
http://dx.doi.org/10.1145/2897824.2925875

solution to the optimization problem:

minimize f(Dx− b) + r(x), (1)

where f is an error metric, and r is a penalty function that expresses
prior knowledge about the image x.

There are many reasonable choices for f and r. For instance, we
might define f as a sum-of-squares error, a Huber loss, or a Poisson
penalty. The penalty function r could be a constraint on the range of
the values of x, a sparsity-inducing penalty such as total-variation, a
non-local patch prior as in the BM3D-based reconstruction shown
in [Danielyan et al. 2012], or a combination of all these penalties.

Once we have chosen f and r, we must choose an algorithm to use
for solving the optimization problem. Dozens of different optimiza-
tion algorithms have been applied to image optimization problems,
such as the alternating direction method of multipliers (ADMM)
[Boyd et al. 2011], the primal-dual algorithm by Chambolle and
Pock [2011], and half-quadratic splitting [Geman and Yang 1995].

Moreover, for each algorithm there may be many ways to translate
Problem (1) into that algorithm’s standard form. The only way to
know which algorithm and translation into standard form works best
for a problem is to try all of them.

Finding an effective image optimization method thus requires ex-
ploring a large space of problem formulations, algorithms, and trans-
lations between standard forms. Currently, researchers must develop
a new solver implementation for each point they explore in the space,
which is a time-consuming and error-prone process. Developing
implementations is particularly challenging for image optimization
problems since these problems typically involve millions of variables
and can only be solved efficiently by exploiting problem structure.

In this paper, we address these challenges by introducing ProxImaL,
a domain-specific language (DSL) for image optimization. The
ProxImaL language allows users to describe image optimization
problems in a few lines of code using an intuitive syntax that follows
the math. Users write their problem using a fixed set of mathematical
functions, whose structure can be exploited to generate an efficient
solver. Most functions that occur in image optimization problems
are included in the language, and it is easy to add support for more.
Compositions of functions are limited by a set of simple rules that
ensure the problems constructed by the user match our standard
mathematical representation.

The ProxImaL compiler takes the user’s problem description and
choice of algorithm and automatically generates a solver imple-
mentation. The compiler considers a wide range of possible solver
implementations and selects one based on expert knowledge about
how to best formulate problems for the chosen solver algorithm. The
user can also easily override the compiler’s default choice to try out
more implementations. The solver implementations generated by
the compiler are highly efficient because we created optimized code
for the core mathematical operations using Halide [Ragan-Kelley
et al. 2013].

We demonstrate the utility of ProxImaL through applications to
the image processing pipeline, burst photography and denoising,
deconvolution, and phase retrieval. In many cases a few lines of
ProxImaL code and the default solver implementation generated by
the ProxImaL compiler achieves state-of-the-art results, often with a
runtime under ten seconds.

We make the following contributions in this paper:

• We developed a simple language and mathematical representa-
tion for image optimization problems that captures the problem
structure needed to generate an efficient solver.

• We built a compiler that takes the user’s problem description
and choice of solver algorithm and automatically generates an
efficient solver, intelligently choosing from the many transla-
tions possible.

• We show that our framework can achieve state-of-the-art res-
ults on a variety of image optimization problems while also
producing highly efficient solver implementations.

2 Related Work

Languages for Graphics and Image Processing Domain-
specific languages for graphics and rendering have successfully
made the transition from research to industry standard [Foley and
Hanrahan 2011]. Today, general-purpose languages for GPU pro-
gramming, such as CUDA, are popular for many applications beyond
graphics. OpenCL extended this concept to heterogeneous comput-
ing platforms. Domain-specificity can be exploited to accelerate
the execution of common tasks in a particular domain, for example
in image processing [Ragan-Kelley et al. 2013], physical simula-
tion [Bernstein et al. 2015], or multi-material 3D printing [Vidimice
et al. 2013]. Most of these languages and systems focus on finding a
domain-specific tradeoff between intuitive use and high-performance
execution. ProxImaL follows this strategy but we build on formal
optimization methods to develop a language and compiler for image
optimization.

Optimization for Image Processing Over the past years, numer-
ical optimization has become a standard tool for solving a number
of classical restoration and reconstruction problems in computa-
tional photography. Examples include blind [Fergus et al. 2006]
and non-blind [Krishnan and Fergus 2009; Joshi et al. 2009] de-
convolution, image denoising [Zoran and Weiss 2011], and inpaint-
ing [Bertalmio et al. 2000]. Optimization has been successfully
applied to image editing problems such as tonemapping [Fattal et al.
2002], Poisson-blending [Levin et al. 2004b] and colorization [Levin
et al. 2004a]. Very efficient solvers have been developed for most
of these problems [Krishnan and Szeliski 2011; Schmidt and Roth
2014]. Optimization techniques are also becoming increasingly
popular solutions for scientific imaging problems such as x-ray
tomography [Sidky and Pan 2008] and phase retrieval [Tian and
Waller 2015]. Recently, it was shown that a large subset of low-level
image processing problems can be solved through a single proximal
algorithm framework [Heide et al. 2014].

Optimization and Optimization Languages The literature on
algorithms for solving image optimization problems is extensive.
A particularly fruitful line of research has focused on solving con-
vex optimization problems using operator splitting methods and
proximal algorithms [Parikh and Boyd 2013]. Prominent examples
of such methods include the proximal point algorithm [Rockafel-
lar 1976], forward-backward splitting [Bruck 1975], the Pock-
Chambolle algorithm [Chambolle and Pock 2011; Pock et al. 2009],
the split Bregman method [Goldstein and Osher 2009], ISTA and
FISTA [Beck and Teboulle 2009], the alternating direction method
of multipliers [Boyd et al. 2011], PDHG [Esser et al. 2010], and
half-quadratic splitting [Geman and Yang 1995]. Recent work has
applied these methods to nonconvex optimization problems and
found conditions that guarantee convergence (though not necessarily
to the global optimum); see, e.g., [Attouch et al. 2011; Möllenhoff
et al. 2015; Li and Pong 2015].

DSLs for optimization have a long history, going back to GAMS
[Brooke et al. 1988] in the 1970s, and including DSLs specialized for
convex optimization, such as CVX [Grant and Boyd 2014], YALMIP
[Lofberg 2004], CVXPY [Diamond and Boyd 2016b], and Convex.jl

[Udell et al. 2014]. These approaches reliably solve modest size
problems, with on the order of 10, 000s of variables, but for image
optimization problems with millions of variables these solvers be-
come infeasible due to their memory and computational cost. There
have been several different approaches towards making an optim-
ization DSL or framework that can handle large problems such as
occur in image optimization. The approach in [Diamond and Boyd
2015] extends CVXPY to recognize and exploit fast linear transforms,
such as convolution and the discrete Fourier transform. The Epsilon
framework takes advantage of fast proximal operators for individual
functions, transforming problems so they can be efficiently solved by
a variant of ADMM [Wytock et al. 2015]. The TFOCS framework
makes it easy to apply a variety of proximal and first order algorithms
to optimization problems, and accommodates fast linear transforms
[Becker et al. 2011]. None of these systems can compete with ex-
isting specialized solvers for individual image processing problems,
however, and they are also limited to convex problems.

3 Representing Image Optimization Problems

We model an image optimization problem as a sum of penalties fi
on linear transforms Kix with x ∈ R

n being the unknown:

argmin
x

I
∑

i=1

fi (Kix) with K =

K1

...
KI

, (2)

where here K ∈ R
m×n is one large matrix that is composed of

stacked linear operators K1, . . . ,KI . The linear operator Ki ∈
R

mi×n selects a subset of mi rows of Kx. This subset of rows is
then the input for the penalty functions fi : R

mi → R.

Image optimization problems generally contain

• variables representing the image(s) to be reconstructed,

• a forward model of image formation in terms of linear operators,

• a penalty based on the difference of the results of this forward
model from measured data,

• and priors and constraints on the the variables.

For example, consider a slightly more complex version of the decon-
volution problem (1) where the convolved image Dx is subsampled
by a known demosaicking pattern, which we represent with the lin-
ear operator M. We formulate our problem using a sum-of-squares
error metric, f(x) = ‖MDx− b‖22, and the penalty function:

r(x) = µ‖∇x‖1 + (1− µ)‖∇x‖22 + I[0,∞)(x),

where µ ∈ [0, 1], ∇ is the gradient operator, and:

I[0,∞)(x) =

{

0, if x ≥ 0

∞, otherwise.

The penalty function encodes the priors that many gradients are
zero and the pixel values are nonnegative. Problem (3) shows the
full optimization problem and how we represent it in the form of
Problem (2).

xopt = argmin
x

‖MDx− b‖22 + r(x) (3)

r(x) = µ‖∇x‖1 + (1− µ)‖∇x‖22 + I[0,∞)(x) (4)

model:

f1(v) = ‖v − b‖22, K1 = MD

f2(v) = µ‖v‖1, K2 = ∇
f3(v) = (1− µ)‖v‖22, K3 = ∇
f4(v) = I[0,∞)(v), K4 = I

(5)

Note that there are other ways to represent the problem in our stand-
ard form. For example, we could use:

f1(v) = ‖Mv − b‖22, K1 = D.

A key insight is that the choice of representation can drastically
affect the performance of the solver algorithms. We take advantage
of this fact and provide strategies to find an optimal reformulation.

