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Abstract

In the past few years Tcl has found widespread in-

terest as a extensible scripting language. Numerous

Tcl interfaces for a variety of C libraries have been

created. While most of these language bindings have

been created by hand, others have made use of ded-

icated code generators designed for the specific li-

brary.

In this paper we present a tool for the automatic

generation of Tcl language bindings for arbitrary C

libraries. Moreover, the mapping of C++ class hier-

archies to [incr Tcl] classes will be described.

1 Introduction

1.1 Prior Work

One of the reasons for the recent success of Tcl is

its powerful API to C and C++, which allows the

extension of the core language with commands im-

plemented as C functions. This facility has been

used to create a variety of language bindings for C

libraries, ranging from different 3D graphics libraries

(iris gl, OpenGL, vogle, sipp) to several X widget

sets, for example Wafe and tclMotif.

While most of this work has been done manu-

ally, other bindings, like Wafe [Neumann, 1993] have

been made with the help of dedicated code genera-

tors, which create the required C code from a simpler

description file.

However, none of these semi-automatic systems

is capable of creating Tcl bindings for C++ class hi-

erarchies. In [Beier, 1994] Beier describes a frame-

work for developing C++ class hierarchies in such

a way that Tcl bindings can be created easily. The

implementation of these classes, however, has to be

done manually.

In this paper we will present a tool called Itcl++,

which can create Tcl bindings for C libraries auto-

matically from the C header files. Moreover it can

automatically map C++ class hierarchies to equiv-

alent hierarchies in [incr Tcl], an object-oriented ex-

tension of Tcl [McLennan, 1993].

1.2 The Problem

New functionality can be added to Tcl interpreters

by registering C functions of a specific type, which

can then be accessed using the normal Tcl command

syntax. Parameters are passed to these functions as

an array of strings, much in the same way program

arguments are passed to the C function main(). The

functions then have to parse these strings and con-

vert them to C values and data structures.



The major problem which arises when trying to

attach existing C or C++ library functions to Tcl,

is that they do not normally receive their arguments

using this argc/argvmechanism. The developer has

to write a C wrapper function, which parses the pa-

rameter list, converts the string of each argument

to the correct C type, and passes these arguments

to the C function. Return values and other output

arguments must then be converted back into strings

in order to be stored in a Tcl variable.

However, all wrapper functions are very similar

to each other. Their main functionality, that is ar-

gument parsing and translation, can be created au-

tomatically if sufficient information about argument

types is provided. The authors of Wafe use specifi-

cation files with a special syntax for the description

of C functions, widgets and special widget proper-

ties. These specification files are then parsed by a

Perl script which creates the appropriate C code.

The problem becomes even more complicated if

not only functions, but also C++ objects are to

be accessed. Not only must a wrapper function be

created for each public member function, but since

C(++) data can not be addressed directly from Tcl,

string handles need to be assigned, where each han-

dle represents one C++ object on “the Tcl side”

of the application. Tables that translate handles to

and from C++ objects can be implemented using

the hash tables provided by Tcl.

Moreover, our main goal was to transparently en-

capsulate C++ functionality in [incr Tcl] classes and

objects. This means that [incr Tcl] classes have to be

built, with every member function calling the corre-

sponding C++ function wrapper (see Figure 2 and

Section 3.2). All necessary code should be created

without human intervention, if at all possible.

2 Structure of Itcl++

To meet these requirements, we decided to use a two

step strategy. In the first step, C or C++ header

files are parsed and specification files are created

from function declarations and C++ class defini-

tions. Additional information from a type declara-

tion file, which contains information about complex

C data types like structures or enumerations, is used.

The functionality of the specification files is a

superset of those used in the Wafe project. In con-

trast to Wafe, which uses a proprietary file format,

our specification files are just Tcl scripts which are

executed with a predefined set of functions. This ap-

proach ensures that our code generators have enough

flexibility to handle even very complex situations, as

arbitrary Tcl commands may be executed within the

specification file.

