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Abstract: Correlation image sensors have recently become popular
low-cost devices for time-of-flight, or range cameras. They usually operate
under the assumption of a single light path contributing to each pixel. We
show that a more thorough analysis of the sensor data from correlation
sensors can be used can be used to analyze the light transport in much
more complex environments, including applications for imaging through
scattering and turbid media. The key of our method is a new convolutional
sparse coding approach for recovering transient (light-in-flight) images
from correlation image sensors. This approach is enabled by an analysis
of sparsity in complex transient images, and the derivation of a new
physically-motivated model for transient images with drastically improved
sparsity.

© 2014 Optical Society of America

OCIS codes: (110.3200) Inverse scattering; (100.3190) Inverse problems; (110.1758) Compu-
tational imaging.

References and links
1. B. Das, K. Yoo, and R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step toward optical mammogra-

phy,” Opt. Lett. 18, 1092–1094 (1993).
2. P. Han, G. Cho, and X.-C. Zhang, “Time-domain transillumination of biological tissues with terahertz pulses,”

Opt. Lett. 25, 242–244 (2000).
3. J. B. Schmidt, Z. D. Schaefer, T. R. Meyer, S. Roy, S. A. Danczyk, and J. R. Gord, “Ultrafast time-gated ballistic-

photon imaging and shadowgraphy in optically dense rocket sprays,” Appl. Opt. 48, B137–B144 (2009).
4. A. Kirmani, T. Hutchison, J. Davis, and R. Raskar, “Looking around the corner using transient imaging,” in

“Computer Vision, 2009 IEEE 12th International Conference on,” (IEEE, 2009), pp. 159–166.
5. A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. Bawendi, and R. Raskar, “Recovering three-

dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012).
6. R. Schwarte, Z. Xu, H. Heinol, J. Olk, R. Klein, B. Buxbaum, H. Fischer, and J. Schulte, “New electro-optical

mixing and correlating sensor: facilities and applications of the photonic mixer device,” in “Proc. SPIE,” , vol.
3100 (1997), vol. 3100, pp. 245–253.

7. R. Lange and P. Seitz, “Solid-state time-of-flight range camera,” IEEE J. Quantum Electron. 37, 390–397 (2001).
8. M. Lindner, I. Schiller, A. Kolb, and R. Koch, “Time-of-flight sensor calibration for accurate range sensing,”

Computer Vision and Image Understanding 114, 1318–1328 (2010).
9. F. Heide, M. B. Hullin, J. Gregson, and W. Heidrich, “Low-budget transient imaging using photonic mixer de-

vices,” ACM Trans. Graph. (Proc. SIGGRAPH 2013) 32, 45:1–45:10 (2013).
10. D. Freedman, E. Krupka, Y. Smolin, I. Leichter, and M. Schmidt, “SRA: Fast removal of general multipath for

tof sensors,” arXiv preprint arXiv:1403.5919 (2014).

#221911 - $15.00 USD Received 29 Aug 2014; revised 9 Oct 2014; accepted 9 Oct 2014; published 17 Oct 2014
(C) 2014 OSA 20 October 2014 | Vol. 22,  No. 21 | DOI:10.1364/OE.22.026338 | OPTICS EXPRESS  26338



11. D. L. Donoho, “Compressed sensing,” IEEE Trans. Inform. Theory 52, 1289–1306 (2006).
12. E. J. Candes, J. K. Romberg, and T. Tao, “Stable signal recovery from incomplete and inaccurate measurements,”

Comm. Pure Appl. Math. 59, 1207–1223 (2006).
13. Y. C. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications (Cambridge University, 2012).
14. A. Kadambi, R. Whyte, A. Bhandari, L. Streeter, C. Barsi, A. Dorrington, and R. Raskar, “Coded time of flight

cameras: sparse deconvolution to address multipath interference and recover time profiles,” ACM Trans. Graph.
(Proc. SIGGRAPH Asia 2013) 32, 167 (2013).