The only assumption we make about the penalty functions f1, . . . , fI
is that they provide a black box for evaluating the function’s proximal
operator. The proximal operator of a function f is defined as:

proxτf (v) = argmin
x

(

f(x) +
1

2τ
‖x− v‖22

)

,

where τ > 0 and v ∈ R
mi [Parikh and Boyd 2013]. The proximal

operator optimizes over the function in isolation, but incorporates
a quadratic term that can be used to link the optimization with
a broader algorithm. Many algorithms can be carried out using
proximal operators that cannot be carried out using the traditional
approach of interacting with functions by computing their gradients
and Hessians [Parikh and Boyd 2013].

Similarly, the only assumption we make about each linear operator
Ki is that it provides a black box for evaluating the forward operator
x → Kix and the adjoint operator z → KT

i z. This is a useful
abstraction because many linear operators that arise in optimization
problems from image processing are fast transforms, i.e., they have
methods for evaluating the forward and adjoint operator that are
more efficient than standard multiplication by the operator represen-
ted as a dense or sparse matrix. Common fast transforms in image
processing include the discrete Fourier transform (DFT), convolu-
tion, and wavelet transforms; see [Diamond and Boyd 2016a] for
many more examples.

For simplicity, we assume that all linear operators are maps from
a multidimensional real space R

n1×···×nk to another multidimen-
sional real space R

m1×···×mℓ . Complex-valued linear operators
such as the DFT are represented as real valued operators using the
standard embedding of a complex vector in C

n1×···×nk as a real
vector in R

2n1×···×nk .

We call algorithms that solve Problem (2) using only these black
boxes proximal, matrix-free solvers. All solver algorithms in Prox-
ImaL are proximal, matrix-free solvers. ProxImaL currently sup-
ports the Pock-Chambolle algorithm, ADMM, linearized ADMM,
and half-quadratic splitting. See the supplement for detailed deriva-
tions showing that all of these methods fit into our framework from
(2). These algorithms can solve Problem (2) when the functions
f1, . . . , fI are convex.

Much state-of-the-art image optimization makes use of nonconvex
penalty functions; however, in applications ranging from denoising
and deconvolution to burst reconstruction and registration. Patch-
based approaches and hard thresholding in particular have been very
successful for image reconstruction problems [Krishnan and Fergus
2009; Danielyan et al. 2012; Heide et al. 2014].

Surprisingly, the same proximal, matrix-free solvers that work for
convex problems yield good results for certain problems that in-
clude nonconvex penalty functions [Danielyan et al. 2012; Heide
et al. 2014; Hallac et al. 2015]. There is often no guarantee that
the algorithms will converge (see conditions in [Ochs et al. 2014]
for exceptions). Furthermore, there is no guarantee that they find
the optimal x, but empirically for many problems with nonconvex
penalties the algorithms do produce good results in a reasonable
number of iterations.

Problem(ProxFn, ...): Defines a ProxImaL problem as an objective made up of

the sum of a list of proxable functions.

ProxFn(LinOp): The base type of a proxable function, applied to a linear

expression. Table 2 shows examples from the set of pre-

defined proxable functions.

LinOp(...): The base type of a linear expression, each of which has

zero or more linear expressions as children. Table 3 shows

examples from the set of predefined proxable functions.

Variable(w,h,...): Defines a set of w×h× . . . unknowns as a single logical

multi-dimensional array variable. A problem may use

multiple logical variables of different size and shape, which

together form its complete set of unknowns x.

Table 1: Core primitives in the ProxImaL language.

We therefore allow the penalty functions f1, . . . , fI to be nonconvex,
even though by doing so we sacrifice guarantees of optimality. For
convex problems, we run the solver until convergence criteria are sat-
isfied, but for nonconvex problems we follow the same approach as
[Hallac et al. 2015] and return the iteration with the lowest objective
value after a fixed number of iterations.

4 The ProxImaL Language

ProxImaL asks users to describe image optimization problems using
a simple DSL, embedded in Python, which corresponds directly to
the model in Problem (2). At the highest level, the user defines a
Problem as a list of applications of proxable functions, or functions
with a known proximal operator, instantiated as ProxFn objects. Each
ProxFn term applies to a linear expression (LinOp), and each linear
expression is an arbitrary sub-DAG of linear expressions, ultimately
terminating in variable references. Variables are defined as multidi-
mensional arrays (e.g., w×h× 3 for a color image). A problem can
use an arbitrary number of logical variables, each referenced arbitrar-
ily within the linear expression of any of the proximal terms. Each
logical variable refers to individual subcomponents of the vector
of all stacked unknowns, i.e., x from Problem (2). Variable refer-
ences make up the leaves of the linear expression DAG, referring to
individual components of the unknowns.

Operator overloading translates alpha*expr and expr + expr into
the LinOps scale(alpha, expr) and sum(expr, expr), respectively.
Here alpha is a scalar constant and expr may be any ProxFn term
or linear expression, though ProxFn terms cannot be multiplied by
negative constants.

For example, Problem (3) can be written in ProxImaL as:

x = Variable(300, 300, 3)

data_term = sum_squares(subsample(conv(x, psf)) - input)

grad_term = mu * norm1(grad(x)) +

(1-mu) * sum_squares(grad(x))

objective = data_term + grad_term + nonneg(x)

p = Problem(objective)

x = Variable(300, 300, 3)

data_term = sum_squares(subsample(conv(x, psf)) - input)

grad_term = mu * norm1(grad(x))

objective = data_term + grad_term

p = Problem(objective)

Figure 2 shows how ProxImaL translates the above code into a DAG
representation of the problem. The problem can be solved simply by
calling p.solve(solver="ADMM"), where the solver keyword specifies
what solver algorithm to use, in this case ADMM.

4.1 Proxable functions

ProxImaL provides a library of proxable functions that commonly
occur in image optimization problems. Table 2 lists several examples

Figure 2: The DAG representation of Problem (3).

sum_squares(e): Defines the squared ℓ2-norm ‖e‖2

2
for any linear expres-

sion e.

norm1(e): Defines an ℓ1-norm ‖e‖1.

poisson_norm(e, b): Defines a maximum-likelihood denoiser that acts as a

penalty function. Not a “formal” norm.

patch_NLM(e, ...): Patch prior for image self-similarity.

group_norm1(e, dims): Flattens the dimensions dims of e with an ℓ2-norm, then

computes an ℓ1-norm of the result. Useful to describe

sparse norms over vector-valued quantities.

nonneg(e): Defines a constraint that e is non-negative (0 cost if so,

∞ otherwise).

Table 2: Example proxable functions provided by ProxImaL .

from the library.

Every proxable function f : Rn → R defined in ProxImaL can be
parametrized to express any function of the form:

g(x) = αf(βQx− b) + 〈c,x〉+ γ〈x,x〉,

where x ∈ R
n is a variable, α > 0, β ∈ R, b ∈ R

n, c ∈ R
n and

γ > 0 are constants, and Q ∈ R
n×n is an orthogonal matrix.

The proximal operator of g can be evaluated using only the proximal
operator of f . It is straightforward to show that:

proxτg(v) = Q
T (

proxτ̂f (v̂) + b
)

/β,

where τ̂ = αβ2τ
1+2γτ

and v̂ = β
1+2γτ

Q(v − τc)− b.

When f is separable, i.e., f(v) =
∑n

i=1 fi(vi) for proxable scalar
functions f1, . . . , fn, then we can replace β in the parametrization
with a diagonal matrix ∆ ∈ R

n×n.

Proxable functions may also accept multidimensional inputs, e.g.,
f : Rn1×···×nk → R. In that case the parametrized form of the
function is defined similarly, with b, c ∈ R

n1×···×nk and Q an
orthogonal linear map.

In the ProxImaL language, each of these additional parameters is
passed as an optional keyword argument to the proxable function
constructor (e.g., alpha=..., beta=...). The ProxImaL compiler
takes advantage of the parametrized form internally to rewrite op-
timization problems.

4.2 Linear operators

ProxImaL provides a library of linear operators that include standard
operations like addition and multiplication by a constant, as well as
common image processing operations. Table 3 lists several examples

conv(e, k): Convolves the subexpression e with the kernel k.

subsample(e, steps): Extracts every stepsi pixel along axis i, starting with

the pixel stepsi-1.

mul_elemwise(weight, e): Element-wise multiplication with a fixed constant

weight array.

scale(c,e): Scale e by fixed constant scalar c.

sum(e1,e2, ...): Sums input expressions into a single linear expression.

vstack(e1, e2, ...): Vectorizes and stacks a list of input expressions into a

single linear expression.

grad(e): Computes the gradients of e, by default across all n of

its dimensions.

warp(e, H): Interprets e as a 2D image and warps it using the ho-

mography H with linear interpolation.

mul_color(e, C): Performs a blockwise 3 × 3 color transform using the

color matrix C, or the predefined opponent (opp) and

YUV (yuv) color spaces.

x: Variable references make up the leaves of the linear

expression DAG.

Table 3: Example linear operators provided by ProxImaL .

vstack

fo
rw

a
rd

 e
v
a
l

a
d

jo
in

t
e
v
a
l

Figure 3: The DAG for the stacked linear operators in Problem (3).

from the library. Including linear operators for image processing
operations like convolution and warp in the language, rather than
having the user write these as multiplication by a dense or sparse
matrix, is crucial to generating efficient solver implementations. The
high-level descriptions of the linear operators can be exploited by a
matrix-free solver to evaluate the operators efficiently, as discussed
in [Diamond and Boyd 2015].

