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Abstract

Maximum projection is a volume rendering tech-
nique that, for each pixel, finds the maximum inten-
sity along a projector. For certain important classes
of data, this is an approximation to summation ren-
dering which produces superior visualizations.

In this paper we will show how maximum projec-
tion rendering with additional depth cues can be im-
plemented using simple affine transformations in ob-
ject space. This technique can be used together with 3D
graphics libraries and standard graphics hardware,thus
allowing interactive manipulations of the volume data.
The algorithm presented in this paper allows for a
wide range of tradeoffs between interactivity and image
quality.

1 Introduction

The existing approaches to volume visualization
can be classified into two categories: direct volume
rendering and model based techniques. While these
two techniques have often been portrayed as competi-
tors, we think they should actually be seen as being
complementary.

The method described in this paper uses geometric
models to implement a discrete version of a well known
direct rendering algorithm. These models allow for
the efficient use of widely available computer graphics
hardware.

In the following we briefly review some aspects of
direct volume rendering before presenting our discrete
technique.

1.1 Direct Volume Rendering

Direct volume rendering [6, 8, 11] integrates the
value of a continuous volume function along a given
projector. This continuous volume function usually
has to be reconstructed from discrete sampling points.
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Figure 1: The path along a projector is parameterized

by the value z. Each projector starts at a background

image and extends to an imaging plane.

Typically, the function computed along a projector
is an absorption/emission integral. This integral is
based upon the physical metaphor of emissive particles
suspended in an absorptive medium. Along a single
projector, the integral can be written as [14, 9]

Φ[d] =

∫ d

0

e−
∫

d
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µ[ζ]dζφ[z]dz + e−

∫

d

0
µ[z]dzΦ[0]. (1)

Here we parameterize every projector linearly and de-
fine the function f [z] = f(x0 + z~r) with |~r| = 1 along
each projector, where z = 0 at some background plane
beyond the volume of interest and z = d at the imag-
ing plane. This notation is adopted so that the di-
rection of light along the projector towards the pixel
corresponds to positive increments in the parameter
z. The situation is shown in Figure 1.

The value Φ[d] is the flux density reaching the
imaging plane, and Φ[0] defines a background image.
µ(~x) denotes the linear absorption coefficient of the
medium, and the flux density towards the imaging



plane per unit length, emitted by suspended parti-
cles, is given by φ(~x). These values need to be derived
somehow from the original volume data, which is typ-
ically not in this form (otherwise we could just look at
it directly). All these values may have a wavelength
dependency as well, allowing color images to be pro-
duced.

By manipulating the way in which the values of
the original volume data are interpreted as absorptive
µ(~x) and emissive φ(~x) properties, various effects can
be achieved, including isosurfaces [10, 11] and appar-
ently opaque objects.

1.2 Summation Rendering

The integral in (1) is nonlinear and therefore the
number of simplifications that can be applied to it are
limited. An important subclass of volumes for which
this integral becomes linear is the class of purely emis-
sive volumes.

A purely emissive volume is defined by setting the
absorption coefficient µ(~x) = 0 for all ~x, resulting in a
totally transparent volume. The rendering integral (1)
reduces to

Φ[d] =

∫ d

0

φ[z] dz + Φ[0],

which is linear with respect to φ[z]. This integral mim-
ics the image formation process of the gamma cam-
era [1]. In this paper this method will be referred to
as summation rendering.

1.3 Maximum Rendering

Maximum rendering finds the maximum emission
along a projector and assigns this value to the pro-
jected point on the image plane. Unlike summation
rendering, this is a nonlinear operation. However,
we will show how widely available computer graph-
ics hardware can be used to implement this maximum
operator in an efficient way.

Maximum projection rendering is particularly use-
ful for any application in which a strong signal is pro-
duced over a small volume, and might be obscured
by low-level background noise produced over a much
larger volume. In this case, maximum rendering is an
improvement over summation rendering because the
nonlinearity removes the “fog” that might obscure the
small bright signal.

Maximum rendering can be characterized by the
following equation:

Φ[d] = max( max
z∈(0,d]

(ζφ[z]), Φ[0]).

The scale factor ζ converts the flux density per unit
length φ[z] to a flux density Φ. In the discrete case φ[z]
might be sampled at some interval ∆z, which would
lead to ζ = ∆z.

This maximum operation, when given two equally-
bright points on a projector, should choose the one
with the largest z value, that is, the one closest to
the image plane. This will become important once we
consider intensity depth cueing in Section 2.2.