15. A. Bhandari, A. Kadambi, R. Whyte, C. Barsi, M. Feigin, A. Dorrington, and R. Raskar, “Resolving multipath
interference in time-of-flight imaging via modulation frequency diversity and sparse regularization,” Opt. Lett.
39, 1705–1708 (2014).

16. M. O’Toole, F. Heide, L. Xiao, M. B. Hullin, W. Heidrich, and K. N. Kutulakos, “Temporal frequency probing
for 5d transient analysis of global light transport,” ACM Trans. Graph. (Proc. SIGGRAPH) 33 (2014).

17. A. Velten, R. Raskar, and M. Bawendi, “Picosecond camera for time-of-flight imaging,” in “Imaging and Applied
Optics,” (Optical Society of America, 2011), p. IMB4.

18. E. Grushka, “Characterization of exponentially modified gaussian peaks in chromatography,” Anal. Chem. 44,
1733–1738 (1972).

19. P. Datte, A. M. Manuel, M. Eckart, M. Jackson, H. Khater, and M. Newton, “Evaluating radiation induced noise
effects on pixelated sensors for the national ignition facility,” (2013), vol. 8850, pp. 885003–885003–9.

20. M. S. Lewicki and T. J. Sejnowski, “Coding time-varying signals using sparse, shift-invariant representations,”
in “Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems II,” (MIT,
Cambridge, MA, USA, 1999), pp. 730–736.

21. M. Mørup, M. N. Schmidt, and L. K. Hansen, “Shift invariant sparse coding of image and music data,” Tech.
rep., Technical University of Denmark, Richard Petersens Plads bld. 321, 2800 Kgs. Lyngby, Denmark (2008).

22. M. D. Zeiler and R. Fergus, “Learning image decompositions with hierarchical sparse coding,” Tech. Rep.
TR2010-935, Courant Institute of Mathematical Science, New York University (2010).

23. M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolutional networks,” in “Computer Vision and
Pattern Recognition (CVPR), 2010 IEEE Conference on,” (IEEE, 2010), pp. 2528–2535.

24. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,”
in “Adv. Neural Inf. Process. Syst.”, (2012), pp. 1097–1105.

25. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the
alternating direction method of multipliers,” Foundations and Trends® in Machine Learning 3, 1–122 (2011).

26. H. Bristow, A. Eriksson, and S. Lucey, “Fast convolutional sparse coding,” in “Computer Vision and Pattern
Recognition (CVPR), 2013 IEEE Conference on,” (IEEE, 2013), pp. 391–398.

27. J. Lin, Y. Liu, M. B. Hullin, and Q. Dai, “Fourier analysis on transient imaging with a multifrequency time-of-
flight camera,” in “IEEE Conference on Computer Vision and Pattern Recognition (CVPR),” (2014).

28. R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. R. Stat. Soc. Ser. B Stat. Methodol. pp.
267–288 (1996).

29. J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,”
IEEE Trans. Inform. Theory 53, 4655–4666 (2007).

30. S. Rangan, “Generalized approximate message passing for estimation with random linear mixing,” in “Informa-
tion Theory Proceedings (ISIT), 2011 IEEE International Symposium on,” (IEEE, 2011), pp. 2168–2172.

31. F. Heide, L. Xiao, W. Heidrich, and M. B. Hullin, “Diffuse mirrors: 3D reconstruction from diffuse indirect
illumination using inexpensive time-of-flight sensors,” in “IEEE Conference on Computer Vision and Pattern
Recognition (CVPR),” (2014).

1. Introduction

Imaging through scattering media has recently received a lot of attention. While many works
have considered microscopic settings such as imaging in biological tissue [1, 2], we consider
here the macrosopic problem, with ultimate target applications such as underwater imaging or
imaging through fog.

Traditional approaches such as imaging individual femtosecond laser pulses with either fast
gated cameras [1,3] or streak cameras [4,5] do not scale well to this macroscopic setting, since
ambient illumination can easily overpower the laser pulse, and even in the best case the limited
laser power results in a low signal-to-noise ratio (SNR).