Compositions of linear operators are represented as expression
DAGs. Figure 3 shows the DAG for the linear operators in Problem
(3) stacked into a single operator K, as in Problem (2). The DAG
structure makes it easy to evaluate the composition. We simply visit
the nodes in topological order, reading the input to each node’s linear
operator from the node’s incoming edges, applying the operator, and
writing the outputs to the node’s outgoing edges. The overall input
for the composition is the input to the variable nodes, and the final
output is the output of the root node.

For example, to evaluate the composition in Figure 3 on an input x,
we first evaluate the variable node by reading x as input and writing
x to the node’s outgoing edges. Next, we evaluate the D and ∇
nodes in any order. We can evaluate the M node any time after we
evaluate the D node. We finish by evaluating the vstack node to get
the final output.

We can evaluate the adjoint of the composition just as easily. We
follow the same algorithm as for forward evaluation, but visit the
nodes in reverse topological order (starting at the root and ending
with the variable nodes), reading from the node’s outgoing edges,
evaluating the adjoint of the node’s linear operator, and writing the

Problem description
& Algorithm choice

Rewriting

Splitting

Code

Algorithm
Implementation

Scaling

Figure 4: The ProxImaL compiler pipeline.

result to the node’s incoming edges.

Even for the simple example in Figure 3, there are many possibilities
for making the forward and adjoint evaluation algorithms more
efficient. The D and ∇ nodes could be evaluated in parallel, and the
graph could be rewritten so the ∇ operator is only evaluated once.
See [Diamond and Boyd 2016a] for a detailed discussion of possible
optimizations, which we are planning to add in our implementation.

4.3 Extensibility

ProxImaL also supports extending the set of proxable functions and
linear operators beyond the built-ins provided. A linear operator
extends the LinOp interface and must define forward and adjoint

methods, which consume arrays of input values to produce arrays
of output values. Linear operators may extend additional optional
methods that provide information about how to invert the operator,
as discussed in Section 6. A proxable function extends the ProxFn

interface and must define the proxable operator prox(tau, v).

5 Compiling Problems to Efficient Solvers

One of the main contributions in ProxImaL is a compiler that takes
a problem specification and choice of algorithm and automatically
generates an efficient solver implementation. In this section, we
describe the stages of the compiler. Figure 4 shows an overview of
the compiler pipeline. We use Problem (3) as a running example
throughout our discussion.

5.1 Rewriting problems

The first stage of the compiler attempts to rewrite the optimiza-
tion problem in a form better suited for the solver algorithm. The
standard form in Problem (2) is not unique. Any given optimiza-
tion problem written in the form of Problem (2) can be rewritten
as many equivalent problems also in the same form. Our compiler
considers two kinds of rewrites: absorbing linear operators into
proxable functions and merging proxable functions.

Absorbing linear operators. Concretely, given a proxable func-
tion f composed with a composite linear operator K represented as
an expression tree e, absorbing a linear operator means removing

the root linear operator K̃ of e and replacing f with the composition

f ◦ K̃. Absorbing a linear operator is only possible when the root of
the expression tree has exactly one child.

Whether absorbing a linear operator is a good idea depends on

whether the composition f ◦ K̃ has an efficient proximal operator.
For example, consider the proxable function f1(v) = ‖v − b‖22
and linear operator K1 = MD from Problem (3). We can absorb

a linear operator by replacing f1 with f̃ = f1 ◦ M and K1 with

K̃ = D Figure 5 shows the expression trees for f1 ◦K1 and f̃ ◦ K̃.

Figure 5: Absorbing a linear operator.

In this case, f̃ has the proximal operator

proxτf̃ (v) =

(

1

2τ
I+M

T
M

)−1

(MT
b+ v/

√
2τ),

which can be computed efficiently because MTM is diagonal.

We could absorb a linear operator again by replacing f̃(v) =

‖Mv − b‖22 and K̃ = D with f̂(v) = ‖MDv − b‖22 and K̂ = I.
In this case, the proximal operator:

proxτf̂ (v) =

(

1

2τ
I+M

T
D

T
DM

)−1

(DT
M

T
b+ v/

√
2τ),

is not as efficient. We could compute the proximal operator using
an iterative method such as the conjugate gradient method (CG)
[Hestenes and Stiefel 1952] or LSQR [Paige and Saunders 1982],
which only interact with D and M by evaluating the linear operat-
ors and their adjoints. However, such iterative methods are more
computationally expensive and less accurate than the methods for

computing the proximal operator of f1 or f̃ .

Merging proxable functions. Merging proxable functions means
replacing two proxable functions fi and fj that are composed with
the same linear operator (i.e., Ki = Kj) with a new function
g(v) = fi(v) + fj(v). In Problem (3), we can merge the proxable
functions f2(v) = µ‖v‖1 and f3(v) = (1− µ)‖v‖22 because they
are both composed with the linear operator K2 = K3 = ∇. As with
absorbing linear operators, merging proxable functions is only a good
idea if the new function still has an efficient proximal operator. Note
that our conditions for merging functions also include the common
case when both functions are parametrized forms of the same func-
tion. We exploit here the general formulation of a proxable function
from Section 4.1. For example, two functions fa(v) = µ‖v‖2 and
fb(v) = ρ‖Qv‖22, where µ, ρ > 0 and Q is an orthogonal matrix,
turn out to be parametrizations of the ℓ2-norm using the general defin-
ition. In addition, this example demonstrates that merging functions
and absorbing operators work together symbiotically: the operator Q
can be absorbed to make Ka = Kb. In general the parametrized form
provides many opportunities to absorb linear operators and merge
proxable functions into efficient compound proxable functions. In
our example (3) the merged function g(v) = µ‖v‖1 + (1− µ)‖v‖22
has an efficient proximal operator because it is a parametrized form

of f̃(v) = ‖v‖1 discussed in Section 4.1.

Default choices. Absorbing linear operators and merging prox-
able functions generally simplifies the optimization problem and
makes it easier to solve. At a minimum, absorbing linear operators
makes multiplication by the overall linear operator K from Problem
(2) more efficient.

Our compiler by default iterates over the proxable functions, and for
each one repeatedly absorbs linear operators until doing so would
substantially increase the cost of the proximal operator. The compiler
then considers all pairs of proxable functions and greedily merges

them whenever it can do so and still have an efficient proximal
operator. In the context of Problem (3), our compiler would absorb
the linear operator M but not the linear operator D and would merge
α‖∇x‖1 and (1− α)‖∇x‖22.

5.2 Problem splitting

The second step in the compilation is problem splitting. The optim-
ization algorithms in ProxImaL are operator splitting methods that
solve problems in the standard form:

minimize g(x) + h(z)
subject to Kx = z,

(6)

where x ∈ R
n and z ∈ R

m are variables, K ∈ R
m×n is a known

linear operator, and g : Rn → R and h : Rm → R have known
proximal operators. Some of the algorithms in fact allow a more
general standard form with a linear constraint of the form Kx +
Bz = c, but our compiler does not currently take advantage of this,
though future, more sophisticated versions of the compiler will.

The compiler expresses g and h as:

g(x) =
∑

fi∈Ω

fi(x), h(z) =
∑

fi∈Ψ

fi(z),

where Ω and Ψ are a partition of the set of functions {f1, . . . , fI}
from Problem (2). Problem splitting means choosing Ω and Ψ.

The splitting Ψ = {f1, . . . , fI} is always valid for the algorithms in
ProxImaL, so the compiler always has at least one choice of splitting.
The functions fi ∈ Ω must have the identity as their linear operator,
i.e., Ki = I. This may seem unduly restrictive, but recall that the
compiler tries to absorb linear operators, which means that penalty
functions that began with complex Ki may end up with Ki = I by
the problem splitting stage. Just because a function has the identity
as its linear operator does not mean including it in Ω is a good idea.
Each algorithm has its own logic for choosing when to include a
function in Ω.

5.3 Problem scaling

The third stage of the compiler is problem scaling. Problem scaling
replaces Problem (6) with the equivalent problem:

minimize g(Ax̂) + h(B−1ẑ)
subject to BKAx̂ = ẑ,

(7)

where A ∈ R
n×n and B ∈ R

m×m are invertible and the new
variables x̂ ∈ R

n and ẑ ∈ R
m are related to x and z in Problem (6)

via:

x = Ax̂, z = B
−1

ẑ.

Problem scaling can substantially affect the number of iterations
our solver algorithms take to converge [Pock and Chambolle 2011;
Giselsson and Boyd 2014]. Our compiler by default sets:

A =
1

√

‖K‖2
I, B =

1
√

‖K‖2
I,

where ‖K‖2 is the spectral norm, or maximum singular value of K.
We use the implicitly restarted Arnoldi method to compute ‖K‖2 using

only multiplication by K and KT [Lehoucq and Sorensen 1996].

5.4 Algorithm implementation

The final stage of our compiler is generating (or calling) an actual
solver algorithm. ProxImaL currently provides the Pock-Chambolle
algorithm, ADMM, linearized ADMM, and half-quadratic split-
ting. In this subsection, we show the algorithm implementations for
Pock-Chambolle and ADMM as pseudo-code and how our compiler
chooses default problem splittings and hyper-parameters. Please
find an extended discussion of how the other algorithms fit into our
framework from Problem (2) in the supplement.

