
Using C++ Class Libraries from an Interpreted Language

Wolfgang Heidrich, Philipp Slusallek, Hans-Peter Seidel

Computer Graphics Department, Universität Erlangen-Nürnberg
Am Weichselgarten 9, 91058 Erlangen, Germany.

EMail:{wgheidri,slusallek,seidel}@immd9.informatik.uni-erlangen.de

Abstract

The use of object-oriented programming, and
C++ in particular, to build reusable class li-
braries has proven to be a very successful pro-
gramming technique. However, the flexible com-
position of class libraries to create application
programs has received little focus. In this pa-
per we present a tool, that automatically maps
a C++ class hierarchy to an equivalent hierarchy
in an interpreted language. Using an interpreted
language offers the programmer more flexibility
when composing applications from existing class
libraries.

1 Introduction

For quite some time object-oriented design and
programming have received great attention for
the development of large scale applications. One
of the most important features is the ability to
reuse software, once it has been implemented in
well structured class libraries. C++ [Elis, 1990]
has established itself as one of the major program-
ming languages in this field.

Today, a wide range of class libraries is
available for C++. Most of them come from
a research background (for example InterViews
[Linton, 1989], NIHCL [Gorlen, 1990], LEDA
[Näher, 1990], Motif++, Fresco,...), but more and
more commercial software is being developed in
C++ and is available in form of class libraries
(Rogue Wave [Keffer, 1992], Booch Components,
Inventor [Strauss, 1992], C++/Views, USL, Im-
ageVision [Neider, 1992], ...).

In this paper we present a tool called Itcl++,
which allows the mapping of a C++ class hier-
archy onto an equivalent class hierarchy in an

object-oriented, interpreted language ([incr Tcl],
pronounced and alternately written as Itcl). This
mapping is possible without having access to the
C++ source code of libraries, only the header files
are required. The tool allows the creation of ob-
jects representing C++ classes, to invoke their
member functions, and to derive other classes
within the interpreted language. The syntax of
[incr Tcl] permits a one-to-one mapping of C++
code to equivalent [incr Tcl] code.

This mapping gives the programmer the flexi-
bility of an interpreted language when combining
existing classes to form an application. It also
facilitates a rapid-prototyping approach to appli-
cation design, in that existing C++ classes can
be extended and tested interactively in [incr Tcl],
and then later possibly be recoded in C++.

1.1 Background

Building an application in an object-oriented lan-
guage involves two steps. First, a set of classes
must be designed, that implement the behavior
of application specific objects. In this step pre-
defined class libraries can be used to build appli-
cation classes by specializing them with derived
classes or instantiations of template classes. This
usage results in a new set of specialized classes: a
new specialized class library.

In the second step these classes must be as-
sembled to form an application. This step nor-
mally includes the design of a user interface for
the application. The use of an embedded inter-
preted language in the application makes this sec-
ond step much easier. It allows the programmer
to quickly change the structure of the class as-
sembly, to rapidly exchange alternative class im-
plementations with each other, or to flexibly react

to changes in the user interface design. By em-
bedding the object-oriented, interpreted language
into the application, it can also be used as a tool
for regression testing during the design process.

An embedded language may also have advan-
tages for the final end product, as it can be used
as a command language within the application,
which is usually preferable to implementing an
application-specific macro language from scratch.

There are several languages available, that can
be embedded into an application (Perl, XLISP,
Python [van Rossum, 1994], ...). Most of them,
however, were not designed as an embedded lan-
guage, and the majority lack a decent API from
C or even better C++, or are not suitable for
mapping C++ class hierarchies to it. We de-
cided to use the Tool Command Language (Tcl)
[Ousterhout, 1990] and its object-oriented exten-
sion [incr Tcl] [McLennan, 1993] as the base for
our implementation, because it has found wide
spread interest and was designed with a powerful
C API. The [incr Tcl] extension is very similar to
C++, which allows for a simple mapping of C++
to [incr Tcl]. We called our tool Itcl++, because it
allows to use the flexibility of [incr Tcl] to access
C++.