In this work we show that correlation image sensors such as photonic mixer devices [6, 7]
can be effectively used for imaging in scattering and turbid media, when combined with com-
putational analysis based on sparse coding (Fig. 1). Correlation image sensors are widespread
on the consumer market in the form of range cameras that employ the time-of-flight (ToF)
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principle. We use here the term “correlation image sensor” to avoid confusion with other ToF
technologies. The primary advantage of correlation image sensors is that they have extended ex-
posure intervals, much like regular cameras, and they integrate over many (ca. 104–105) pulses
of a modulated light source, instead of a single pulse, resulting in a significant improvement in
SNR, as well as slower, less expensive electronics.
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Fig. 1. Example of imaging in scattering media using our approach. Left: Original scene
with objects submerged in water-filled glass tank. Center: 160 ml milk added. Right: Ob-
jects that are “invisible” due to strong scattering, like the structured object on the top right
or parts of the circular object become detectable using our approach.

2. Imaging with correlation sensors

Before introducing our new approach, in this section we summarize the operating principles
of correlation imagers, the most common form of time-of-flight technology on the market. We
will use the term “correlation image sensor” to avoid confusion with fast gated cameras, streak
cameras with pulsed lasers, and other technical approaches.

2.1. Time-of-flight imaging using temporal coding

To explain the principle of a ToF camera based on temporal coding, let us assume a setup with
a single diffuse reflector as shown in Fig. 2.

PMD Sensor 

Coded illumination

PMD Sensor 

Coded illumination

PMD Sensor 

Coded illumination 

b!R;Á b!;Á b!;Á

Single path ToF Multi path ToF Path continuum ToF in scattering media 

TexPoint fonts used in EMF. 
Read the TexPoint manual before you delete this box.: AAA 

Fig. 2. Time-of-flight depth imaging assuming a single light path.

The light source emits intensity-modulated light g(t) with a periodic modulation signal into
the scene. For a single camera pixel, and under the assumption of a single light path with travel
time τ contributing to this pixel, the illumination at the camera is a phase shifted signal s(t)
with a reduced amplitude due to surface albedo and geometric falloff. A correlation image
sensor such as a photonic mixer device integrates (exposes) over a large number (≈ 104–105)
of periods of this incident illumination, while modulating it with a periodic reference signal
f (t), thus essentially computing a correlation between s and f :
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g(t) =
∞

∑
k=0

gk cos(ωT t)

s(t) = αp g(t− τ)+ I

f (t) =
∞

∑
k=0

fk cos(ωRt +φ).

(1)

Here ωT is the base frequency of the illumination, ωR is the base frequency of the sensor
reference signal, φ is a programmable phase offset for the reference signal, and I is an offset to
account for ambient illumination. The harmonics of the base frequencies are either assumed to
be zero (i.e. gk = fk = 0 for k > 1), or can be obtained through calibration. Usually, correlation
image sensors are operated in homodyne mode, i.e., ωT = ωR, in which case the measured
correlation is given as

p(φ) = f ? s = F−1
(
(F(s)(ξ ) ·F( f )(ξ )

)
=

αp

2 ∑
k

fkgk cos(φ −ωT τ) (2)

This function is sampled by each correlation image pixel for different relative phase shifts φ .
The travel time τ can then be reconstructed using these samples. Usually the sampling pattern
consists of four phase offsets φ0 = 0,φ1 = π/2,φ2 = π,φ3 = 3/2π which allows for a solution
using simple trigonometric identities, see for example Lindner et al. [8]. Having recovered the
travel time τ , a distance estimate for the surface can be obtained simply as dest =

c
2 · τ .

2.2. Transient imaging imaging using correlation sensors

ToF imaging with correlation sensors as described above makes strong assumptions on the
scene that do not hold for realistic environments. As shown in Fig. 3, realistic scenes do not only
contain single point-scatterers. Many objects with different reflection or scattering properties
can exist, causing multiple path contributions to be linearly combined in a sensor pixel.
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Coded illumination 
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Fig. 3. Realistic scenes contain multiple light paths between source and sensor, and time-
of-flight imaging has to account for them (left). Imaging in scattering media results in a
continuum of paths of different lengths, resulting in a loss of sparsity in the time domain.