The generation of specification files is partially

based on heuristics, since the semantics of a param-

eter can not always be determined by just evaluating

its declaration. Consider, for example, the following

function.

void foo( Foo *f );

No decision is possible about whether f is sup-

posed to be a pointer to an object of type Foo, or

an array of Foo objects: the two alternatives ob-

viously require different conversion code. In cases

where ambiguities occur, heuristics must be used,

and a warning message is generated. Decisions made

in this step may be overridden by simply editing the

specification file.

This specification file, perhaps with some modi-

fications made by hand, now contains all the infor-

mation required to create C++ and [incr Tcl] code

in the second step. Every semantic ambiguity in the

specification file should now have been resolved, so

that code generation can take place without further

intervention.

Both [incr Tcl] and C (or C++) code is generated,

where the [incr Tcl] part is only necessary if arrays or

C++ objects are used. As mentioned above, both

code generators are Tcl scripts which define a set

of functions and then call the specification files. An-

other Tcl script is available to generate manual pages

from the specification.

A diagram showing the interaction of all the

parts is shown in Figure 1.
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Figure 1: The building blocks of Itcl++: C and C++ header files are parsed, and a specification file is created

using type information from a separate file. Other tools are used to generate C/C++ and [incr Tcl] code from these

specification files.

3 Generating Code from Spec-

ification Files

The specification files contain one command for ev-

ery C function which is to be mapped to Tcl. The fol-

lowing example specifies that the C function “foo”,

which takes an integer, and produces an integer as

a return value, should be made available in Tcl as a

command which also has name “foo”.

command int {} foo {

in int {cname value}

cmdCode {returnVar= foo( value );}

}

The line starting with keyword in declares the

input parameter for the function, with the second

entry being the C type, and the third entry being

a list of option/value pairs. The option cname in

the above example is used to assign a name to the

variable used in the C code of the wrapper func-

tion. If no name is specified, the names “localVar”,

“localVar1” and so on are used. The same mech-

anism applies to return values. In our example the

option list for the return type is empty, and the de-

fault variable name “returnVar” is used.

The line starting with cmdCode contains the C

code which is to be executed after parameters have

been parsed, converted and stored in C variables. In

our example the C function “foo” is called with its

parameter. Then the result, an integer, is stored in

the C variable returnVar, which is the default name

for the variable holding the return value. The code

for converting the incoming Tcl parameter, a string,

to the correct C type, and for converting the return

value back to Tcl, is generated automatically.

Another way of returning values which is often

used in C is to pass a pointer to a variable as a func-

tion parameter. These semantics can be specified as

follows:

command void {} bar {

out int {cname outValue}

cmdCode {bar( &outValue );}

}

True call by reference semantics as available in

C++ can be specified in a similar way.

To allow the conversion of very complex data

types, which might require temporary memory, clean

up code may also be specified. The clean up code

usually frees dynamically allocated memory and is

executed as the last command in the wrapper func-

tion, after all output and return values have been

written back to Tcl.

In the following we will show how the different

C and C++ data types can be mapped to Tcl. In

Section 4 we will describe how the specification files

can be generated automatically.



3.1 Basic C Types

For the conversion of C types between Tcl and C,

only C code needs to be generated. No Tcl or

[incr Tcl] code is necessary, and no C++ features are

used, except for array types, which we will discuss

below.

A separate type specification file, which again is

a Tcl script, contains the necessary information to

convert values between C and Tcl. Simple C types,

like integers, floats, characters and strings can be

converted using scanf for input , and printf for

output arguments. This information is stored in a

Tcl array variable called “conversion”:

set conversion(scanf,int) "%d"

set conversion(printf,int) "%d"

Using this information, the following C code will

be generated for every integer input variable. Recall

that the default name for the C variable used to hold

the value is “localVar”.

/* argv[i] holds the i-th parameter */

if( sscanf( argv[i], "%d",

&localVar )

!= 1 )

/* error handling */

...