2 Tcl and [incr Tcl]

2.1 The Tool Command Language (Tcl)

Tcl has been especially designed for use as a com-
mand language for C applications. The Tcl im-
plementation comes in form of a library, with the
main data structure being the Tcl interpreter. C
programs may allocate one or more interpreters,
and use them to execute scripts contained in
strings or files. Tcl scripts are lists of commands,
each command taking a list of parameters.

Tcl supports all control structures known in
most other structured programming languages.
The Tcl syntax is a mixture of the syntax of C
and that of the UNIX shell.

C functions taking an interpreter and an array
of string arguments may be registered with an
interpreter, and can then be accessed as normal
Tcl commands. Parameters are passed to these

functions in much the same way as they are passed
to the C function main().

The Tcl library also provides functions for ma-
nipulating Tcl variables, and implements hash ta-
bles which can be used to access C data from Tcl.
We shall take a closer look on this in Section 3.1.

The main data type in Tcl is the string.
Consequently, Tcl provides lots of functionality
for string manipulations such as pattern match-
ing and regular expressions. Specially formatted
strings can act like higher level data types such
as lists and associative arrays. One very powerful
feature is the ability to trace actions (read, write
and delete) on variables, both from Tcl and C.
Tcl also implements an exception handling mech-
anism, which is a subset of the C++ mechanism.

A detailed description of Tcl and Tk (a Motif
like widget library based on Tcl) and the interac-
tion between Tcl/Tk and C/C++ can be found in
[Ousterhout, 1994].

2.2 [incr Tcl]

[incr Tcl] extends Tcl in much the way C++ ex-
tends C. This is also indicated by the name, which
means “increment Tcl” in Tcl notation. Many of
the concepts of [incr Tcl], such as classes, (mul-
tiple) inheritance, public and protected member
variables, constructor, destructor and static mem-
ber functions have been adopted from C++.

However, [incr Tcl], like Tcl, is an untyped lan-
guage, and thus operator overloading based on
types can not be supported. As a consequence,
there may exist at most one constructor per class.

A more restrictive property of [incr Tcl] is that
a class may only occur once in the inheritance
DAG of another class. This means that not every
C++ class hierarchy can be mapped to [incr Tcl].
We will discuss this in detail in the next section.

An example [incr Tcl] class, implementing a
simple counter class, is given below.

itcl class counter {
Constructor: no arguments, no code

constructor {} {}

no arguments, return member variable

method value {} {
return $count

}
method += {val} {
increment count by val

and return the result

return [incr count $val]

}
method -= {val} {
decrement count by val

and return the result

return [incr count [expr -1*$val]]

}
protected count 0

}

Objects of this class can now be created us-
ing “counter myCounter”, with myCounter be-
ing the name of the new object. Another way
would be

set myCounter [counter #auto]

in which case an automatically generated
object name would be stored in the variable
myCounter ([...] is used for nested evaluation).
For this paper we shall use the second notation.
Once the object has been created, its methods
may be called, for example

$myCounter += 10

By using the keyword proc instead of method,
the C++ concept of static member functions is
also available in [incr Tcl].

In [incr Tcl], classes and objects are imple-
mented by special Tcl commands that instantiate
the required scope, and then execute, for exam-
ple, member functions in this scope. The names
of the classes and objects act as names for these
special functions. An introduction to [incr Tcl]
can be found in [McLennan, 1993].

3 Mapping a C++ class hierar-

chy to [incr Tcl]

3.1 Basic Concepts

The major problem which arises when trying to
attach existing C or C++ functions to Tcl, is that
they do not normally receive their arguments by
the argc/argv mechanism mentioned above. The
developer has to write a C(++) wrapper func-
tion, which parses the parameter list, converts the
string of each argument to the correct C type, and
passes these arguments to the C++ member func-
tion. Return values and other output arguments
must then be converted back into strings in order
to be stored in a Tcl variable.