Heide et al. [9] first established a relation between the transient pixel α(τ) (subsuming all
multi-path contributions) and the resulting correlation measurement, as given in Eq. 3. For a
given relative shift φi and frequency ωi = ωT = ωR, a correlation image pixel measures

bωi,φi =
∫

∞

0
α(τ) ·

∫ T

0
gωi(t− τ) fωi(t +φi) dt︸ ︷︷ ︸

=cωi,φi (τ)

dτ, with α(τ) =
∫

P
αpδ (|p|= τ) d p, (3)
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where T is the integration time (which we assume to be an integer multiple of the modulation
period) and α(τ) physically represents the integral of all contributions from different light
paths p that correspond to the same travel time τ . If we now discretize the travel time τ into
M temporal bins and measure N different φi,ωi pairs, we can formulate the measurement as a
linear operator

C =
(
cωi,φi(τ j)

)
i, j , (4)

where the correlation matrix C is obtained through a straightforward calibration step, imaging
a planar target while cycling through the relative phase φ [9]. With α(τ) discretized for the
considered time steps, we obtain for a single pixel the measurement vector

b = Ci with i = [α(τ1), α(τ2), . . . , α(τM)]T . (5)

The unknown latent vector i is then the intensity profile of a pixel as a function of time, when
the scene is illuminated by a Dirac pulse of light. This generalization of this vector to all pixels
in an image is called the “transient image”.

2.3. Transient imaging in scattering media

Now coming back to the multi-path problem illustrated in Fig. 3, in contrast to conventional
intensity imaging, a transient image resolves the path travel time in an additional dimension.
Thus, by measuring b and by inverting Eq. 5 for i, one can untangle path contributions with
different path length and thus remove unwanted multi-path contributions.

However, it is known that inverting Eq. 5 results in an ill-posed problem [9, 10]. This be-
comes obvious when choosing sinusoidal f and g ,as then C becomes a truncated Fourier ma-
trix, whose maximum temporal frequency is limited by the maximum achievable modulation
frequency of typically 25–100 MHz for recent correlation-based camera systems. For imaging
in scattering media multi-path contributions are even stronger than for regular ToF imaging as
illustrated in Fig. 3 on the right. At a pixel a continuum of path lengths is measured, where
only few ballistic photons directly hit objects submerged in the scattering media. This strong
scattering, which makes traditional imaging very challenging, can only be handled if multi path
contributions are removed effectively.

3. Method

3.1. Are transient images sparse?

The idea of using sparse representations for signal recovery was first analyzed extensively by
Donoho and Candes et al. [11, 12] and since then has found use in many domains [13]. Several
recent works [10,14,15] attempt to resolve multi-path interference by assuming sparsity of i in
the Dirac basis. The vastly popular idea of compressed sensing [11] is applied in a straightfor-
ward manner, by trying to solve

iopt = argmin
i
‖i‖1 subject to ‖Ci−b‖2

2 < ε, (6)

which is a convex relaxation of the sparsity requirement ‖i‖0 < K, where K determines the
sparsity, and hence can be solved using convex optimization methods. Commonly the `1 norm
is used, which leads to solving for the MAP estimate i given a Laplacian prior distribution.

However, the basic assumption of i being sparse is violated for many realistic environments,
and in particular in the case of scattering media. For regular scenes the (intensity modulated)
radiosity leaving a single scene point integrates over a continuum of scene points, and thus in
general cannot be sparse. For example, any concave object can be expected to deliver a non-
sparse response, as shown by O’Toole et al. [16]. Especially for imaging in scattering media, the
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Fig. 4. Sparsity of 40K signals of a transient image measured image (left). Sparsity after
fitting to the convolutional basis proposed in this paper (right).

assumption of temporal sparsity breaks down. Figure 4 on the left demonstrates this empirically
by plotting the histogram of the `0 of a high-resolution transient image captured by Velten et
al. [17].