A similar technique is used to create the output

code.

More complex C data types like enumerations

do not have a “natural” representation in Tcl. How-

ever, string constants can be used to represent the

C constants in Tcl. Consider the following C type

declaration.

typedef enum {

Monday, Tuesday, Wednesday,

Thursday, Friday, Saturday, Sunday

} Days;

The following lines in the type file specifies that

type Days is an enumeration, with Tcl string “Mon”

corresponding to the C constant Monday, “Tue” cor-

responding to Tuesday, and so on.

set conversion(enum,Days,Mon) Monday

set conversion(enum,Days,Tue) Tuesday

...

The code generated from this specification is a

cascaded if statement.

if( !strcmp( argv[i], "Mon" ) )

localVar= Monday;

else if( !strcmp( argv[i], "Tue" ) )

localVar= Tuesday;

...

The same principle can be applied when a set of

C preprocessor macros can be passed as a parame-

ter. Many commercial libraries use macros instead of

enumerations, because the latter are not supported

by older compilers. In this case the macro names can

be mapped to Tcl strings by introducing a pseudo

enumeration type in the type file.

There are two different possibilities on how to

handle C structures. One approach is to create a

system of handles, and only pass these handles to

Tcl, instead of the real data. Read or write access

to single components of the structure would then

be implemented by a call to a C function. We will

describe such a system of handles when we discuss

the conversion of C++ objects in Section 3.2.

For C structures, however, this approach to ac-

cess the components from Tcl is overly complicated.

We therefore chose to convert structures to associa-

tive arrays in Tcl. This means that all components of

a structure are passed to Tcl and stored in an array,

where the component names are used as indices.

To see how structure types can be specified in the

type file, consider the following C type definition for

a structure holding information about an employee.

typedef struct {

char *name;

int sin;

float salary;

} Employee;

The entry in the type file which specifies this C

structure is a comma separated list of components

and their types:

set conversion(struct,Employee) \

"(char *) name,int sin,float salary"



After the code for this type has been generated,

its components can be accessed in Tcl using normal

array syntax. For example the social insurance num-

ber of an employee can be accessed like this:

employee(sin)

The code generated for the conversion of struc-

tures recursively applies type conversion to each of

the components of the structure.

Like structures, arrays can be handled in two dif-

ferent ways. Again we have to choose between a sys-

tem based on handles, and one based on the direct

mapping of the array contents to a Tcl data struc-

ture such as a list. The latter approach, however,

bears the problem of deciding at runtime how many

elements a passed array contains.

Another problem arises with this method when

it is used in a C++ context. Suppose an array is

returned from a function call. All its elements will

be extracted, and put into a Tcl list. Later, when we

want to pass this array to another C++ function, all

elements will be transferred back, and a new array

will be constructed. While this copy semantics is

not usually a problem for arrays of simple types, it

might be extremely harmful in the case of arrays of

C++ objects, since for each element in the array a

constructor will be called.

Therefore we decided to use the same system of

handles as for C++ objects to support arrays. In

Tcl, these handles are encapsulated in [incr Tcl] ob-

jects, which have methods for reading and writing

single entries, as well as assigning lists of values to

arrays.

3.2 C++ Classes

The syntax for the specification files presented above

can easily be extended to C++ classes. The follow-

ing is a specification of a simple counter class con-

taining methods for incrementing and decrement-

ing the counter by a given value, and a method for

querying the current value. Furthermore it has one

constructor, and one destructor. Since destructors

in C++ do not take arguments, the existence of a

public destructor needs only be specified with a bi-

nary flag.

class Counter {} {

constructor Constructor {

cmdCode{returnVar= new Counter();}

}

destructor

member int {} getValue {

cmdCode \

{returnVar= self->getValue();}

}

member void {} += {

in int {cname value}

cmdCode \

{self->operator+=( value );}

}

member void {} -= {

in int {}

cmdCode \

{self->operator-=( localVar );}

}

}

Since C++, unlike [incr Tcl], allows for more than

one constructor in every class, every C++ construc-

tor is mapped to a [incr Tcl] procedure. These pro-

cedures will call the [incr Tcl] constructor to create

a new object, and will then invoke the correspond-

ing C++ constructor. A more detailed description

of the generated [incr Tcl] code can be found in

[Heidrich, 1994].