Pock-Chambolle implementation. The pseudo-code for the
Pock-Chambolle algorithm is given in Algorithm 1. Our compiler
uses the default hyper-parameters τ = σ = 1/‖K‖2, θ = 1, x0 = 0,
and z0 = 0. With the default problem scaling, we have ‖K‖2 = 1.

Our compiler only allows at most one penalty function fi to be
included in Ω, and the operator Ki must be the identity. The restric-
tion on Ω ensures that the algorithm can be carried out using known
proximal operators. The compiler’s default problem splitting is to
include one penalty function in Ω whenever possible. For the ex-
ample Problem (3), the penalty function f4(v) = I[0,∞)(v) would
be included in Ω and all other penalty functions would be in Ψ.

Algorithm 1 Pock-Chambolle to solve Problem (2)

1: Initialization: στ‖K‖22 < 1, θ ∈ [0, 1], (x0,z0), x̄0 = x0.
2: for k = 1 to V do
3: z

k+1/2
j = zkj + σKjx̄

k ∀j ∈ Ψ

4: zk+1
j = z

k+1/2
j − σproxfj/σ

(

z
k+1/2
j /σ

)

∀j ∈ Ψ

5: if Ω = {fi} then

6: xk+1 = proxτfi

(

xk − τKTzk+1
)

7: else
8: xk+1 = xk − τKTzk+1

9: end if
10: x̄k+1 = xk+1 + θ

(

xk+1 − xk
)

11: end for

Line 4 uses Moreau’s Identity [Moreau 1965]. Note that the Pock-
Chambolle algorithm and linearized ADMM from the supplement are
equivalent to an augmented/preconditioned version of the ADMM
method [Chambolle and Pock 2011; Zhu 2015], described next.

ADMM implementation. The pseudo-code for ADMM is given
in Algorithm 2. Our compiler uses the default hyper-parameters
ρ = 1, α = 1, x0 = 0, z0 = 0, and λ0 = 0. The choice of problem
splitting in ADMM is more complex than in Pock-Chambolle, since
computing step 3 requires more than the proximal operators of the
fi ∈ Ω. Our compiler only allows quadratic functions to be included
in Ω because then step 3 reduces to solving a least squares problem.

Algorithm 2 ADMM to solve Problem (2)

1: Initialization: ρ > 0, α ∈ (0, 2), (x0,z0, λ0).
2: for k = 1 to V do
3: xk+1 = argmin

x

∑

i∈Ω fi(x) +
∑

j∈Ψ(ρ/2)‖Kjx− zkj +

λk
j ‖22

4: zk+1
j = prox fj

ρ

(Kj(αx
k+1
j +(1−α)xk

j)+λk
j) ∀j ∈ Ψ

5: λk+1
j = λk

j +Kj

(

αxk+1
j + (1− α)xk

j

)

− zk+1
j ∀j ∈ Ψ

6: end for

We can use iterative methods such as CG and LSQR to solve the least
squares problem using only multiplication by the linear operators

and their adjoints. We use several tricks to accelerate these iterative
methods. First, we initialize the iterative methods with the previous
solution xk. Second, we initially solve the least squares problem
with low accuracy and increase the required accuracy each iteration.
This approach keeps the number of linear operator evaluations in
the iterative methods relatively constant across iterations, since the
previous solution xk is increasingly close to the next solution xk+1

[O’Donoghue et al. 2015].

Direct methods. Often the least squares problem can be solved
using a simple direct method, which makes the ADMM implement-
ation much faster and more reliable. For example, recall that after
the rewriting stage our example problem 3 has the form:

xopt = argmin
x

‖MDx− b‖22 + r(x) (8)

r(x) = µ‖∇x‖1 + (1− µ)‖∇x‖22 + I[0,∞)(x) (9)

model:

f1(v) = ‖Mv− b‖22, K1 = D

f2(v) = µ‖v‖1 + (1− µ)‖v‖22, K2 = ∇
f3(v) = I[0,∞)(v), K3 = I

(10)

If we choose the problem splitting:

Ω = ∅, Ψ = {f1, f2, f3},

then step 3 of ADMM is given by:

x
k+1 = argmin

x

∥

∥

∥

∥

∥

∥

D
∇
I

x− z
k + λk

∥

∥

∥

∥

∥

∥

2

2

= (DT
D+∇T∇+ I)−1(DT +∇T + I)(zk − λk).

The linear operators D, ∇, and I are convolutions and thus diagonal
in the frequency domain. Note that arbitrary boundary conditions
can be supported by padding and masking the observations [Almeida
and Figueiredo 2013]. Given the convolutional operations, we can
compute a diagonal matrix ∆ ∈ C

n×n for which:

(DT
D+∇T∇+ I)−1 = F−1∆F,

where F ∈ C
n×n is the DFT matrix. The upshot is that we can

solve the least squares problem exactly in O(n logn) operations
using the FFT.

Our compiler includes a system for automatically detecting when
a linear operator K has a Gram matrix KTK that is diagonal in
the spatial or frequency domain and obtaining the Gram matrix’s
diagonal representation; see Section 6 for details. This allows the
compiler to automatically exploit the fast direct method above for
solving the least squares problem.

Default splitting. The compiler uses the following procedure to
choose the problem splitting for ADMM. We consider each subset
S of quadratic penalty functions in the problem. We check whether
for Ω = S the least squares problem in step 3 has a Gram matrix
that is diagonal in the spatial or frequency domain, in which case
we can solve the problem with a fast direct method. We then set
Ω to be a maximal cardinality subset for which the Gram matrix is
diagonal. If there is no subset for which the Gram matrix is diagonal,
we include all the quadratic penalty functions in Ω and solve the
least squares problem using CG.

One might be concerned about the runtime of this method since the
number of subsets is exponential in the number of quadratic penalty
functions. However, hardly any problems will have more than a few

1

10

100

CP ADMM LADMM HQS

no direct, no split

split only

direct only

direct + split
16.3

127

27.9

1.1

14

29.8

12.8

1

15.9

126

28.4

1.1

7.2

29.6

6.8

1

Spatial Grad
R

u
n
ti
m

e
 (
s
e
c
o

n
d

s
)

no direct, no split

split only

direct only

direct + split

0.1

1

10

100

CP ADMM LADMM HQS

Conv. Grad

15.6

188

34.1

1.1

17

48.1

19.8

1.1

15.4

28
31.9

0.5

8.8

6.9

11.7

0.5

Figure 6: Runtime (in seconds) of a TV-regularized deconvolution problem in ProxImaL. When the direct parameter is on, the ProxImaL
compiler automatically replaces CG with a fast direct method. The split option further indicates whether the compiler’s intelligent rewriting
and splitting are used. We evaluate four different algorithms that are implemented in ProxImaL. Note that independent of the algorithm choice,
our compiler choice improves runtime. We evaluate two implementations of the TV prior: a finite differences implementation in the spatial
domain (left) and a convolutional implementation via Fourier multiplication (right).

(often one or two) quadratic penalty functions, and our method for
checking whether the Gram matrix is diagonal is linear time in the
number of linear operators.

For the rewriting of the example Problem (3) chosen by our compiler,
given in Equation (10), our method would choose Ω = ∅ and solve
the least squares problem directly. For the original, naive formulation
in Equation (5) our method would choose Ω = {f1, f3} and use
CG to solve the least squares problem. The choices made by our
compiler can thus dramatically improve the performance of the
ADMM implementation over a naive approach that always uses an
iterative method or does not consider rewrites. Problem 3 may seem
contrived, but solving the least squares problem with a direct method
when possible is necessary for our system to be competitive with
specialized solvers, and in fact was sufficient for state-of-the-art
performance on a demosaicking problem; see Section 8.1 for details.

5.5 Manual options

We allow the user to override any of the default compiler choices.
The user can manually rewrite the problem by changing the problem
definition, choosing the problem splitting and least squares solver,
and setting the problem scaling and algorithm hyper-parameters. An
important example of where manual input is helpful is specifying
the starting iterates in the solver algorithm (e.g., (x0,z0) for Pock-
Chambolle). Starting from a good iterate can dramatically reduce
the number of solver iterations needed and the quality of the solution
for nonconvex problems [Heide et al. 2013].

5.6 Empirical validation

Figure 6 shows that the choices made by our compiler can dramat-
ically reduce the solver runtime. We list the average runtime for
a deconvolution problem regularized by total variation (TV) for
each of the four algorithms in ProxImaL: Pock-Chambolle (CP),
ADMM, linearized ADMM (LADMM), and half-quadratic splitting
(HQS). Note that HQS does not have convergence guarantees for
arbitrary convex problems fitting into Problem (2), but only for a sub-
set [Robini and Zhu 2015], however, including common problems
such as the considered TV-regularized deconvolution. Each of the
four algorithm is tested with and without the compiler’s intelligent
rewritings and splitting, as well as with and without the compiler
automatically replacing CG with a fast direct method by detecting
diagonal matrices. Further, we evaluate implementations of the TV
in the spatial domain (Figure 6 left) and as a multiplication in the
Fourier domain (Figure 6 right). The latter case assumes circular
boundary conditions but can sometimes be faster. Assuming circu-

lar boundary conditions slightly modifies the optimization problem
being solved, but we evaluate all our results using the original ob-
jective, with non-circular boundary conditions. All algorithms are
run until convergence to the exact same objective function value.
The results show that the choices made by the compiler for all al-
gorithms improve the runtime, often substantially. Please note that
the absolute runtime depends in general on the algorithm-specific
implementation and parameters, including effects of potentially ad-
aptive parameter schedules as for example discussed in [Fougner
and Boyd 2015]. However, Figure 6 shows that independent of the
algorithm choice, the choice made by our compiler significantly
improves runtime.