The image depicts a scene composed of scattering objects (a tomato) and diffuse surfaces.
However, note that even pixels that do not view a scattering object are not necessarily com-
pletely sparse, as we will show later in Section 3.5. The signal has been thresholded for 0.1
of the peak signal value along each pixel so as not to interpret sensor noise as sparse compo-
nents. A large number of pixel signals have more than K > 100 components, which cannot be
considered sparse, given a time discretization of M = 220 in this example.

3.2. A sparse local model for transient light interaction

Having shown that the popular sparse model does not apply in the Dirac basis for realistic
scenes (and especially not for scattering media), we now introduce a model for local light
transport interaction. This model leads to an overcomplete basis transforming the signal into a
space where it is sparse/compressible.

We model the temporal point spread function (PSF) of direct local surface reflection from a
single point as a Dirac peak, while the temporal structure of scattering processes is best rep-
resented by an exponential decay. In both cases, this PSF is convolved with a Gaussian that
models the temporal PSF and resolution of the correlation image sensor. It is therefore plausi-
ble to describe a transient pixel by a mixture of exponentially modified Gaussians. Originally
developed to describe chromatographic peaks [18], this versatile model has since been adopted
in different fields such as high-energy physics, where it is used to model the response of pixel
detectors [19]. A single exponentially modified Gaussian can be defined as

h(τ;a,σ ,ρ,µ) =a · exp

(
1
2

(
σ

ρ

)2

− τ−µ

ρ

)
·
(

1+ erf
(
(τ−µ)−σ2/ρ√

2σ

))
, (7)

where here a (amplitude), σ (Gaussian width), ρ (skew) and µ (peak center) are the param-
eters of the exponentially-modified Gaussian function, and τ is the travel time at which it is
evaluated. If we stack the parameters for a single exponentially-modified Gaussian in a vector
u = [a,σ ,ρ,µ]T , then we can model the transient time-profile i as the mixture:

i(τ) =
n

∑
i=1

h(τ;ui) , (8)

where n is here the number of mixture components. Figure 5 shows a few samples of the
signals. We note that the joint modeling of the exponential and Gaussian nature of our signals

#221911 - $15.00 USD Received 29 Aug 2014; revised 9 Oct 2014; accepted 9 Oct 2014; published 17 Oct 2014
(C) 2014 OSA 20 October 2014 | Vol. 22,  No. 21 | DOI:10.1364/OE.22.026338 | OPTICS EXPRESS  26343



has a key advantage over previous models: the basis functions and hence the reconstructions are
inherently smooth. The parametric model used by Heide et al. [9], on the other hand, produces
discontinuous solutions whenever exponential components are being used.
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Fig. 5. A few samples of the exponentially modified Gaussian signals located at µ = 50.
Curves are normalized by adjusting amplitude a.

Now, fitting this model to the data from Fig. 4 (using the method described below), we can see
that it defines a basis that transforms the transient image signals into a space that is significantly
sparser than the signal itself (see Fig. 4 on the right).

3.3. Efficient optimization to find the mixture parameters

In order to find the optimal mixture parameters, commonly a non-convex non-linear problem
is solved, which is prone to local minima and expensive to solve. Furthermore it leaves the
number of mixing components open, which Heide et al. [9] solve in an alternate scheme that
also offers no guarantee of global convergence.

We follow here a different approach and first linearize the above model by sampling the
parameter space and later use it in a sparse convolutional basis pursuit fashion in a convex
reconstruction problem. Linearizing the basis functions gives

H = [h(s;u0) , . . . ,h(s;un)] (9)

where s is the vector of all the sampling positions of the signal and n is the number of samples
in the set containing all C = {σ ,ρ,µ} with a = 1. Using this (massively overcomplete) basis H
we can formulate the reconstruction given a correlation image measurement b as the following
basis-pursuit problem:

vopt = argmin
v

1
2
‖CHv−b‖2

2 +λ ‖v‖1 (10)

Thus, the overcompleteness is handled by using the sparsity constraint. The values of a have
now become the vector of basis coefficients v. For simplicity, we consider only one pixel,
although the approach can be trivially extended to multiple pixels/measurements.