1.4 Discrete Maximum Rendering

A discrete version of maximum rendering can eas-
ily be derived by making a transition from a contin-
uous emission function φ(~x) to a set of discrete emis-
sion levels {φ1, φ2, . . . , φn}. These levels can be seen
as thresholds which define a number of nested volumes
or “shells” [17].

The maximum rendering algorithm can then be im-
plemented by intersecting each projector with the vol-
umes defined by the emission thresholds. The image
intensity at the projector is the emission of the bright-
est volume that the projector intersects.

Similarly a discrete version of summation render-
ing can be implemented by summing up the differen-
tial intensities of the intersected volumes, weighted by
length of the projector segment that lies within the
volume.

The intersection of the projector with the volumes
can be computed with the help of isosurfaces. The
more volumes (and therefore isosurfaces) used, the
closer the rendering can approach direct volume ren-
dering. By using multiple surfaces and suitable blend-
ing techniques, the perception of solid objects with
definite boundaries is softened. Analysis capabilities
offered by the discrete approach remain, although now
statistics are presented for multiple volumes. This is
an advantage, however, since it allows the user to ana-
lyze the sensitivity of the statistics to the segmentation
threshold.

2 Use of Graphics Acceleration Hard-

ware

While maximum rendering can be directly trans-
lated into a ray casting scheme, it is somewhat harder
to come up with a rendering method which makes use
of graphics acceleration hardware.

Today’s 3D graphics boards provide hardware sup-
port for drawing several hundred thousand Gouraud
shaded polygons per second. The hidden surface re-
moval algorithm used on these boards is almost always
depth-buffer (z-buffer) based.



On first thought, one might think that maximum
rendering and summation rendering in such an envi-
ronment can simply be implemented by drawing the
isosurfaces with a transparency which accounts for the
emission of the corresponding volume. Unfortunately
the z-buffer algorithm only produces correct results
for transparency if the polygons are sorted by z [13].
Resorting all polygons for every rotation of the vol-
ume, however, is computationally expensive even for
relatively small volumes.

2.1 Geometric Transformations for Max-
imum Rendering

Maximum rendering as discussed in Section 1.3
first finds the maximum emission along a projector,
and then projects this value onto the image plane. The
order of operations can be reversed, so that first the
whole volume is projected onto the image plane, and
then for each pixel the brightest value is computed.

This corresponds to an orthographic or perspec-
tive transformation followed by a maximum operation.
Such a maximum operation is already provided by the
z-buffer algorithm during hidden surface removal. We
would like to use this z-buffer for our maximum opera-
tion on intensities as well. Therefore we have to come
up with a geometric transformation which reorganizes
the geometry so that brighter points are closer to the
image plane than darker points.

A simple way to accomplish this, if the z-axis is
perpendicular to the image plane, is to set the z com-
ponent of each point to its emission after the projec-
tive transformation. The transformation matrix which
does this is
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where φi is the emission of the isosurface to which
the point belongs. This transformation can be imple-
mented as a scaling by factor 0 in z direction followed
by a translation by φi. The result of this transforma-
tion is shown in Figure 2.

Note that if a perspective transformation is used,
the above transformation has to be executed after the
perspective is done. Otherwise perspective foreshort-
ening will change the proportions of the geometry:
since brighter surfaces are moved closer to the eye,
the perspective transformation will make them appear
bigger than dark ones.

transform.

f [z] f [z]

Figure 2: The result of the geometric transformation

for maximum rendering: the z component of each

point is set to the emission of the isosurface it belongs

to

Unfortunately in some graphics environments it
is not possible to specify additional affine transfor-
mations after the perspective. In this case it is still
possible to use an orthographic projection instead of
perspective, because the orthographic projection pre-
serves proportions (it is affine), and therefore it can
take place after the z adjustment.

2.2 Depth Cueing

It is often useful to add additional depth cues to
the image in order to improve the 3D impression of the
image. One of the simplest depth cues to implement
is an intensity ramp that dims parts of the volume
farther from the eye. A linear ramp along a projector
can be described by

β[z] = β0 + βmz,

with β0 ≥ 0 and βm > 0. The value β0 is the attenu-
ation at the background image, and βm is the rate of
change of this attenuation per unit length along the
projector.

In the case of maximum rendering this ramp should
be pre-multiplied onto the flux density before the max-
imum operation is performed.