Instead of having different wrappers for each

public function of a class, we decided to group these

functions into four categories (constructor, destruc-

tor, static and non-static member), for each of which

we create one wrapper in order to prevent replica-

tion of code. The function call scheme is illustrated

in Figure 2.

In order to keep track of the C++ objects refer-

enced by [incr Tcl], we use an object server, which

consists of two hash tables. One hash table maps

C++ pointers to [incr Tcl] object names and is used

for handling return values. It is important that this

table contains pointers to all C++ subobjects of ev-

ery registered C++ object. That is, for each regis-

tered C++ object the table contains one entry for
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Figure 2: Access of C++ member functions through [incr Tcl]. [incr Tcl] members call C++ wrappers for constructors,

destructors, methods and static methods, respectively. These functions convert function input parameters from Tcl

to C++, execute the C++ object member and finally convert output parameters and the return value back to Tcl.

each class in the inheritance hierarchy of the object.

The second table maps [incr Tcl] objects to C++

object pointers. Again we need different pointers for

every class in the inheritance graph of the object, so

we can not just take the [incr Tcl] object name as

a hash key, since there is no one-to-one correspon-

dence between names and pointers. Instead, we have

to assign a unique handle to each [incr Tcl] subob-

ject. This handle is stored in a private self variable

within every subobject.

During construction of an [incr Tcl] object, the

constructor wrapper recursively calls the wrappers

of the superclasses, with each wrapper register-

ing the corresponding subobject and initializing the

self variable (see Figure 3).

The object server is used to convert the argu-

ments when C++ functions are called from [incr Tcl].

If a member function takes an object as one of its

parameters, the wrapper function simply queries the

object handler for the address of this object. Since

every [incr Tcl] object is assigned a C++ object at

creation time, this pointer always exists.

If, however, a C++ function returns a pointer to

an object, this object may or may not be registered,

that is, there may or may not be a corresponding

[incr Tcl] object. If such an object exists, its name

should be returned to [incr Tcl], otherwise a new

[incr Tcl] object must be created and registered with

the returned C++ object in the object server. In

this case, if the object handler is not able to find a

matching entry in its hash table, it creates a new

[incr Tcl] object, which in turn registers itself with

the object handler (see Figure 4).

One problem that arises with complex class hi-

erarchies is that [incr Tcl] does not support repeated

inheritance, i.e. a class may only occur once in the

inheritance graph of another class. Thus the inher-

itance graph for every class may only be a tree in-

stead of an arbitrary DAG as in C++, for example,

when using virtual base classes. This means that

C++ class hierarchies that use this feature cannot

be completely mapped to [incr Tcl], but rather the

[incr Tcl] hierarchy has to be cut below the point

where this problem would occur.

While this is clearly a restriction, in practice the

consequences do not seem to be too striking, since

in C++ this feature is most often used to provide

groups of classes with low level functionality, for ex-

ample being writable to some sort of stream. In cases

where [incr Tcl] is used as an high level interface on

top of a C++ hierarchy, which seems to be the most

appropriate range of application, one could as well

do without such low level functionality. Nonethe-

less, we think that [incr Tcl] should be changed to

support the full C++ semantics of inheritance in the

future.

4 Generation of the Specifica-

tion Files

The specification files can be generated by a Tcl

script which parses a list of ANSI C or C++ header
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Figure 3: Whenever a new object is created, [incr Tcl] first executes the constructor of each [incr Tcl] base class (1).