6 Analysis of Linear Systems

In this section, we explain our method for automatically detecting
when a least squares problem:

minimize ‖Kx− b‖22, (11)

can be solved using a fast direct method. Specifically, our system
detects when the Gram matrix KTK is diagonal in the spatial or
frequency domain and computes its diagonal representation.

Diagonal KTK. We first explain how we determine when KTK
is diagonal. We use the subroutines is_diag and is_gram_diag. These
subroutines take as argument an expression DAG e of linear operators.
The subroutine is_diag returns true if the composite linear operator
Ke defined by e is diagonal, and false otherwise. The subroutine
is_gram_diag returns true if KT

e Ke is diagonal, which is always true
if Ke is diagonal, but is also true for non-diagonal Ke such as:

Ke =

[

I
0

]

,

which represents zero-padding.

The output of the subroutines depends on the type of e’s root node n
and the results of applying the subroutines to the subDAGs rooted at
n’s children. Table 4 gives examples of the logic for various linear
operator types. Recall that leaves of an expression DAG are always
variable nodes, so the behavior for variables is the base case.

We simply apply is_gram_diag to the expression DAG representing
K in Problem (11) to determine whether KTK is diagonal. To find
the value of KTK, we use the get_diag subroutine, which takes
as argument a variable node v and an expression DAG e for which

type subroutine logic

x (variable) is_diag: Always true.

is_gram_diag: Always true.

mul_elemwise is_diag: True if is_diag is true for children.

is_gram_diag: True if is_diag is true for children.

subsample is_diag: Always false.

is_gram_diag: True if is_diag is true for children.

sum is_diag: True if is_diag is true for children.

is_gram_diag: True if is_diag is true for children.

vstack is_diag: Always false.

is_gram_diag: True if is_gram_diag is true for children.

Table 4: Logic for the is_diag and is_gram_diag subroutines.

is_gram_diag(e) returns true. The subroutine returns the diagonal

of (KT
e,vKe,v)

1/2, where Ke,v is the linear function of the variable

v defined by e. The full diagonal of (KT
e Ke)

1/2 is obtained by
evaluating get_diag(v, e) for all variable nodes v in e and stacking
the results into a single vector.

The output of get_diag depends on e’s root node n and the results of
applying get_diag to the subDAGs rooted at n’s children. The parent
call passes its variable node argument to the recursive calls. The
output of get_diag(v, e) when e is a variable node is a vector of ones
if e = v and a vector of zeros otherwise. For other linear operators
the logic of get_diag is straightforward and does not depend on the
variable node argument.

Diagonal KTK in the frequency domain. We take an analog-
ous approach to determine whether KTK is diagonal in the fre-
quency domain and, if so, get its diagonal representation. We use the
subroutines is_fdiag, is_gram_fdiag, and get_fdiag, which are the
same as is_diag, is_gram_diag, and get_diag, respectively, except
defined for the frequency domain.

Extensions. Our approach easily generalizes to linear operators
K for which KTK is block diagonal in the spatial or frequency do-
main. For example, this includes color transformations in the image
formation model. We would simply extend is_diag, is_gram_diag,
and their counterparts for the frequency domain to track the dimen-
sions of the blocks on the diagonal. When the blocks are small,
it would be worthwhile to factor the blocks and find the solution
x⋆ to Problem (11) directly via x⋆ = K†b. A further extension
we will consider is determining whether KTK is banded, or has
overlapping diagonal blocks.

7 Implementation

We implemented ProxImaL as a Python library with syntax inspired
by CVXPY [Diamond and Boyd 2016b]. Each solver algorithm is
implemented as a Python driver that schedules and evaluates the series
of proximal and linear operators which make up the objective, as
split and scheduled by our compiler logic. Our implementation only
evaluates one operator at a time; a more sophisticated approach would
evaluate multiple operators simultaneously. The proximal and linear
operators are evaluated using a combination of NumPy and Halide-
generated parallel and vectorized x86 code. We are planning to extend
our framework to compile into Halide-generated GPU code.

We applied traditional Halide scheduling techniques to optimize the
proximal and linear operators and other kernels. Most are simply par-
allelized, vectorized, unrolled, and occasionally with loops reordered.
A few (particularly those involving warp) also block and fuse one or

ℓ2-norm dot product subsample subsample* grad grad* convolution

Halide 41.6 15.6 72.6 72.6 94.8 237.4 121.4

NumPy 245.8 96.6 356.0 356.0 1188.0 713.1 7790.9

convolution* warp warp* norm1 group norm1 Poisson prox FFT inversion

Halide 121.4 153.1 367.8 27.1 67.8 44.7 9.4

NumPy 7790.9 457.6 474.4 201.8 1036.6 265.2 23.4

Table 5: Runtimes (in ms) for linear operators and some of the prox-
imal functions implemented with NumPy and Halide. subsample*,
grad*, etc., are the adjoint operators.

two stages for locality. We paid particular attention to the common
ℓ2-norm and dot product, which we parallelized using two-phase re-
ductions to expose both vector and multicore parallelism in the main
phase. This improved performance by at least an order of magnitude
over a basic serial implementation. The current implementation left
some performance on the floor by conservatively generalizing all
kernels to accept any input with either row- or column-major order
for compatibility with arbitrary BLAS and Fortran code in NumPy.
A number of kernels also still use simple NumPy implementations,
without any Halide-generated code. Table 5 gives an overview of
timings for several linear and proximal operators for NumPy and
Halide implementations. Above all, there is significant opportunity
to schedule and fuse the resulting pipelines across operators for
each generated solver, thereby substantially improving on our initial
implementation, which schedules each operator separately.

8 Evaluation

In this section, we evaluate ProxImaL for a range of inverse problems
in imaging. In particular, we show that ProxImaL exploits problem-
specific structure to improve quality and intuitiveness of what is con-
sidered the state-of-the-art image processing pipeline (FlexISP [Heide
et al. 2014]). We also show state-of-the-art results for burst denoising
and deconvolution in the presence of Poisson-distributed shot noise,
which makes low-light photography so difficult. Lastly, we show
applications to nonlinear image formations for the example of phase
retrieval, which is an important problem in scientific imaging. For
all applications shown in this section, ProxImaL allows for a very
compact representation as shown in Table 6.

Reference ProxImaL

Burst 1020 (FlexISP) 6

Demosaicking 1020 (FlexISP) 6

IHdr 1020 (FlexISP) 6

Phase retrieval 300 (Matlab) 6

Poisson deconvolution 510 (Matlab) 6

ℓ2 deconvolution 360 (Krishnan[2009]) 6

Table 6: Lines of code comparisons: We compare high-level (Mat-
lab) code of reference methods with splitting done by hand to Prox-
ImaL. For all example applications shown in this section, problems
can be expressed in a very compact way using ProxImaL. Different
splitting approaches that require large restructuring in the method
can be expressed with just a few changed lines of ProxImaL code.

8.1 Replacing Fixed-function ISPs

The core components of any image processing pipeline (ISP) include
demosaicking, denoising, and deconvolution of a captured RAW im-
age. Conventionally, ISPs are implemented as fixed-function blocks
in the on-board signal processing chips on a camera. Recently, Heide
et al. [2014] introduced FlexISP as the state-of-the-art ISP via image
optimization. Their key insight was that formal optimization meth-
ods allow for all of the ISP problems to be solved very efficiently
while allowing advanced natural image priors, such as self-similarity,
to be incorporated. ProxImaL also builds on this idea, but provides
a domain-specific language rather than a solver library. Working

Average PSNR red Average PSNR green Average PSNR blue

FlexISP 38.50 41.84 36.50

ProxImaL 38.54 41.90 36.53

Table 7: Demosaicking. A target color image (top left) is sampled
by a monochrome sensor with a Bayer pattern (color-coded, top
right). Commercial implementations, such as Adobe Camera RAW
(bottom left), have been shown to be outperformed by image op-
timization in prior work (FlexISP). From only a few lines of code,
ProxImaL automatically compiles the optimization routines for a
solution that is qualitatively similar to the FlexISP approach (bottom
right), but averaged over 12 test images quantitatively better (table
and supplement) and also significantly faster (see text).1

with solvers directly provides one of two choices: either one uses a
generic solver, thereby giving up specificity that may be exploited,
or one writes a dedicated solver for each problem, which requires a
lot of time and parameter tuning. ProxImaL allows for a problem-
specific solver to be automatically generated and makes it very easy
to prototype new solvers or experiment with advanced image priors.