Φ[d] = max( max
z∈(0,d]

(ζβ[z]φ[z]), β0Φ[0]) (3)

This way the maximum operator will take depth cue-
ing into account, and will always select the brightest
point. Otherwise the point with the highest emission
would be selected, even if it was very far away from
the image plane, and therefore relatively dark. This
anomalous reversal situation is depicted in Figure 3.
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Figure 3: What can happen when the maximum operation is performed before depth cueing: an inversion. Below

is shown the function along the diagrammed projector, the second graph showing the effect of depth cueing. To

the right are corresponding graphs of the value of Φ[d] for all projectors. This problem can be avoided by applying

the maximum operation after depth cueing, as described in the text.

For the discrete case (3) can be simplified to ac-
count only for the intersection points with the isosur-
faces. Let zi be the intersection of the projector with
isosurface i. If the projector has multiple intersections
with the same isosurface, we select the one which is
closest to the image plane. Since we defined the max-
imum operator to choose the closest point in cases
where two or more points are equally bright, we can
write the above equation as

Φ[d] = max(max
i

(ζβ[zi]φi), β0Φ[0]) (4)

2.3 Transformations for Depth Cueing

In an implementation with depth cueing we would
like to be able to control the two degrees of freedom
which a linear ramp provides. We can do that by
directly adjusting the parameters β0 and βm of the

linear ramp, or by fixing these parameters and apply-
ing a linear function to the z component of each point
instead.

For reasons that will become clear later, we choose
the latter approach, and apply the depth cue to a
shifted and scaled z′i = azi + b. If we assume that the
background is darker than the brightest point along a
projector, Equation (4) reduces to

Φ[d] = ζ(β0 + βmz′i)φi = ζ(β0 + βm(azi + b))φi.

This can be rearranged into

Φ[d] = ζβm

(

φiazi + φi(b +
β0

βm

)

)

.

In other words, the transformation to control the lin-
ear ramp can be pushed into the transformation we
do before the maximum operation, and only a sin-
gle maximum comparison is needed on the combined



transform.
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Figure 4: The result of the geometric transformation

including depth cueing: the geometry is scaled and

translated so that brighter points are closer to the im-

age plane.

depth/intensity. Setting

a∗i = φia and

b∗i = φi(b + β0/βm),

transformation (2) can therefore be redefined as
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Figure 4 demonstrates the effect of this transforma-
tion.

Instead of drawing each isosurface with a color cor-
responding to its emission, like in Section 2.1, now we
simply transform each isosurface with the appropri-
ate matrix, and then draw it in full brightness. The
hardware depth cueing of the graphics system we use
will take care that surfaces with higher emission will
appear brighter on the screen than ones with lower
emission. On systems without hardware depth cueing
the linear ramp can be applied as a post processing
step by reading the z value from the depth buffer and
modifying the brightness appropriately.

We now have parameters β0, a and b to customize
the rendering algorithm. If we set a = 0, b = 1, and
the brightness of the background image β0 = 0, we
have exactly the algorithm described in Section 2.1,
without any depth cueing. By varying b, we can adjust
the contrast between isosurfaces of different bright-
ness.

The parameter a controls the amount of depth cue-
ing added to the image. It will actually be the ratio

of a and b that will give the full tradeoff of depth cue-
ing to intensity. Increasing β0 will increase the overall
brightness of the image.

2.4 Approximate Summation Rendering

As noted in Section 1.4, the discrete version of the
summation rendering algorithm has to compute the
sum of intensities of the volumes that a projector in-
tersects, weighted by the length of the projector seg-
ment that lies within the volume.

Unfortunately there is no simple geometric trans-
formation (affine or projective) which would allow us
to correctly compute the total length of projector seg-
ments, and therefore the weights. However, if all iso-
surfaces have roughly the same topological properties,
summation rendering can be approximated by setting
all weights to the same value, for example 1/n, where
n is the number of isosurfaces. Unfortunately, the ap-
proximation might be very coarse if only a small num-
ber of isosurfaces are used.

On graphics systems which support accumulation
buffers, this approximation of summation rendering
can be implemented easily. Accumulation buffers pro-
vide hardware support for creating a weighted sum of
different images. For summation rendering this means
that each isosurface has to be drawn into a separate
image, using transformations and depth cueing as de-
scribed above. Then the accumulation buffers are used
to add the images together.

3 Implementation

A volume visualization program for regularly grid-
ded data has been implemented using the methods
described in this paper. The program uses the 3D
graphics library OpenGL [2] to exploit the graphics
hardware of different platforms in a portable way. It
has been tested on workstations from Silicon Graphics
(SGI) and Digital Equipment (DEC).