However, all wrapper functions are very sim-
ilar to each other. Their main functionality,
that is argument parsing and translation, could
be created automatically if sufficient information
about argument types is provided. The authors
of Wafe, an Tcl interface to X Window widget
sets [Neumann, 1993] used specification files with
a special syntax for the description of C functions,
widgets and special widget properties. These
specification files were then parsed by a Perl script
which created the appropriate C code.

Things get even more complicated if not only
functions, but also C++ objects are to be ac-
cessed. Not only must a wrapper function be cre-
ated for each public member function, but since
C(++) data can not be addressed directly from
Tcl, string handles need to be assigned, where
each handle represents one C++ object on “the
Tcl side” of the application. Tables that translate
handles to and from C++ objects can be imple-
mented using the hash tables provided by Tcl.

Moreover, our main goal was to transparently
encapsulate C++ functionality in [incr Tcl] classes
and objects. This means, that [incr Tcl] classes
have to be built, with every member function call-
ing the corresponding C++ function wrapper (see
Figure 1 and Section 3.1.2). All necessary code
should be created without human intervention, if
at all possible.

3.1.1 Parsing C++

To meet these requirements, we decided to use a
two step strategy. In the first step, C++ header
files are parsed and specification files are created
from C++ class definitions. The functionality of
the specification files is a superset of those used in
the Wafe project. In contrast to Wafe, which uses
its own syntax, our specification files are just Tcl
programs with additional functions defined. We
shall discuss the file format in Section 3.2.

The parsing step is partially based on heuris-
tics, since the semantics of a parameter can some-
times not be determined by just evaluating its
declaration. Consider, for example, the following
function.

void foo(Foo *f);

No decision is possible about whether f is sup-
posed to be a pointer to an object of type Foo, or
an array of Foo objects: the two alternatives ob-
viously require different conversion code. In cases
where ambiguities occur, heuristics must be used,
and warning messages should be generated. De-
cisions made in this step may be overridden by
simply editing the specification file.

3.1.2 Code Generation

This specification file, perhaps with some changes
made by hand, now contains all the information
needed to create C++ and [incr Tcl] code in the
second step. Every semantic ambiguity in the
specification file should now have been resolved,
so that code generation can take place without
further intervention.

The generated C++ code consists mainly of
the C++ function wrappers, while the [incr Tcl]
code creates the corresponding [incr Tcl] class hi-
erarchy.

Instead of having different wrappers for each
public function of a class, we decided to group
these functions into four categories (constructor,
destructor, static and non-static member), for
each of which we create one wrapper in order
to prevent replication of code. The function call
scheme is illustrated in Figure 1.

In order to keep track of the C++ objects
referenced by [incr Tcl], we use an object server,
which consists of two hash tables. One hash ta-
ble maps C++ pointers to [incr Tcl] object names
and is used for handling return values. It is im-
portant, that this table contains pointers to all
C++ subobjects of every registered C++ object.
That is, for each registered C++ object the table
contains one entry for each class in the inheritance
hierarchy of the object.

The second table maps [incr Tcl] objects to
C++ object pointers. Again we need different
pointers for every class in the inheritance graph
of the object, so we can not just take the [incr Tcl]
object name as a hash key, since there is no one-
to-one correspondence between names and point-
ers. Instead, we have to assign a unique handle to
each [incr Tcl] subobject. This handle is stored in
a protected self variable within every subobject.

During construction of a [incr Tcl] object, the
constructor wrapper recursively calls the wrap-
pers of the superclasses, with each wrapper regis-
tering the corresponding subobject and initializ-
ing the self variable (see Figure 2).

When calling C++ functions from [incr Tcl],
the object server is used to convert the arguments.
If a member function takes an object as one of its
parameters, the wrapper function simply queries
the object handler for the address of this object.
Since every [incr Tcl] object is assigned a C++
object at creation time, this pointer always exists.

