tracing rays from
a given camera position through the volume, and
integrating the intensities along these rays. This
is done using the emission/absorption integral [5]:
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The value ®[d] is the flux density reaching the
image plane at z = d, and ®[0] defines a back-
ground intensity at z = 0. u(%) denotes the lin-
ear absorption coefficient of the medium, while
¢(%) represents the flux density per unit length
emitted towards the image plane by suspended
particles.

By manipulating the way in which the values
of the original volume data are interpreted as ab-
sorptive u(Z) and emissive ¢(Z) properties, vari-
ous effects can be achieved, including iso-surfaces
[7, 8] and apparently opaque objects.

1.1 Emissive Volumes

Often, the data sets to be visualized only contain
a single scalar value for every point in the volume.
This is for example true for most medical data
sets, like MRA or ultrasound data. In this case,
it is natural to directly map this scalar value to
either the absorption u(Z) or the emission ¢(),
respectively, and to set the other coefficient to
In the latter case, where u(Z) = 0, the
volume is called purely emissive and the integral
in (1) reduces to
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which is linear with respect to ¢[z].

Rendering of emissive volumes plays an im-
portant role in medical imaging and other ar-
eas of visualization. It is based on the metaphor
of emissive particles suspended in a transparent
medium. Given such a volume of emission values,
the rendering task is to project the 3-D volume
onto a 2-D image plane. This projection maps a
single brightness value to each pixel on the image
plane, depending on the emission of the voxels
located on the projection ray.

The most intuitive and straight-forward pro-
jection operation is the so-called “summation



rendering”. For every pixel in the image, it
directly evaluates the integral from Equation 2
over all the voxels along the projection ray corre-
sponding to this pixel.

Another commonly used projection operator is
“maximum projection rendering”, which assigns
to every pixel the maximum emission of all vox-
els along the projection ray corresponding to this
pixel. This is characterized by the following pro-
jection formula:
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The scale factor ¢ converts the flux density per
unit length ¢[z] to a flux density ®.

Maximum projection rendering is particularly
useful for any application in which a strong signal
is produced over a small volume, and might be
obscured by low-level background noise produced
over a much larger volume.

In the following we first review and discuss a
recent algorithm for hardware accelerated render-
ing of volumes based on texture mapping. Then
we describe a novel approach which only uses flat
shaded polygons to render the volumes, and thus
overcomes the performance penalties of texture
mapping on low-end machines. Finally we show
how volumes and surfaces can be combined into
one image with our approach, and conclude with
some results and performance measurements.

1.2 Hardware Accelerated Volume
Rendering: State of the Art

Existing approaches to hardware accelerated vol-
ume rendering use texture mapping to sample
the volume at discrete slices and then construct
an image by computing a weighted sum of those
slices. Early methods used only 2-dimensional
textures that represented slices of the original vol-
ume [2], while more recent approaches treat the
whole volume as a 3-dimensional texture.

The volume is rendered by intersecting the vol-
ume with a set of planes parallel to the viewing
plane. This is simply done by loading the vol-
ume data into texture memory, and drawing the
planes as polygons, with the texture coordinates
set up correctly (see [3] and [6] for details). In
order to generate the final image, the slices ob-
tained this way are then blended together using
alpha blending.

On high-end machines supporting hardware
texture mapping, this approach to volume ren-
dering can be extremely fast. The rendering per-
formance only depends on the number of slices
blended together, and not on the size of the vol-
ume, as long as the volume completely fits into
the texture memory. If, however, the size of this
memory is exceeded, the volume has to be broken
down into smaller sub-volumes, called “bricks”,
and these have to be swapped in and out of the
texture memory for every frame. As a conse-
quence, the rendering performance will usually
be limited by the bandwidth of the bus used to
transfer the bricks into texture memory.

On low-end machines without hardware tex-
ture mapping support, the performance penalties
for this approach are even more striking. Usually
bus bandwidth is not a problem on these plat-
forms, since the volume resides in main memory
and thus does not have to be transferred over
a bus continuously. However, the CPU load im-
posed by rendering several hundred large texture-
mapped polygons with tri-linear interpolation is
so high, that even on the most modern CPUs the
frame rate degrades to one frame every few sec-
onds.

In this paper we describe a novel approach for
volume rendering, which is purely based on ren-
dering flat shaded polygons without texture map-
ping, and thus scales well with both the size of
the data set and the available graphics hardware.