For example, consider the problem of demosaicking. Most digital
sensors are inherently sensitive to all wavelengths throughout the
visible range. Color filter arrays, such as the popular Bayer pattern,
sample a color image via spatial multiplexing. The color reconstruc-
tion or demosaicking problem faces several challenges: subsampling
of the channels, sensor noise, and optical blur by the point spread
function (PSF) of the camera lens. Many commercially-available
solutions exist, but none of them is without artifacts. A detailed com-
parison between many of them can be found in Heide et al. [2014].
The ProxImaL code for this problem is as simple as:

x = Variable(300, 300, 3)

data_term = sum_squares(subsample(x, bayer) - input)

patch_similarity = patch_BM3D(tonemap(x))

grad_sparsity = norm1(grad(x))

objective = data_term + patch_similarity + grad_sparsity

p = Problem(objective)

ProxImaL automatically compiles this expression into the optim-
ization routines required to solve this problem and it also detects
the diagonal matrix structure of the subsampling operator, which
can be inverted in closed form. As illustrated in Table 7 and in the
supplemental material, a few lines of ProxImaL code are sufficient to

Figure 7: High dynamic range from a single RAW image. The
sensor captures interlaced exposures via a coded rolling shutter (top
right), often found in moderns sensors (e.g., Aptina AR1331CP and
Sony IMX135). FlexISP demonstrated state-of-the-art reconstruc-
tions for these types of problems, but ProxImaL further improves
recovered image sharpness, runtime, and convenience.2

generate the state-of-the-art ISP. Due to the fact that FlexISP or any
generic solver is oblivious to problem-specific structure, we achieve
faster runtimes because ProxImaL detects the closed-form solution
of the subsampling operator and generates the most efficient solver.
This makes the ProxImaL code faster and also slightly better, on
average, than using a proximal operator based on iterative conjugate
gradient (e.g., FlexISP). Other than the closed-form inverse of the
subsampling step, both approaches are equivalent. We received the
Matlab implementation of FlexISP from the authors.

The runtime of our splitting-based demosaicking is, for the most
part, determined by two steps: the inversion of the subsampling
and blur operators; and the BM3D denoiser. We improve upon
the inversion step, which was previously implemented with the
conjugate gradient method and takes 0.2 seconds per iteration for
a 512× 512 image and 9 seconds per iteration for a 16 megapixel
image on our test computer. The closed-form inverse discovered
by ProxImaL basically makes this step “free” and directly finds the
optimal solution without any iterations. For the BM3D step, we use
a Matlab implementation of BM3D since the code is closed source,
which takes about 4 seconds per iteration for a 512× 512 image; we

Figure 8: Burst denoising and demosaicking for images captured
with a Nexus 5 cellphone camera. Averaging and aligning several
frames mitigates noise, but does not achieve optimal results. We
combine automatic image alignment, demosaicking, and burst de-
noising into a single inverse problem that shows similar or better
performance than the Nexus 5’s HDR+ application.

use 15 iterations in total. Tsai et al. [2014] demonstrated speedups
of up to 1000× using GPU-optimized implementations.

Another common problem for image processing pipelines is the lim-
ited dynamic range offered by digital sensors. High dynamic range is
often achieved using burst photography [Debevec and Malik 1997],
but single-image approaches have also become very popular. For
example, Gu et al. [2010] introduced the concept of coded rolling
shutter, where different rows of the sensor image are read out with
different exposure times or ISO gain settings. A common challenge
for image reconstruction from coded rolling shutter images is miss-
ing image data from completely saturated regions. Combined with
sensor noise, demosaicking, and PSF deconvolution, this inpainting
problem often results in degraded image resolutions. We show in
Figure 7 that ProxImaL achieves slightly sharper reconstructions
than FlexISP while providing similar performance benefits as for
the deconvolution.

8.2 Burst Denoising

High-quality photography in low-light conditions is one of the most
challenging problems in computational photography due to the ob-
served noise. The naive approach to mitigating image noise is to
capture a stack of noisy images, align them, and then average them.
Unfortunately, this simple approach does not result in optimal image
quality, as seen in Figure 8. Using an additional non-local means
(NLM) prior on the reconstructed image, one would formulate the
burst denoising problem in ProxImaL as:

x = Variable(300, 300, 3)

data_term = sum_squares(vstack(warp(x, H_1),

...,

warp(x, H_n)) - input)

patch_similarity = patch_NLM(tonemap(x))

objective = data_term + patch_similarity

p = Problem(objective)

Figure 9: Comparison of image priors for burst denoising & demo-
saicking. For this simulation, a non-local means (NLM) prior outper-
forms the BM3D prior. The approximate NLM implemented in OpenCV
is faster than, but not quite as good as, a full implementation.3

In addition to the denoiser and the NLM prior, we include the image
alignment as part of the optimization routine via the warp operator.
This operator makes ProxImaL ideally suited for a range of burst
photography applications—we simply specify that the global image
alignment is part of the problem and the homography H is automatic-
ally estimated using [Evangelidis and Psarakis 2008]. Feature-based
homography estimation also produced results of equal quality.

Figure 8 shows results for several scenes captured with the Nexus 5
rear-facing camera in low-light conditions. Compared to the refer-
ence output computed by the Android HDR+ app, our results are
slightly sharper and less blocky. Improved image quality compared
to simple image averaging in our implementation comes mostly from
the NLM prior. Note that we do not tone map the image, which may
be required for optimal color reproduction.

As discussed before, ProxImaL makes it very easy to evaluate dif-
ferent image priors for a particular reconstruction problem. For
example, instead of NLM we can use BM3D, total variation, or
other priors. Figure 9 evaluates several different priors for burst
denoising in simulation. We compare BM3D, the fast approximation
of NLM implemented by the OpenCV library, and a full NLM im-
plementation. The latter is the slowest but also the best prior for this
particular image. Some of the insights made in the presented exper-
iments include the fact that different priors lead to vastly different
results and implementing all of them separately takes a lot of time
and effort. ProxImaL makes it very easy to evaluate all of them or
combinations of them and it allows different priors to be combined
with different solvers. We believe that this flexibility is one of the
strongest benefits of a domain-specific language like ProxImaL.

8.3 Poisson Deconvolution

In low-light conditions, photographs are often not only noisy but also
blurry. Especially in cellphone cameras, blur due to hand motion
is almost unavoidable. In addition, the noise in images captured
in low-light conditions are often dominated by Poisson-distributed
shot noise. Instead of using a conventional ℓ2-norm for the data fi-
delity term, the error metric should consider the Poisson-distributed
nature of the noise. This can be done using the proximal operator
implementing a maximum likelihood solution for Poisson noise,
as discussed in the supplement and by Dupe et al. [2011]. With
this proximal operator in hand, the deconvolution problem can addi-
tionally benefit from advanced image priors, such as self-similarity.

Figure 10: Poisson deconvolution. We compare the deconvolution technique described in the text with the hyper-Laplacian prior described
by Krishnan & Fergus [2009]. Although the latter method is efficient, it fails in the presence of Poisson-distributed shot noise, which often
dominates image noise in low-light photography. An appropriate proximal operator for the noise term can mitigate ringing artifacts. This
proximal operator is easily compiled with ProxImaL, but is not easily integrated into Krishnan & Fergus’s method.4

Usually, this would require the entire solver to be rewritten. Using
ProxImaL, we simply add the appropriate proximal operator to the
problem formulation as:

x = Variable(300, 300, 3)

data_term = poisson_norm(conv(x, psf) - input)

grad_sparsity = norm1(grad(x))

objective = data_term + grad_sparsity + nonneg(x)

p = Problem(objective)

Kernel 1 Kernel 2 Kernel 3 Kernel 4 Kernel 5

[Krishnan and Fergus 2009] 21.68 21.08 22.70 23.10 25.19

[Figueiredo and Jose 2010] 22.15 22.02 23.59 24.08 26.43

ProxImaL 22.19 21.87 24.11 24.31 26.58

Table 8: Quantitative evaluation of Poisson deconvolution. We show
average peak signal-to-noise-ratios (PSNRs) for 12 example images
and for 5 different blur kernels. In almost all cases, ProxImaL
reconstructs a higher-quality image compared to previous work.
Please find individual PSNRs and the images in the supplement.

The importance of the appropriate error metric is shown in Figure 10.
The method proposed by Krishnan & Fergus [2009] is efficient, but
it assumes Gaussian noise. It is not easily possible to reformulate
this reconstruction method without proximal operators, which is
precisely what ProxImaL does. The resulting deconvolved images
exhibit significantly less ringing. In Table 8, we also show com-
parisons of peak signal-to-noise-ratios (PSNRs) averaged over 12
images and 5 different kernels (see supplement). We include an
additional comparison to the method proposed by Figueiredo and
Jose [2010]. For most cases, ProxImaL produces superior results.
Note that the conceptual approach of Figueiredo and Jose is the
same as ours, but we replace the conjugate gradient updates with the
closed-form inverse of the diagonalized matrix. Yet again, exploiting
problem-specific structure leads to better and faster solutions.