If, however, a C++ function returns a pointer
to an object, this object may or may not be reg-
istered, that is, there may or may not be a corre-
sponding [incr Tcl] object. If such an object exists,
its name should be returned to [incr Tcl], other-
wise a new [incr Tcl] object has to be created and
to be registered with the returned C++ object in
the object server. In this case, if the object han-
dler is not able to find a matching entry in its hash
table, it creates a new [incr Tcl] object, which in
turn registers itself with the object handler (see
Figure 3).

One problem we already mentioned above is
that in [incr Tcl] a class may only occur once in
the inheritance graph of another class. Thus the
inheritance graph for every class may only be a

Object
[incr Tcl]

ObjectMembers

Static Members

C++
Destructor

Constructors

Figure 1: Access of C++ member functions through [incr Tcl]. [incr Tcl] members call C++ wrappers
for constructors, destructors, methods and static methods, respectively. These functions convert
function input parameters from Tcl to C++, execute the C++ object member and finally convert
output parameters and the return value back to Tcl.

Superclass

C++

Subclass

C++ Wrapper

for Constructors

of Subclass

C++ Wrapper

for Constructors
of Superclass

[incr Tcl]

Superclass

Superclass::self

Subclass::self

C++

(7)

[incr Tcl]

Subclass

(1)

(2)(3)

(4)

(5)

(6)

Figure 2: Whenever a new object is created, [incr Tcl] first executes the constructor of each [incr Tcl]
base class (1). Afterwards, the C++ wrapper for the constructor is called (2), and a new C++ object
is being created (3,4). Then the wrappers for the constructors of each baseclass are called recursively
(6). They register the new object with the object handler, and initialize the self variables of the
[incr Tcl] object (5,7).

tree instead of an arbitrary DAG as in C++, for
example, when using virtual base classes. This
means that C++ class hierarchies that use this
feature cannot be completely mapped to [incr Tcl],
but rather the [incr Tcl] hierarchy has to be cut
below the point where this problem would occur.

While this is clearly a restriction, in prac-
tice the consequences seem not to be too striking,
since in C++ this feature is most often used to
provide groups of classes with low level function-
ality, for example being writable to some sort of
stream. In cases where [incr Tcl] is used as an

high level interface on top of a C++ hierarchy,
which seems to be the most appropriate range of
application, one could as well do without such low
level functionality. Nonetheless, we think that
[incr Tcl] should be changed to support the full
C++ semantics of inheritance in the future.

3.2 Specification Files

Both the C++ parser, which generates the specifi-
cation file, and the set of code generators for C++
and [incr Tcl] are themselves implemented in Tcl.
Each code generator implements a set of proce-

methods

[incr Tcl]

function call

C++

Object Handler

Foo

[incr Tcl]

Bar

object

Bar

C++ object

Foo

C++ object

Wrapper for

Bar

constructors

Wrapper for

call

call

register

create

(1)

(5)

(6)

register(7)

create(3)

(2)

(4)

Figure 3: A member function of object Foo has been called (1,2), which returns a newly created object
Bar (3). The Foo wrapper queries the object handler for the name of the corresponding [incr Tcl] object
(4). Since the object handler is not able to find the name in the hash table, it creates a new [incr Tcl]
object (5), which in turn registers itself through the constructor wrapper (6,7).

dures for generating C++ and [incr Tcl] code, re-
spectively. These procedures are called from the
specification scripts when they are executed by
the code generators.

This approach ensures that our code genera-
tors have enough flexibility to handle even very
complex situations, as arbitrary Tcl commands
may be executed within the specification file.

A specification file for a counter class similar
to the one shown in Section 2.2 is shown in the
next column.