However, this leads to an extremely large basis H (due to the large set C ), which makes
the optimization inefficient even for problems of moderate size. One significant improvement
to this situation is to exploit the convolutional nature of the basis. Instead of sampling the
parameter space for µ (i.e., the translation of the peak along the time axis), one can fix µ and
reformulate the problem as the following optimization problem:

vopt =argmin
v

1
2

∥∥∥∥∥C
k

∑
i=0

Hi⊗vi−b

∥∥∥∥∥
2

2

+λ ‖v‖1

subject to Hi ∈ h
(
s,C ′

)
∀i ∈ {1, . . . ,k}

(11)
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where⊗ is the convolution operator. The basis vectors are now sampled from the space of pulse
shapes, C ′ = {σ ,ρ}, and invariant to translation. Therefore the size of the basis is drastically
reduced from previously n = k · dim(v) to just k, i.e., by typically around 2 to 3 orders of
magnitude.

This approach is motivated by the signal processing of the acoustic nerve, where shift-
invariant sparse coding has first been proposed by Lewicki and Sejnowski [20]. Recently,
sparse convolutional coding has also been used for audio and image detection tasks [21–23]
motivated by the recent success of convolutional deep neural networks in image classification
and detection [24].

3.4. Reformulation in the spectral domain

The problem from Eq. 11 can be defined even more compactly in the Fourier domain. The
convolution reduces to pointwise multiplication, here expressed by the operator �:

vopt =argmin
v

1
2

∥∥∥∥∥CF−1

(
k

∑
i=0

Ĥi� v̂i

)
−b

∥∥∥∥∥
2

2

+λ

k

∑
i=0
‖ti‖1

subject to Hi ∈ h
(
s,C ′

)
∀i ∈ {1, . . . ,k} ∧

ti = vi ∀i ∈ {1, . . . ,k}

(12)

where ti is the dual variable. Due to the frequency domain formulation, this linear inverse
problem can finally be efficiently solved with the Alternating Direction Method of Multipli-
ers [25]. For the sake of brevity, we omit a derivation of the subproblems. However, we note
that unlike previous work (e.g., by Bristow et al. [26]), we do not solve a simple fitting prob-
lem, but we include the measurement matrix C in our reconstruction problem. This leads to an
inherently different algorithm than in previous approaches.

3.5. Synthetic evaluation of reconstruction code

To generate ground-truth pixel profiles, we sampled a high resolution “ground truth” transient
image measured by Velten et al. using the direct sampling method [17]. The observations are
then generated by assuming a typical sinusoidal measurement matrix C where f ,g are defined
as in Eq. 1. We sample ω evenly spaced in 100 steps from 10 MHz to 120 MHz, which is a
realistic range for recent correlation image camera systems [9] and φ as 0,π/2, giving exactly
N = 100 · 2 measurements b per pixel. The measurements are normalized and then corrupted
with 1% Gaussian noise.

Figure 6 shows synthetic results for two different pixel profiles. We compare our method
(“Reconstruction Gauss-Exp”) to the ground-truth signal (“Original”) as well as two recent
methods from transient imaging literature: Lin et al.’s smooth frequency-domain interpola-
tion (“FFT model”) [27], the non-linear non-convex model-fit by Heide et al. (“Sequential
model”) [9]. For the sake of completeness, we further add comparisons to various state-of-the-
art sparse reconstruction techniques, namely LASSO (“Sparse reconstruction LASSO”) [28],
OMP (“Sparse reconstruction OMP”) [29] as well as Generalized Approximate Message Pass-
ing [30] using Donoho/Maleki/Montanari-style thresholding (“GAMP-DMM”) and assuming
a Laplacian signal in an MAP formulation (“GAMP-MAP”).