2 A Discretization of Emissive
Volumes

As a first step for rendering a volume data set, we
discretize the continuous function it represents.
A discrete version of the volume can be derived by
making a transition from a continuous emission
function ¢(Z) to a set of discrete emission levels
{d1,¢9,...,¢n}. The iso-surfaces corresponding
to these levels can be seen as thresholds defining
a number of nested volumes or “shells” [13].
Using this discretization, a volume renderer
based on ray tracing could be implemented by
testing every projection ray for intersection with
these iso-surfaces. For summation rendering the
brightness values for all intersected shells would
then simply be added together, while for maxi-
mum projection rendering the emission ¢; of the
brightest intersecting shell 7 would be taken.



The advantage of this approach is that, once
the volume is discretized, ray tracing no longer
needs to be used to render the image. Instead, as
we shall see below, we can use conventional 3-D
graphics hardware to render a polygonal model of
the shells-surfaces. The iso-surfaces correspond-
ing to these shells have to be generated using one
of the well-known algorithms, such as marching
cubes [9].

2.1 Summation Rendering

It is straight-forward to develop a hardware-
accelerated version of the discretized summation
rendering algorithm as described above. Using
a standard hardware model, like the one of the
OpenGL library [10], the extracted iso-surfaces
are simply drawn with per-fragment blending set
up in such a way, that the intensities for every
pixel are added up in the frame buffer (instead of
letting the new color value replace the old con-
tents of the frame buffer).

In cases where such a blending mode is not
available (it has only recently been added to the
version 1.1 of the OpenGL API [11], which is
not yet widely available), a similar effect can be
obtained by rendering the shells into separate
images and adding those using an accumulation
buffer.

Unfortunately, both blending and accumula-
tion buffer operations are usually not supported
in hardware on low-end systems, so that the per-
formance of these operations is relatively low (see
also Section 5).

2.2 Maximum Projection Rendering

The situation for maximum projection rendering
is somewhat more complicated. Like for sum-
mation rendering the polygons of the iso-surfaces
can be projected onto the image plane using sim-
ple polygon rendering. However, instead of sum-
ming up the intensities in the frame buffer, it is
now necessary to perform a maximum operation
on the intensities. For every rendered pixel the
new intensity has to be compared to the value
that already resides in the frame buffer, and only
if the new value is brighter it replaces the older
one. Such an operation is neither directly sup-
ported by the most contemporary graphics hard-
ware, nor by graphics libraries such as OpenGL.

transform.
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Figure 1: The result of the geometric transforma-
tion for maximum rendering: the z component of
each point is set to the emission of the iso-surface
it belongs to

However, using a simple geometric transfor-
mation, it is possible to exploit conventional z-
buffer hardware to implement the maximum op-
erator. Maximum projection rendering as de-
scribed above is equivalent to an orthographic or
perspective transformation followed by a maxi-
mum operation. Such a maximum operation is
already provided by the z-buffer algorithm dur-
ing hidden surface removal. We would like to
use this z-buffer for our maximum operation on
intensities as well. Therefore we have to come
up with a geometric transformation which reor-
ganizes the geometry so that brighter points are
closer to the image plane than darker points.

A simple way to accomplish this, if the z-axis
is perpendicular to the image plane, is to set the
z component of each point to its emission after
the projective transformation. The transforma-
tion matrix which does this is
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where ¢; is the emission of the iso-surface to
which the point belongs. This transformation can
be implemented as a scaling by factor 0 in z direc-
tion followed by a translation by ¢;. The result
of this transformation is shown in Figure 1.
Note that, if a perspective transformation is
used, the above transformation has to be exe-
cuted after the perspective is done. Otherwise
perspective foreshortening will change the pro-
portions of the geometry: since brighter surfaces



are moved closer to the eye, the perspective trans-
formation would make them appear larger than
Applying the above transformation
after the perspective ensures that the size of the
projected objects on the image plane does not
change.

dark ones.

3 Depth Cueing

It is often useful to add additional depth cues to
the image in order to improve the 3-dimensional
impression. One of the simplest depth cues to
implement is an intensity ramp that dims parts
of the volume farther from the eye. Such a linear
ramp is supported by most of today’s 3-D graph-
ics accelerators, and is usually called linear fog.
A linear ramp along a projector can be described
as

Blz] = Bo + Bz,

with Gy > 0 and 3,, > 0. The value [ is the
attenuation at the background image, and (3, is
the rate of change of this attenuation per unit
length along the projector.