The empty list behind the class name indi-
cates that class counter does not inherit from any
other class. Static member functions may be spec-
ified by using the keyword staticMember instead
of member. Since destructors do not take param-
eters, neither in C++ nor in [incr Tcl], only the
existence of the destructor needs to be stated. No
destructor must be created if the C++ class con-
tains a private or protected destructor, because
such destructors can not be accessed from within
the C++ wrapper function.

class Counter {} {
constructor Constructor {
cmdCode{ returnVar= new Counter();}

}

destructor

member int {} getValue {
cmdCode \

{returnVar= self->getValue();}
}

member void {} += {
in int {cname value}
cmdCode {self->operator+=(value);}

}

member void {} -= {
in int {}
cmdCode \

{self->operator-=(localVar1);}
}

}

The lines starting with keyword in declare an
input parameter for the member function, with
the second entry being the C++ type, and the
third entry being a list of option/value pairs. For
example the option cname is used to assign a name
to a function parameter in function +=. If no name
is assigned to a variable, a default name starting
with “localVar” is chosen as is the case in func-
tion -=. The same mechanisms apply for output
values and their return types.

The lines starting with cmdCode contain the
C++ code which is to be executed after param-
eters have been parsed, converted and stored in
C++ variables. For more complex types clean up
code may also be specified. The clean up code
frees dynamically allocated memory and is exe-
cuted as the last command in the wrapper func-
tion, after all output and return values have been
written back to [incr Tcl].

In order to support types other than the stan-
dard ones built into C++, a type declaration file
may be used to declare compound types like struc-
tures, enumerations and other complex types for
which a conversion function from/to Tcl must be
specified. C++ structures are mapped to associa-
tive arrays in Tcl, while enumerations are imple-
mented by mapping a set of Tcl string constants
to the corresponding C++ constants.

C++ arrays are mapped to Tcl lists. An ex-
ample specification of an array of integers would
be

in array {ctype int cname fooArg}

In addition to classes, specification files also
support normal C/C++ functions. C++ tem-
plate files are not directly supported by the spec-
ification files, because heuristic rules are nec-
essary to create appropriate template instantia-
tions. Thus the instantiation of C++ class tem-
plates has to take place in the parsing step, before
specification files are created. These instances are
then treated as ordinary class definitions, and are
inserted in the specification files (see below).

4 Implementation

4.1 Creating Specification Files from
C++ Headers

The C++ parser, which is itself implemented in
Tcl, is provided with a list of header files and a
list of classes, that are to be mapped to [incr Tcl].
The parser also has access to the type definition
file mentioned above.

The public members of each class or class tem-
plate contained in the list of classes to be con-
verted, are extracted from the header files, and
their parameter types are processed. The code for
argument conversion between C++ and [incr Tcl]
is fetched by walking through a table of rules and
matching each type against a regular expression.
This approach was chosen in order to be able to
easily add and modify rules, and to be able to
easily introduce new features. The table also con-
tains information about whether a rule is hard-
and-fast, or a heuristic.

Every time a heuristic rule is used, or a type
can not be interpreted, a warning message is gen-
erated. In this cases the decision made in the
specification file needs to be checked by the pro-
grammer. Functions having unknown classes as
arguments (i.e. classes which are not in the list
of classes to be converted) may automatically be
ignored by placing the name of the unknown class
in a special list.

A problem arises when handling template
classes: It can not easily be determined which in-
stances of a given template have to be generated.
As an convention, the parser interprets typedefs
of the form

typedef templateName<instance variables>

instance;

as template instantiation. Instances, for
which no typedef exists in the C++ header files,
have to be inserted into the specification file by
hand.

4.2 Generating C++ Code

Code generation is similar for the different types
of function wrappers. Each wrapper function re-

ceives the name of the [incr Tcl] member function
that has been called. The wrappers for the de-
structor and non-static members additionally get
the [incr Tcl] self string of the calling object.

The wrapper does type checking and conver-
sion of the function parameters from Tcl values
to C++ values according to function type. Then
the code contained in the cmdCode line of the
member’s specification is executed, and finally the
output and return values are converted back to
[incr Tcl].