One can see that, although these pixels are dominated by direct reflections, the signals are not
sparse at all, and time-domain sparse backscatter models as used by Freedman et al.’s SRA [10],
or Bhandari et al. [15] are not capable of close reconstructions. Our method, on the other hand,
produces solutions that follow the ground-truth distributions more closely than any of the com-
peting models. In particular, the exponentially modified Gaussian basis outperforms recent ap-
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Fig. 6. Example showing the effect of our sparse coding optimization on two pixels from
the “Tomato” dataset. From left to right: (a) Proposed new model, (b) FFT and sequential
models, (c) state-of-the-art sparse reconstruction (LASSO and OMP), (d) two state-of-the-
art compressed sensing models (GAMP).

proaches that solve non-linear non-convex optimization [9]. Out of all the methods tested, the
one delivering the poorest fit is a recent approach [27], which imposes the weakest prior by just
interpolating smoothly in the Fourier domain.

4. Analysis and evaluation

In this section we show results for imaging in scattering media using our reconstruction method
proposed in the previous section. The measurement setup is explained first. After that the results
are analysed qualitatively and quantitatively.
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Fig. 7. Camera prototype and setup: We use a modified PMDTechnologies CamBoard nano
using an array of red laser diodes for illumination (left) as described by Heide et al. [31].
In our setup we image a tank filled with a scattering medium of different concentrations
frontal with the cameras. The spatial dimensions and arrangement of the setup is shown in
the center. The setup is shown on the right.

4.1. Imager

Camera We use a correlation image ToF camera prototype for our experiments using red
laser light as illumination, see Fig. 7 on the left.
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The ToF camera consists of a modulated light source and a correlation image detector, as
described by Heide et al. [31]. The sensor is a PMD CamBoard nano, modified to allow for
external control of the modulation signal (since access to its FPGA configuration was not avail-
able). The light source consists of an array of 650 nm, 250mW laser diodes which are operated
in pulse mode, also described in the same source.

We measure ω evenly spaced in 3 steps from 20 MHz to 60 MHz and φ evenly spaced be-
tween 0 and 5 m/cω in 201 steps and with an additional shift of (0,π/2), resulting in a measure-
ment vector b with exactly N = 201 ·2 ·3 samples per pixel.

Calibration In agreement with Heide et al. [9], we calibrated the matrix C by measuring a
diffuse planar target that is mounted on a translation stage perpendicular to the z-axis. The target
is translated along this axis at positions according to different travel times τi, i ∈ {1 . . .M}. We
can then populate C column by column for each τi.

4.2. Setup

Measurement setup An image of our measurement setup is shown in Fig. 7 on the right. We
placed a water tank with glass hull at a distance of 1.2 m in front of our camera, so that the
optical axis intersects the center of the largest planar side. The light source is placed at a slight
offset to the right to eliminate direct reflections of the air-to-glass interface on the camera-facing
wall. See the schematic in Fig. 7 in the center for the exact spatial alignment.

Scattering media We filled the tank with 80 liters of water and submerged objects at dif-
ferent positions in the water (and in particular at different distances to the camera). We then
evaluated our approach on two different scattering materials with a series of different concen-
trations. First, we conducted a sequence of 100 experiments using homogenized milk from 0 ml
to 500 ml in 5 ml steps. Second, we conducted a sequence of 50 experiments using Gypsum
plaster with continuum of particle sizes ≤0.125 mm. We used 0 oz to 50 oz in 1 oz steps.

For each of the 150 experiments we take a full measurement with the measurement parame-
ters as discussed in Section 4.1.

4.3. Qualitative results

Figures 8 and 9 show qualitative results for imaging through scattering media of increasing
density. Objects are immersed in a tank filled with water, to which increasing concentrations
of milk (Fig. 8) or plaster (Fig. 9) are added. With increasing concentration, visibility through
the scattering medium quickly drops off for a conventional camera (left column). On the other
hand, a light transport analysis based on correlation image sensors, not only increases the ability
to detect objects in highly turbid solutions, but also allows for a simultaneous estimation of
distance (color coded images in the right column of each figure).