8.4 Phase Retrieval

All of the applications discussed above use a linear image forma-
tion model. Some imaging problems, however, have to deal with
nonlinear and non-convex image formations. An example of such a
problem is phase retrieval. As one of the most important problems in

Figure 11: Phase retrieval. In this nonlinear and nonconvex prob-
lem, we measure the Fourier magnitudes of the image (center left
column). ProxImaL solves this problem with a nonlinear gradient
descent update, which can be combined with any of the image priors
previously discussed, simply by compiling their proximal operators
into the generated solver.5

electron microscopy, wavefront sensing, astronomy, crystallography,
and other scientific imaging areas, it is interesting to evaluate Prox-
ImaL for this challenging problem. The phase retrieval problem is
the recovery of a real or complex-valued optical field or image x
from measurements of its Fourier amplitudes:

minimize f (|Fx| − b) + r(x), s.t. 0 ≤ x (12)

Here, F is the Fourier transform, f is the error metric, and r is an
optional image prior. The most common approach to solving Prob-
lem (12) is the iterative hybrid input-output (HIO) algorithm [Fienup
1982]. In the spirit of HIO, we can approach this problem by adding

a simple total variation image prior as:

minimize ‖|Fx| − b‖22 + λ ‖∇x‖1 + I[0,∞) (x) , (13)

where λ > 0, ‖∇·‖1 is the total variation (ℓ1-norm of the image
gradients), and I[0,∞) (·) is the indicator function that enforces the
constraint that x ≥ 0. Proximal operators for both total variation
and the indicator function are simple to implement, as discussed in
the previous sections. We implement the proximal operator of the
nonlinear data term as a simple iterative nonlinear gradient descent
update that is inspired by HIO. The corresponding ProxImaL code is:

x = Variable(300, 300)

data_term = phase_ret(x, input)

grad_sparsity = norm1(grad(x))

objective = data_term + patch_similarity + nonneg(x)

p = Problem(objective)

In addition to the phase retrieval example shown in Figure 1, we
show two additional results in Figure 11. Whereas the HIO solution
suffers from strong ringing artifacts, the TV-regularized solution
computed by ProxImaL is almost free of artifacts. We do not claim
that the ProxImaL implementation provides the state-of-the-art phase
retrieval implementation, but it makes it convenient to evaluate mod-
ern image priors developed in the computer vision and computational
photography communities for scientific imaging applications. We
review the mathematical background of phase retrieval and derive
its ADMM formulation in the supplement.

9 Discussion

Using a domain-specific language and compiler for image optimiza-
tion, ProxImaL allows for rapid prototyping of inverse problems in
imaging while providing high-performance execution. The perform-
ance not only comes from the fact that we can leverage extremely
efficient implementations of linear and proximal operators in ima-
ging problems, but also from the fact that ProxImaL intelligently
compiles into many different solvers. Each of these solvers or op-
timization algorithms may have different benefits and limitations
for different applications. However, the basic building blocks of
all these solvers are proximal operators, which are used to describe
linear and nonlinear image formations as well as advanced natural
image priors, such as self-similarity. Implemented once, such a
proximal operator can be easily re-used for any inverse problem
that can be formulated in the ProxImaL language. We demonstrate
state-of-the-art performance and quality for the image processing
pipeline, burst denoising, Poisson deconvolution, phase retrieval,
and other applications.

Limitations

Because ProxImaL’s compiler strategies and reformulations exploit
the structure of image optimization problems, they may not apply to
other problem domains. For example, Natural Language Processing
exhibits structure that differs from imaging problems. Even if the
considered problem is an image optimization problem and fits into
the generalized objective from Problem (2), it may contain non-
separable, global penalties that cannot be decomposed into functions
with efficient proximal operators. An example are penalties that
assign cost based on global light transport simulations from their
input. For very simple objectives, such as unconstrained unstructured
least-squares problems, ProxImaL does not yield worse solvers
than traditional approaches, but also does not improve on them
(no structure in the image formation or objective can be exploited).
For non-convex problems no convergence guarantees can be given.
However, in practice, we found that for many non-convex problems
ProxImaL actually can produce efficient solvers, such as the Phase
Retrieval application discussed above. The biggest limitation of
the proposed framework is the selection of objective and algorithm
parameters. For the objective parameters, learning-based approaches

have been proposed for denoising problems [Kunisch and Pock
2013], while adaptive schedules have shown to be good recipes for
the algorithm parameters [Fougner and Boyd 2015]. Automatic
parameter estimation is an exciting area for future research.

Future Work

A key extension that we plan to add is fully-automatic robust para-
meter estimation and problem scaling, beginning with diagonal scal-
ing methods [Pock and Chambolle 2011; Giselsson and Boyd 2014].
There are also a number of other directions that are interesting to
explore. Although we have not explicitly shown applications in
multi-camera arrays, the current ProxImaL implementation contains
all the necessary building blocks for image optimization with such
arrays, for example to demosaick, super-resolve, and deconvolve im-
ages captured from slightly different perspectives. We plan to extend
the set of proximal operators that are currently implemented (e.g.,
adding matrix and tensor factorizations). We hope to extend both the
set of image formation models, and also the list of supported priors,
including other patch-based methods and local low-rank models.

Conclusion

Image processing tasks have long been implemented as fixed func-
tion pipelines. A common argument is that available computational
resources on cameras or cellphones are scarce, so a fixed function
pipeline implemented in hardware is the most efficient solution.
While this is true, the trend towards diverse computational photo-
graphy systems, including multi-camera, light field, time-of-flight,
multi-spectral, and 3D cameras along with a paradigm shift towards
programmable image processing units (IPUs) in the industry is un-
deniable. Building on modern optimization techniques, ProxImaL
provides an intuitive yet high-performance interface for a range of
image optimization tasks in emerging camera systems.

Acknowledgements

We thank Paul Green for many fruitful discussions, and Algolux for
providing image data for the burst application. This work was gener-
ously supported by the National Science Foundation under grants IIS
1553333 and DGE-114747, DARPA agreement FA8750-14-2-0009,
the NSF/Intel Partnership on Visual and Experiential Computing
(NSF IIS 1539120), the Intel Compressive Sensing Alliance, and
the Stanford Pervasive Parallelism Lab (supported by Oracle, AMD,
Intel, and NVIDIA).

References

ALMEIDA, M., AND FIGUEIREDO, M. 2013. Frame-based image
deblurring with unknown boundary conditions using the alternat-
ing direction method of multipliers. In Proc. ICIP, 582–585.

ATTOUCH, H., BOLTE, J., AND SVAITER, B. F. 2011. Conver-
gence of descent methods for semi-algebraic and tame problems:
proximal algorithms, forward–backward splitting, and regular-
ized Gauss–Seidel methods. Mathematical Programming 137, 1,
91–129.

BECK, A., AND TEBOULLE, M. 2009. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM Journal
on Imaging Sciences 2, 1, 183–202.

BECKER, S., CANDÈS, E., AND GRANT, M. 2011. Templates for
convex cone problems with applications to sparse signal recovery.
Mathematical Programming Computation 3, 3, 165–218.

BERNSTEIN, G. L., SHAH, C., LEMIRE, C., DEVITO, Z., FISHER,
M., LEVIS, P., AND HANRAHAN, P. 2015. Ebb: A DSL for phys-
ical simluation on CPUs and GPUs. arXiv e-Print 1506.07577.

BERTALMIO, M., SAPIRO, G., CASELLES, V., AND BALLESTER,
C. 2000. Image inpainting. In Proc. SIGGRAPH, 417–424.

BOYD, S., PARIKH, N., CHU, E., PELEATO, B., AND ECKSTEIN,
J. 2011. Distributed optimization and statistical learning via
the alternating direction method of multipliers. Foundations and
Trends in Machine Learning 3, 1, 1–122.

BROOKE, A., KENDRICK, D., MEERAUS, A., AND ROSENTHAL,
R. 1988. GAMS: A user’s guide. Course Technology.

BRUCK, R. 1975. An iterative solution of a variational inequality
for certain monotone operators in Hilbert space. Bulletin of the
American Mathematical Society 81, 5 (Sept.), 890–892.

CHAMBOLLE, A., AND POCK, T. 2011. A first-order primal-
dual algorithm for convex problems with applications to imaging.
Journal of Mathematical Imaging and Vision 40, 1, 120–145.

DANIELYAN, A., KATKOVNIK, V., AND EGIAZARIAN, K. 2012.
BM3D frames and variational image deblurring. IEEE Trans.
Image Processing 21, 4, 1715–1728.

DEBEVEC, P. E., AND MALIK, J. 1997. Recovering high dy-
namic range radiance maps from photographs. In Proc. ACM
SIGGRAPH, 369–378.

DIAMOND, S., AND BOYD, S. 2015. Convex optimization with
abstract linear operators. In Proc. IEEE ICCV.

DIAMOND, S., AND BOYD, S. 2016. Matrix-free convex optimiza-
tion modeling. In Optimization and Applications in Control and
Data Sciences. Springer. To appear.

DIAMOND, S., AND BOYD, S. 2016. CVXPY: A Python-embedded
modeling language for convex optimization. Journal of Machine
Learning Research. To appear.

DUPE, F.-X., FADILI, M., AND STARCK, J.-L. 2011. Inverse
problems with Poisson noise: Primal and primal-dual splitting.
In Proc. ICIP.

ESSER, E., ZHANG, X., AND CHAN, T. F. 2010. A general frame-
work for a class of first order primal-dual algorithms for convex
optimization in imaging science. SIAM Journal on Imaging Sci-
ences 3, 4, 1015–1046.

EVANGELIDIS, G. D., AND PSARAKIS, E. Z. 2008. Parametric
image alignment using enhanced correlation coefficient maximiz-
ation. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on 30, 10, 1858–1865.