Constructor wrappers have to register the new
object and initialize the self variable of the
[incr Tcl] object, while destructor wrappers must
delete an old object from the object handler. Both
have to call the corresponding wrappers of any
superclass in order to recursively continue with
the registration/deletion process. The code that
would be generated for the += member of the
Counter class from Section 3.2 would look like
this:

if(!strcmp("+=", command)) {
int value;

if(argc!= 1) {
argcError("+=", "", 1, argc);

DBUG RETURN(TCL ERROR);

}

if((sscanf(argv[1],"%d",&value)!=1) {
convError("+=", "1", argv[1], "int");

DBUG RETURN(TCL ERROR);

}

self->operator+=(value);

}

The command variable is initialized to the func-
tion name, and the self variable contains a
pointer to the calling object. This pointer has pre-
viously been returned by an object handler query.

The conversion function (sscanf in this exam-
ple) is hardwired for every standard C++ type.
For compound types it may be specified in the
types definition file.

4.3 Generating [incr Tcl] Code

[incr Tcl] code generation is straightforward. De-

structors, static and non-static members just pass
their parameters along to the wrapper functions,
with destructors and non-static members addi-
tionally providing the self variable.

The constructor (recall that [incr Tcl] sup-
ports only one constructor per class!) first checks,
whether it is called directly or indirectly, which
might happen as a result of inheritance. In the
latter case the C++ wrapper must not be called,
because the C++ object has already been con-
structed.

In the former case, the constructor uses
the constructor name to pass the correct ar-
guments and the [incr Tcl] object name to
the C++ wrapper. An additional constructor
registerObject, which is used for registering

already existing C++ objects with [incr Tcl] is
added to every class.

The [incr Tcl] code for the constructor of our
example Counter would be

constructor {args} {
if { [$this info class]== "Counter" } {
if { [llength $args] < 1 } {
error "Wrong number of arguments"

}

case [lindex $args 0] in {
{Constructor} {

CounterConstructor $this\
Constructor

}
{ registerObject} {

CounterConstructor $this\
registerObject\

[lindex $args 1]

}
default {

error "Unknown constructor\
[lindex $args 0]"

}
}

}
}

To simplify creation of [incr Tcl] objects, an
[incr Tcl] procedure is created for each C++ con-
structor. In our example, this would be

proc Constructor {} {
return [Counter #auto Constructor]

}

so that an instance of class Counter could be
generated with the command

set myCounter [Counter :: Constructor]

5 Results

5.1 Use of Itcl++ with our own Classes

Itcl++ has originally been developed for the use
in a object oriented rendering system called Vi-
sion, which is currently under development at the
graphics lab at the University of Erlangen.

The heuristics used for C++ parsing have
been developed using the classes of the Vision hi-
erarchy as a reference. However the C++ classes
have not been changed to accommodate Itcl++.

The Vision system currently consists of about
140 classes, making extensive use of advanced
C++ features such as templates. About 50 of the
high level classes with a total of over 350 member
functions have been mapped to [incr Tcl].

Heuristics have proven to work very well for
this project: After inserting some type declara-
tions in the types file, correct decisions have been
made for all parameters of the 350 functions.

As a result, we are able to start Itcl++ from
a “makefile”, so that code is now generated com-
pletely automatically, without the need for human
intervention.

We now use the [incr Tcl] interface to do ini-
tialization and configuration of our application,
to describe scenes for our rendering system, and
to test and debug new classes.

5.2 Use of Itcl++ with the OpenInven-
tor Class Library

We tested Itcl++ with the commercial OpenIn-
ventor class library [Strauss, 1992] from Silicon
Graphics. OpenInventor is an object oriented 3-D
toolkit, which provides means to display and in-
teractively manipulate complex scenes, using the
Graphics Library OpenGL.