4.4. Quantitative results

To quantitatively analyze our results, we measure the error of the depth estimate for three dis-
tinct camera pixels with respect to the measured ground truth depths. The three camera pixels
‘plate’, ‘holder’ and ‘bar’ are chosen as representatives for objects located at different depths in
the reconstruction volume. Their spatial positions are shown in Fig. 10 (left). All objects have
approximately diffuse reflectance except for the ‘plate’ which does have a specular component.

Ground truth depth measurements for all pixels were acquired manually. The pixel ‘plate’ is
located at 5.5 cm behind front facing glass wall of the tank, pixel ‘holder’ at 21.5 cm into the
tank, and ‘bar’ at 40.0 cm, touching the rear-facing wall of the tank.
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Fig. 8. Qualitative results for the milk experiment described in Section 4.2. Experiments in
each row from top down: 0 ml, 10 ml, 20 ml, 40 ml, 80 ml, 160 ml, 300 ml of milk in water.
Each row shows the regular camera image (left), peak image for red camera reconstruction
(right). Peak images are here a parabola fit through the two nearest neighbor points of the
strongest peak, where the position is encoded as as hue and the intensity is encoded as value
in the HSV color model.
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Fig. 9. Qualitative results for the plaster experiment described in Section 4.2. Experiments
in each row from top down: 0 oz, 2 oz, 4 oz, 8 oz, 16 oz, 32 oz, 59 oz of plaster in water.
Each row shows the regular camera image (left), peak image for red camera reconstruction
(right). Peak images are here a parabola fit through the two nearest neighbor points of the
strongest peak, where the position is encoded as as hue and the intensity is encoded as value
in the HSV color model.
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Fig. 10. Error for three specific pixels shown on the left. The error of the position is shown
for all 100 experiments using milk as scattering medium and all 50 experiments using plas-
ter as scattering medium. The error is measured with respect to 0% concentration and cor-
rected for the speed of light in water. Standard time-of-flight depth reconstruction (arctan
solution) breaks down even at very low concentrations of scattering agent.

The center and right portions of Fig. 10 show the error with respect to the ground truth
pixel depth for all 100 experiments with milk as scattering media and all 50 experiments with
plaster as scattering media as described in Section 4.2. We can see that the error of pixels
‘plate’ and ‘holder’ has a fairly low slope and remains almost flat around 1 cm–5 cm even for
strong concentrations. These pixel depths are located close to the front and in the middle of
the reconstruction volume, so the scattering is reduced in comparison to pixel ‘bar’ which is at
the very rear of the reconstruction volume. Its error is significantly larger; around 10 cm–20 cm
due to the increased scattering. However, performing a naı̈ve reconstruction as described in
Section 2.1 on the same pixel resulted in even significantly larger errors around 30 cm–60 cm
for both the plaster and the milk sequence of experiments.

5. Discussion

We demonstrated that correlation image sensors can be used for imaging in scattering and
turbid media. Unlike alternative methods such as fast gated imaging, this approach is robust
under ambient illumination (all measurements were taken with room lighting switched on), and
works with higher light levels than approaches based on single light pulses.

The key to using correlation image sensors for this problem lies in the realization that tran-
sient light transport is sparse, but only in a well-chosen representation. We develop here a model
based on exponentially modified Gaussians, which is tailored towards representing combina-
tions of surface reflection and volumetric scattering. Fast convolutional coding is employed to
solve the resulting optimization problem.

The depth resolution of the current cameras is limited by the modulation frequency of the
correlation image sensor, currently up to 100 MHz. Under ideal circumstances, a 10-bit corre-
lation imager can distinguish 1000 distinct phases within the 3 m wavelength, corresponding to
a resolution of ca. 3 mm. These numbers, as well as our results should scale up well with future
increases in modulation frequency.
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