OpenGL supports both z-buffers and accumula-
tion buffers, and the linear depth cue described in
Section 2.2 can be implemented using the linear fog
facility which OpenGL provides. OpenGL will apply
the linear ramp in software if the graphics hardware
does not directly support fog. In addition to the trans-
formations given in this paper, another scaling was
introduced in order to normalize the resulting z com-
ponents to values between 0 and 1. This is the interval
on which the OpenGL z-buffer operates.

The user interface allows for three different render-
ing modes: maximum rendering, approximate summa-
tion rendering, and the usual lighted rendering of iso-



surfaces. In the latter mode only the outermost shell
will be visible, of course. Three scrollbars provide the
user with full control over the rendering parameters
β0, a and b.

The program also allows the user to interactively
add or delete isosurfaces, or to temporarily disable
individual surfaces. For the creation of the isosurfaces
a simple marching cubes algorithm [12] is used.

The resulting volume model can be interactively
rotated on the screen, where the performance depends
on the complexity of the volume data, the number of
isosurfaces, and the graphics hardware.

3.1 Results

Several tests with different data sets were made in
order to measure the performance on different graphics
platforms. For the first measurement we chose the
64 × 64 × 64 data set HIPIP from the Chapel Hill
Volume Rendering Test Date Sets (CHVRTD), and
created 11 isosurfaces with 44846 polygons. A second
measurement was done with the same data, but with
only 6 isosurfaces and 14844 polygons.

Another data set (SAT) contains a 21×21×51 grid
of saturation values from a groundwater simulation of
oil contamination [15]. From this data 20 isosurfaces
with a total of 16846 polygons were created.

Finally, an MR angiogram of a human brain was
used. This data, which can be obtained from the
UMDS Image Processing Group, consists of a 256 ×
256× 124 grid, from which 12 isosurfaces with 177594
polygons have been created. Maximum rendering is
especially useful for angiograms, because they con-
tain a lot of localized detail which would be obscured
by other rendering methods. Figure 5 shows the MR
angiogram data set rendered with different parame-
ter settings. Table 1 gives an overview of the perfor-
mances measured on different platforms.

The figures shown for the Silicon Graphics Onyx
with VTX graphics are somewhat inaccurate, because
for these high frame rates the time spent synchronizing
with the CRT refresh signal is significant. Since the
refresh frequency of the CRT was set to 60Hz, and
frame rates slightly above 20 have been measured, the
rendering of one image takes between 2 and 3 refresh
cycles, which corresponds to a frame rate of 20 − 30
frames per second.

The results for all platforms show that reason-
able frame rates can be achieved for maximum ren-
dering, even on relatively low-end graphics accelera-
tion boards. On the other hand the figures also show
that approximate summation rendering should only be
used on platforms which provide significant hardware

SGI Onyx SGI Indigo DEC Alpha

Maximum

Hipip 1 8.51 1.59 1.63

Hipip 2 >20 4.50 4.26

Angiogram 2.66 0.74 0.39

Sat >20 4.01 3.90

Summation

Hipip 1 5.60 0.23 0.047

Hipip 2 12.0 0.41 0.080

Angiogram 1.38 0.071 0.040

Sat 5.48 0.056 0.028

Table 1: Frame rates for different data sets on differ-

ent platforms in frames per second. The SGI Onyx

is equipped with VTX graphics, the SGI Indigo has a

XS-24 board, and the DEC Alpha a PXG Turbo.

support for accumulation buffers. Otherwise the com-
putation of the weighted sum of images dominates the
rendering time, and the number of isosurfaces becomes
the limiting factor for performance.

4 Conclusions

In this paper we have presented two interactive vol-
ume rendering techniques, maximum rendering and
approximate summation rendering. We have shown
how discrete versions of these methods that exploit
graphics hardware can be implemented using isosur-
faces. The number of isosurfaces can be adjusted to
provide a wide range of tradeoffs between performance
and image quality.

Simple geometric transformations can be used to
combine depth cueing with discrete versions of the
maximum rendering and summation rendering algo-
rithms. Affine transformations and polygonal models
make the use of standard graphics hardware possible,
thus allowing for interactive manipulation of viewport
and depth cueing parameters.
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Max. rendering, Contrast: 100%, Depth Cue: 100% Sum. rendering: Contrast: 100%, Depth Cue: 100%

Figure 5: Different settings of the rendering parameters. Depth cueing improves the understanding of the 3-

dimensional structure, while the contrast reveals fine detail in the data set.