Afterwards, the C++ wrapper for the constructor is called (2), and a new C++ object is being created (3,4). Then

the wrappers for the constructors of each baseclass are called recursively (6). They register the new object with the

object handler, and initialize the self variables of the [incr Tcl] object (5,7).
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Figure 4: A member function of object Foo has been called (1,2), which returns a newly created object Bar (3).

The Foo wrapper queries the object handler for the name of the corresponding [incr Tcl] object (4). Since the object

handler is not able to find the name in the hash table, it creates a new [incr Tcl] object (5), which in turn registers

itself through the constructor wrapper (6,7).

files. It uses the information from the type descrip-

tion files and from built-in rule tables to figure out

the semantics of a given parameter.

As mentioned above, some of these rules need to

be heuristic. Most of these heuristics deal with the

problem of how to interpret pointer parameters: as

arrays or as output values. The rules will determine,

that, for example an argument of type “char *” is

usually a string, while an argument of type “int *”

is probably an output value. Whenever a heuristic

rule is used, a warning message will be generated

in the output file, so that it is easy to verify the



correctness of the decision.

The parser also instantiates C++ templates.

This is done by looking for simple type definitions

which involve template types, but it is also possi-

ble for the programmer to directly specify which in-

stances should be generated for a given template.

In the future, the type information could also be

extracted automatically from the definition of enu-

merations and structures. It is clear, however, that

the mapping of C macros to pseudo types mentioned

in 3.1 would still have to be specified manually.

5 Results

5.1 Use of Itcl++ with our own Class

Hierarchy

Itcl++ was originally developed for the use in an ob-

ject oriented rendering system called vision, which

is currently under development at the computer

graphics laboratory of the University of Erlangen

[Slusallek, 1995].

The heuristics used for C++ parsing have been

developed using the classes of the vision hierarchy

as a reference. However the C++ classes have not

been changed to accommodate Itcl++.

The vision system currently consists of about

250 classes, making extensive use of advanced C++

features such as templates. About 100 of the high

level classes with a total of over 650 member func-

tions have been mapped to [incr Tcl].

Heuristics have proven to work very well for this

project: After inserting some type declarations in

the types file, correct decisions have been made for

all parameters of the 650 functions.

As a result, we are able to start Itcl++ from a

“makefile”, so that code is now generated completely

automatically, without the need for human interven-

tion.

We now use the [incr Tcl] interface to do initial-

ization and configuration of our application, to de-

scribe scenes for our rendering system, and to test

and debug new classes.

5.2 Use of Itcl++ with the OpenIn-

ventor Class Library

We tested Itcl++ with the commercial OpenInven-

tor class library [Strauss, 1992] from Silicon Graph-

ics. OpenInventor is an object oriented 3-D toolkit,

which provides means to display and interactively

manipulate complex scenes, using the 3D graphics

library OpenGL.

For our testing purposes we chose 32 classes with

190 member functions, mainly geometric objects and

manipulators. The C++ parser detected 13 ambi-

guities, all relating to parameters of type char *.

Based on the heuristic rules, these parameters were

interpreted as strings, not as pointers to char. In all

cases this interpretation turned out to be the right

one, so that no further human intervention has been

necessary.

A specification file of 839 lines was used to create

8204 lines (about 18 KB) of C++ code. This aver-

ages to about 43 lines of code per member function.

6 Conclusion and Future Ex-

tensions

We have presented Itcl++, a tool for automatically

generating Tcl/[incr Tcl] interfaces for C and C++

libraries. We have shown that it is possible to map

C types to Tcl, and whole C++ class hierarchies to

equivalent hierarchies in [incr Tcl]. The approach has

been demonstrated using examples from a rendering

class library and a commercial graphics library.

Directions for future development include the im-

provement of the heuristics used in the parsing step,

the automatic generation of the type specifications

from C and C++ header files, and providing direct

read and write access to C variables.

Itcl++ is freely available to the research commu-

nity. Please contact the authors for details.
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