FATTAL, R., LISCHINSKI, D., AND WERMAN, M. 2002. Gradient
domain high dynamic range compression. In ACM Trans. Graph.,
vol. 21, ACM, 249–256.

FERGUS, R., SINGH, B., HERTZMANN, A., ROWEIS, S. T., AND

FREEMAN, W. T. 2006. Removing camera shake from a single
photograph. ACM Trans. Graph. 25, 3, 787–794.

FIENUP, J. R. 1982. Phase retrieval algorithms: a comparison.
Applied Optics 21, 15, 2758–2769.

FIGUEIREDO, M., AND BIOUCAS-DIAS, J. 2010. Restoration of
Poissonian images using alternating direction optimization. IEEE
Trans. Image Processing 19, 12, 3133–3145.

FOLEY, T., AND HANRAHAN, P. 2011. Spark: Modular, compos-
able shaders for graphics hardware. ACM Trans. Graph. (SIG-
GRAPH) 30, 4.

FOUGNER, C., AND BOYD, S. 2015. Parameter selection and pre-
conditioning for a graph form solver. arXiv e-Print 1503.08366.

GEMAN, D., AND YANG, C. 1995. Nonlinear image recovery with
half-quadratic regularization. IEEE Trans. Image Processing 4, 7,
932–946.

GISELSSON, P., AND BOYD, S. 2014. Diagonal scaling in Douglas-
Rachford splitting and ADMM. In Proceedings of the 53rd IEEE
Conference on Decision and Control.

GOLDSTEIN, T., AND OSHER, S. 2009. The split Bregman method
for ℓ1-regularized problems. SIAM Journal on Imaging Sciences
2, 2, 323–343.

GRANT, M., AND BOYD, S., 2014. CVX: MATLAB software for
disciplined convex programming, version 2.1. http://cvxr.com/
cvx.

GU, J., HITOMI, Y., MITSUNAGA, T., AND NAYAR, S. 2010.
Coded Rolling Shutter Photography: Flexible Space-Time
Sampling. In Proc. IEEE ICCP.

HALLAC, D., LESKOVEC, J., AND BOYD, S. 2015. Network
lasso: Clustering and optimization in large graphs. In Proc. ACM
SIGKDD, 387–396.

HEIDE, F., ROUF, M., HULLIN, M. B., LABITZKE, B., HEIDRICH,
W., AND KOLB, A. 2013. High-quality computational imaging
through simple lenses. ACM Trans. Graph. 32, 5, 149.

HEIDE, F., STEINBERGER, M., TSAI, Y.-T., ROUF, M., PAJAK,
D., REDDY, D., GALLO, O., LIU, J., HEIDRICH, W., EGIAZ-
ARIAN, K., KAUTZ, J., AND PULLI, K. 2014. FlexISP: A
flexible camera image processing framework. ACM Trans. Graph.
(SIGGRAPH Asia) 33, 6.

HESTENES, M., AND STIEFEL, E. 1952. Methods of conjugate
gradients for solving linear systems. J. Res. N.B.S. 49, 6, 409–436.

JOSHI, N., ZITNICK, C. L., SZELISKI, R., AND KRIEGMAN, D. J.
2009. Image deblurring and denoising using color priors. In Proc.
IEEE CVPR, 1550–1557.

KRISHNAN, D., AND FERGUS, R. 2009. Fast image deconvolution
using hyper-Laplacian priors. In Advances in Neural Information
Processing Systems, 1033–1041.

KRISHNAN, D., AND SZELISKI, R. 2011. Multigrid and multilevel
preconditioners for computational photography. ACM Trans.
Graph. 30, 6, 177.

KUNISCH, K., AND POCK, T. 2013. A bilevel optimization
approach for parameter learning in variational models. SIAM
Journal on Imaging Sciences 6, 2, 938–983.

LEHOUCQ, R., AND SORENSEN, D. 1996. Deflation techniques for
an implicitly restarted Arnoldi iteration. SIAM Journal on Matrix
Analysis and Applications 17, 4, 789–821.

LEVIN, A., LISCHINSKI, D., AND WEISS, Y. 2004. Colorization
using optimization. In ACM Trans. Graph., vol. 23, 689–694.

LEVIN, A., ZOMET, A., PELEG, S., AND WEISS, Y. 2004. Seam-
less image stitching in the gradient domain. In Proc. ECCV.
377–389.

LI, G., AND PONG, T. K. 2015. Global convergence of splitting
methods for nonconvex composite optimization. arXiv e-Print
1407.0753.

LOFBERG, J. 2004. YALMIP: A toolbox for modeling and optim-
ization in MATLAB. In Proc. IEEE Int. Symp. Computed Aided
Control Systems Design, 294–289.

http://cvxr.com/cvx
http://cvxr.com/cvx

MÖLLENHOFF, T., STREKALOVSKIY, E., MOELLER, M., AND

CREMERS, D. 2015. The primal-dual hybrid gradient method
for semiconvex splittings. SIAM Journal on Imaging Sciences 8,
2, 827–857.

MOREAU, J.-J. 1965. Proximité et dualité dans un espace hilbertien.
Bulletin de la Société mathématique de France 93, 273–299.

OCHS, P., CHEN, Y., BROX, T., AND POCK, T. 2014. iPiano:
Inertial proximal algorithm for nonconvex optimization. SIAM
Journal on Imaging Sciences 7, 2, 1388–1419.

O’DONOGHUE, B., CHU, E., PARIKH, N., AND BOYD, S. 2015.
Operator splitting for conic optimization via homogeneous self-
dual embedding. arXiv e-Print 1312.3039.

PAIGE, C., AND SAUNDERS, M. 1982. LSQR: An algorithm for
sparse linear equations and sparse least squares. ACM Trans.
Mathematical Software 8, 1, 43–71.

PARIKH, N., AND BOYD, S. 2013. Proximal algorithms. Founda-
tions and Trends in Optimization 1, 3, 123–231.

POCK, T., AND CHAMBOLLE, A. 2011. Diagonal preconditioning
for first order primal-dual algorithms in convex optimization. In
Proceedings of the IEEE International Conference on Computer
Vision, 1762–1769.

POCK, T., CREMERS, D., BISCHOF, H., AND A.CHAMBOLLE.
2009. An algorithm for minimizing the Mumford-Shah func-
tional. In Proceedings of the IEEE International Conference on
Computer Vision, 1133–1140.

RAGAN-KELLEY, J., BARNES, C., ADAMS, A., PARIS, S., DUR-
AND, F., AND AMARASINGHE, S. 2013. Halide: a language and
compiler for optimizing parallelism, locality, and recomputation
in image processing pipelines. ACM SIGPLAN 48, 6, 519–530.

ROBINI, M. C., AND ZHU, Y. 2015. Generic half-quadratic op-
timization for image reconstruction. SIAM Journal on Imaging
Sciences 8, 3, 1752–1797.

ROCKAFELLAR, R. 1976. Augmented Lagrangians and applica-
tions of the proximal point algorithm in convex programming.
Mathematics of Operations Research 1, 2, 97–116.

SCHMIDT, U., AND ROTH, S. 2014. Shrinkage fields for effective
image restoration. In Proc. IEEE CVPR, 2774–2781.

SIDKY, E. Y., AND PAN, X. 2008. Image reconstruction in circular
cone-beam computed tomography by constrained, total-variation
minimization. Physics in medicine and biology 53, 17, 4777.

TIAN, L., AND WALLER, L. 2015. 3D intensity and phase ima-
ging from light field measurements in an LED array microscope.
Optica 2, 2, 104–111.

TSAI, Y.-T., STEINBERGER, M., PAJAK, D., AND PULLI, K.
2014. Fast ANN for high-quality collaborative filtering. In High
Performance Graphics.

UDELL, M., MOHAN, K., ZENG, D., HONG, J., DIAMOND, S.,
AND BOYD, S. 2014. Convex optimization in Julia. Workshop on
High Performance Technical Computing in Dynamic Languages.

VIDIMICE, K., WANG, S.-P., RAGAN-KELLEY, J., AND MATUSIK,
W. 2013. OpenFab: A programmable pipeline for multi-material
fabrication. ACM Trans. Graph. (SIGGRAPH) 32, 4.

WYTOCK, M., WANG, P.-W., AND ZICO KOLTER, J. 2015. Con-
vex programming with fast proximal and linear operators. arXiv
e-Print 1511.04815.

ZHANG, L., WU, X., BUADES, A., AND LI, X. 2011. Color
demosaicking by local directional interpolation and nonlocal ad-
aptive thresholding. Journal of Electronic Imaging 20, 2, 023016–
023016.

ZHU, Y. 2015. An augmented ADMM algorithm with application
to the generalized lasso problem. Journal of Computational and
Graphical Statistics, just-accepted.

ZORAN, D., AND WEISS, Y. 2011. From learning models of natural
image patches to whole image restoration. In Proc. IEEE ICCV,
479–486.

Notes

1. Images are from the McMaster color image dataset [Zhang et al. 2011].

2. Images are from the FlexISP dataset.

3. Images courtesy of Flickr user susan402.

4. Images courtesy of Wikipedia users Laitche and Benny Trapp.

5. Images from http://www.imageprocessingplace.com/root files V3/image

databases.htm.

http://www.imageprocessingplace.com/root_files_V3/image_databases.htm
http://www.imageprocessingplace.com/root_files_V3/image_databases.htm