For depth cueing in volume data sets, this lin-
ear ramp can be directly applied to the algo-
rithm for summation rendering we described in
Section 2.1 above. Obviously this is not possible
for the maximum projection algorithm from Sec-
tion 2.2, because the transformation from Equa-
tion 3 throws away all of the original depth infor-
mation, and replaces it by the brightness value of
the shells.

In order to add linear depth cueing to maxi-
mum projection images, we therefore have to add
some of the depth information back in. We do so
by applying the maximum operator to a bright-
ness that is multiplied by the linear depth ramp:

0[] = max(max(CBl=4). fo2l0]) (4

In order to control the degrees of freedom the
depth ramp provides, we have the choice to either
directly adjust its parameters Gy and 3,,, or to fix
those parameters and apply a linear function to
the z component of each point instead.

As we shall see below, it is convenient to choose
the latter approach by applying the depth cue to
a shifted and scaled z; = az; +b. Under the
assumption that background is darker than the
brightest point along a projector, Equation (4)

transform.
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Figure 2: The result of the geometric transfor-
mation including depth cueing: the geometry is
scaled and translated so that brighter points are
closer to the image plane.

reduces to
®[d] = max (C(Bo + B (azi + b)),

which can be rearranged to

old] = wax (6 (fazi + 4i0+ 21 )
! Bm
In other words, the transformation to control the
linear ramp can be pushed into the transforma-
tion we do before the maximum operation, and
only a single maximum comparison is needed on
the combined depth/intensity. Setting

a; = ¢ia and
bi = ¢i(b+ Bo/Bm),

transformation (3) can therefore be redefined as
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Figure 2 demonstrates the effect of this transfor-
mation.

Instead of drawing each iso-surface with a color
corresponding to its emission, like in Section 2.2,
we now simply transform each iso-surface with
the appropriate matrix, and then draw it in full
brightness.
graphics system we use will take care that sur-
faces with higher emission will appear brighter
on the screen than ones with lower emission.

The hardware depth cueing of the



We now have parameters (y, a and b to cus-
tomize the rendering algorithm. If we set a = 0,
b = 1, and the brightness of the background im-
age By = 0, we have exactly the algorithm de-
scribed in Section 2.2, without any depth cueing.
By varying b, we can adjust the contrast between
iso-surfaces of different brightness.

The parameter a controls the amount of depth
cueing added to the image. It is actually the ratio
of a and b that gives the full tradeoff of depth
Increasing [y will increase
the overall brightness of the image.

cueing to intensity.

4 Combining Volumes and Sur-
faces

Although there are applications where volumes
are the only objects that have to be displayed,
there are also occasions where volumes and sur-
faces have to be combined in one image. Con-
sider, for example, the concrete application of
planning or simulating a surgery. The tools used
in the surgery, as well as additional objects like
screws that remain within the body of the patient
have to be combined with the volume for the final
image.

When combining surfaces and volumes, it is
important to handle the occlusion problem cor-
rectly. That is, surfaces should occlude other sur-
faces as well as those parts of the volume that are
further away. The projection operator for volume
rendering should be applied to only those parts
of the volume that are visible from the eye point.

For summation rendering as described in Sec-
tion 2.1, this is easily achieved by rendering the
surfaces first, with depth buffering enabled. Then
writing to the depth buffer is disabled but the
depth comparison itself is kept active (in OpenGL
this is done using the function glDepthMask, see
[1] for details). With this setting, all the shells are
rendered as described in Section 2.1. In pseudo-
code the complete algorithm results to:

render surfaces

disable writing to depth buffer
set up blending

render all shells

The situation for maximum rendering is more
difficult. Since the depth information for the
shells is modified according to Equation 5, sim-
ple depth-buffered rendering of the surfaces is not

transform. Voot

Figure 3: Combining volumes and surfaces. The
polygonal objects are rendered into the depth
buffer multiple times, once for every shell

sufficient. Instead, in order to handle occlusion
correctly, the surfaces in the scene have to be ren-
dered multiple times, once for every shell. Since
the shells of the volume typically contain several
orders of magnitude more polygons than the sur-
faces themselves, this usually does not impose a
severe performance penalty.