For our testing purposes we chose 32 classes
with 190 member functions, mainly geometric ob-
jects and manipulators. The C++ parser de-
tected 13 ambiguities, all relating to parameters
of type char *. Based on the heuristic rules,
these parameters were interpreted as strings, not
as pointers to char. In all cases this interpreta-
tion turned out to be the right one, so that no
further human intervention has been necessary.

The specification file of 839 lines has been used
to create 8204 lines (about 18 KB) of C++ code.
This makes an average of about 43 lines of code
per member function.

A sample Inventor program using the mapped
classes is given in Figure 4, with the left column
containing the [incr Tcl] code and the right col-
umn containing the same program as it would be
implemented in C++.

After initialization of the library, a root object
is created and initialized with a camera, light etc.
Then a simple scene with a cone and a “trackball
manipulator” is created and inserted in the root
object.

The trackball manipulator allows the user to
rotate the scene on the screen. Finally a window
is created and the main event loop is entered. An
image taken from the sample program is shown in
Figure 5.

6 Future Extensions

6.1 Accessing C++ Variables

The concepts described above allow transparent
access of C++ functions and class member func-
tions from [incr Tcl]. So far, however, it is not
possible to directly manipulate C++ public mem-
ber variables or global variables. The problem
is that there would have to be two instances of
every variable, one instance in C++ and one in
[incr Tcl]. While C++ code manipulates the C++
instance, [incr Tcl] code changes the correspond-
ing [incr Tcl] instance, so we face the problem of
keeping the two instances consistent.

In order to ensure consistence, one could use
the Tcl trace facility mentioned in Section 2.1 to

set window\

[SoXt :: init "Gray Cone"]

set root [SoSeparator :: Constructor]

$root ref

set camera\

[SoPerspectiveCamera :: Constructor]

$root addChild $camera

$root addChild\

[SoDirectionalLight :: Constructor]

$root addChild\

[SoTrackballManip :: Constructor]

$root addChild\

[SoMaterial :: Constructor]

$root addChild\

[SoCone :: Constructor]

set ra\

[SoXtRenderArea :: Constructor $window]

$ra setTitle "Gray Cone"

$camera viewAll $root\

[$ra getViewportRegion] 1

$ra setSceneGraph $root

$ra show

SoXt :: show $window

SoXt :: mainLoop

main()

{

Widget window=

SoXt::init("Gray Cone");

SoSeparator *root= new SoSeparator;

root->ref();

SoPerspectiveCamera *camera=

new SoPerspectiveCamera;

root->addChild(camera);

root->addChild(

new SoDirectionalLight);

root->addChild(

new SoTrackballManip);

root->addChild(

new SoMaterial);

root->addChild(

new SoCone);

SoXtRenderArea *ra=

new SoXtRenderArea(window);

ra->setTitle("Gray Cone");

camera->viewAll(root,

ra->getViewportRegion(), 1);

ra->setSceneGraph(root);

ra->show();

SoXt::show(window);

SoXt::mainLoop();

}

Figure 4: Simple Inventor program, written in [incr Tcl](left) and C++ (right).

implement a read through/write through mecha-
nism. Tcl variable traces allow the attachment of
a Tcl function to an arbitrary variable. This func-
tion is then called on every read or write access
on the variable.

On read access, the trace function is called
before the contents of the variable are read. This
means that the trace function could call a C++
wrapper which updates the [incr Tcl] variable with
the corresponding C++ value.

On a write access, the trace function is called
after the [incr Tcl] variable has been set to the
new value. Thus the trace function could update
the C++ variable to this value.

This approach would require one wrapper for
the public member variables of each class, and one

additional wrapper for the global variables.

6.2 Accessing [incr Tcl] Objects From
C++

We described a way of mapping classes imple-
mented in C++ to [incr Tcl]. At times it may
also prove useful to have direct access to [incr Tcl]
classes from within C++ code. This could be
used for rapid prototyping of new applications by
using the high level features of [incr Tcl], for exam-
ple regular expressions and string manipulation.
Once the algorithms are implemented and tested,
each class may be moved to C++.