In detail, the algorithm works as follows (also
see Figure 3). First the surfaces are rendered with
depth buffering enabled. Then the depth buffer
is cleared. Starting with the dimmest iso-surface,
the following steps are then performed for each
shell: first, the transformation from Equation 5
is pushed on the matrix stack. Then writing to
the color buffer is disabled, and the surfaces are
rendered into the depth buffer using the current
transformation. Afterwards, the shell is rendered
with writing to the color buffer turned back on.
Because at this point the depth buffer contains
the distances of the surfaces under the current
transformation, the occlusion problem is solved
correctly. The pseudo-code of this algorithm is
shown below.

render polygonal objects

clear depth buffer

for each shell (in order of

increasing brightness)

set up transformation (5)
disable rendering to color buffer
render polygonal objects
enable rendering to color buffer
render shell

end



5 Results

A volume visualization program for regularly
gridded data has been implemented using the
methods described in this paper. The program
uses the 3D graphics library OpenGL [1] to ex-
ploit the graphics hardware of different platforms
in a portable way. It has been tested on work-
stations from Silicon Graphics (SGI) and Digital
Equipment (DEC).

The user interface allows for three different ren-
dering modes: maximum rendering, summation
rendering, and the usual lighted rendering of iso-
surfaces. In the latter mode only the outermost
shell will be visible, of course. Three scrollbars
provide the user with full control over the render-
ing parameters [y, a and b.

The program also allows the user to interac-
tively add or delete iso-surfaces, or to temporar-
ily disable individual surfaces. For the creation
of the iso-surfaces a simple marching cubes algo-
rithm [9] is used.

The resulting volume model can be interac-
tively rotated on the screen, where the perfor-
mance depends on the complexity of the volume
data, the number of iso-surfaces, and the graphics
hardware.

Several tests with different data sets were made
in order to measure the performance on different
graphics platforms. For the first measurement
we chose the 64 x 64 x 64 data set HIPIP from
the Chapel Hill Volume Rendering Test Data
Sets (CHVRTD), and created 11 iso-surfaces with
44846 polygons. A second measurement was done
with the same data, but with only 6 iso-surfaces
and 14844 polygons.

Another data set (SAT) contains a 21 x 21 x 51
grid of saturation values from a groundwater sim-
ulation of oil contamination [12]. From this data
20 iso-surfaces with a total of 16846 polygons
were created. Summation renderings with and
without depth cueing are shown in the bottom
two pictures of Figure 4.

Finally, an MR angiogram of a human brain
was used. This data, which can be obtained from
the UMDS Image Processing Group, consists of
a 256 x 256 x 124 grid, from which 12 iso-surfaces
with 177594 polygons have been created. Maxi-
mum projection rendering is especially useful for
angiograms, because they contain a lot of local-
ized detail which would be obscured by other ren-
dering methods. The top four images of Figure 4

| | Onyx | Indigo | Alpha |

Maximum

Hipip 1 8.51 1.59 1.63
Hipip 2 >20 4.50 4.26
Angiogram 2.66 0.74 0.39
Sat >20 4.01 3.90
Summation

Hipip 1 5.60 0.23 0.047
Hipip 2 12.0 0.41 0.080
Angiogram 1.38 0.071 0.040
Sat 5.48 0.056 0.028

Table 1: Frame rates for different data sets on
different platforms in frames per second. The SGI
Onyx is equipped with VTX graphics, the SGI
Indigo has a XS-24 board, and the DEC Alpha a
PXG Turbo.

show the MR angiogram data set rendered with
different parameter settings. The two images on
the right are combined renderings of a volume
with a single polygon. This polygon can be used
to clip away details at the far side of the volume,
and is therefore an aid in understanding the data.

Table 1 gives an overview of the performances
measured for all the data sets on different plat-
forms.

The figures shown for the Silicon Graphics
Onyx with VTX graphics are somewhat inaccu-
rate, because for these high frame rates the time
spent synchronizing with the CRT refresh signal
is significant. Since the refresh frequency of the
CRT was set to 60Hz, and frame rates slightly
above 20 have been measured, the rendering of
one image takes between 2 and 3 refresh cycles,
which corresponds to a frame rate of 20 — 30
frames per second.

The results for all platforms show that reason-
able frame rates can be achieved for maximum
projection rendering, even on relatively low-end
graphics acceleration boards. On the other hand
the figures also show that summation rendering
on low-end platforms without hardware support
for blending and/or accumulation buffer is too
slow to be useful in practice.

In comparison to texture based volume ren-
dering, we have shown an algorithm that scales
well with both the available hardware and the
size of the volume. While we think that the tex-
ture based methods will continue to be impor-
tant for the high-end, especially with hardware



texture mapping becoming more widely available,
the method described in this paper might be an
alternative for applications that have to run on
PCs and low-end workstations.
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Figure 4: Several sample images rendered with the algorithms presented in this paper. Please refer to
the color section for a colored version.