In the current implementation, it is possible
to access [incr Tcl] objects from C++, but this
access is not transparent. That is, instead of just

Figure 5: Window of the sample Inventor program given in Section 5.2. The cone may be rotated
using the trackball manipulator.

calling a C++ member function, one has to create
and evaluate a string containing [incr Tcl] code.

In order to encapsulate these calls within C++
objects, concepts similar to those described in this
paper might be used to map [incr Tcl] classes to
C++. The existing specification file format could
also be used for this conversion.

A problem arises when trying to automatically
generate the specification files from [incr Tcl] code.
Since [incr Tcl] is an untyped language, the gener-
ator of a specification file must be provided with
additional type information for each function that
is to be mapped to C++. This could be achieved
by introducing a convention for [incr Tcl] com-
ments.

7 Conclusion

We have shown that it is possible to map C++
class hierarchies into equivalent hierarchies in an
interpreted command language ([incr Tcl]). This
mapping allows flexible access to C++ class li-

braries from [incr Tcl], with all the advantages of
an interpreted language. Although [incr Tcl] lacks
many features of C++ (overloading, virtual base
classes, templates), most C++ class libraries can
be mapped to [incr Tcl] with no loss in function-
ality. The approach has been demonstrated us-
ing examples from a rendering class library and a
commercial graphics library.

8 Acknowledgments

We would like to thank Gustav Neumann and Ste-
fan Nusser, who implemented a specification syn-
tax and a related code generator for the Wafe pro-
gram [Neumann, 1993]. We used their Perl imple-
mentation as a starting point for Itcl++. Gustav
Neumann also made some suggestions concerning
the syntax of our specification files. We would also
like to thank the members of the Vision project,
for which the tool has originally been written since
they tested early versions of Itcl++ and provided
valuable feedback.

References

[Elis, 1990] Elis, M. A. and Stroustrup, B. (1990).
The Annotated C++ Reference Manual. Addi-
son Wesley.

[Gorlen, 1990] Gorlen, K. E. (1990). Data Ab-
staraction and Object-Oriented Programming
in C++. Teubner.

[Keffer, 1992] Keffer, T. (1992). Tools.h++.
Rogue Wave Software.

[Linton, 1989] Linton, M. A., Vlissides, J. M.,
and R.Calder, P. (1989). Composing user inter-
faces with interviews. IEEE Computer, pages
8–22.

[McLennan, 1993] McLennan, M. J. (1993). [incr
Tcl]: Object – Oriented Programming in Tcl.
In Proc: Tcl/Tk Workshop, University of Cal-
ifornia at Berkeley, 1993.

[Näher, 1990] Näher, S. (1990). LEDA 2.0
User Manual. Universität des Saarlandes,
Saarbrücken.

[Neider, 1992] Neider, J. and Tillmann, C.
(1992). ImageVision Library C Programming
Guide. Silicon Graphics Computers.

[Neumann, 1993] Neumann, G. and Nusser, S.
(1993). Wafe — an X Toolkit Based Frontend
for Application Programs in Various Program-
ming Languages. In Proc: Usenix Winter Con-
ference, 1993.

[Ousterhout, 1990] Ousterhout, J. K. (1990). Tcl:
an Embedded Command Language. In Proc:
Usenix Winter Conference, 1990.

[Ousterhout, 1994] Ousterhout, J. K. (1994). An
Introduction to Tcl and Tk. To be published.
Addison Wesley.

[Strauss, 1992] Strauss, P. S. and Carey, R.
(1992). An Object–Oriented 3D Graphics
Toolkit. In ACM Computer Graphics. SIG-
GRAPH ’92 Conference Proceedings.

[van Rossum, 1994] van Rossum, G. (1994).
Python Reference Manual.

