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Figure 1: Our end-to-end system reconstructs images and jointly accounts for demosaicking, denoising, deconvolution, and missing data
reconstruction. Thanks to the separation of image model and formulation based on natural-image priors, we support both conventional and
unconventional sensor designs. Examples (our results at lower right): (a) Demosaicking+denoising of a Bayer-sensor image (top: regular
pipeline). (b) Demosaicking+denoising of a burst image stack (top: first frame shown). (c) Demosaicking+denoising+HDR from an interlaced
exposure image (top: normalized exposure image). (d) Denoising+reconstruction of a color camera array image (top: naïve reconstruction).

Abstract

Conventional pipelines for capturing, displaying, and storing images
are usually defined as a series of cascaded modules, each responsible
for addressing a particular problem. While this divide-and-conquer
approach offers many benefits, it also introduces a cumulative error,
as each step in the pipeline only considers the output of the previous
step, not the original sensor data. We propose an end-to-end system
that is aware of the camera and image model, enforces natural-
image priors, while jointly accounting for common image processing
steps like demosaicking, denoising, deconvolution, and so forth, all
directly in a given output representation (e.g., YUV, DCT). Our
system is flexible and we demonstrate it on regular Bayer images as
well as images from custom sensors. In all cases, we achieve large
improvements in image quality and signal reconstruction compared
to state-of-the-art techniques. Finally, we show that our approach is
capable of very efficiently handling high-resolution images, making
even mobile implementations feasible.

CR Categories: I.4.1 [Image Processing and Computer Vision]:
Digitization and Image Capture—Miscellaneous

Keywords: image processing, image reconstruction

Links: DL PDF WEB

1 Introduction

Modern camera systems rely heavily on computation to produce
high-quality digital images. Even relatively simple camera designs
reconstruct a photograph using a complicated process consisting
of tasks such as dead-pixel elimination, noise removal, spatial up-
sampling of subsampled color information (e.g., demosaicking of
Bayer color filter arrays), sharpening, and image compression. More
specialized camera architectures may require additional processing,
such as multi-exposure fusion for high-dynamic-range imaging or
parallax compensation in camera arrays.

The complexity of this process is traditionally tackled by splitting
the image processing into several independent pipeline stages [Ra-
manath et al. 2005]. Splitting image reconstruction into smaller,
seemingly independent tasks has the potential benefit of making the
whole process more manageable, but this approach also has severe
shortcomings. First, most of the individual stages are mathemati-
cally ill-posed and rely heavily on heuristics and prior information
to produce good results. The following stages then treat the results
of these heuristics as ground truth input, aggregating the mistakes
through the pipeline. Secondly, the individual stages of the pipeline
are in fact not truly independent, and there often exists no natural
order in which the stages should be processed. For example, if noise
removal follows demosaicking in the pipeline, the demosaicking
step must be able to deal with noisy input data when performing
edge detection and other such tasks required for upsampling the
color channels, and denoising is complicated as the noise statistics
change due to the interpolation in demosaicking.

We present a framework that replaces the traditional pipeline with
a single, integrated inverse problem (Fig. 2). We solve this inverse
problem with modern optimization methods while preserving the
modularity of the image formation process stages. Instead of apply-
ing different heuristics in each stage of the traditional pipeline, our
system provides a single point to inject image priors and regularizers
in a principled and theoretically well-founded fashion.

Despite the integration of the individual tasks into a single optimiza-
tion problem, our system is flexible and we can easily extend it to
include new image formation models and camera types, by simply
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Figure 2: The traditional camera processing pipeline consists of many cascaded modules, introducing cumulative errors. We propose to
replace this pipeline with a unified and flexible camera processing system, leveraging natural-image priors and modern optimization techniques.

providing a procedural implementation of the forward image for-
mation model. This image formation model is typically composed
of a sequence of independent linear transformations (e.g., lens blur
followed by spatial sampling of the color information, followed by
additive noise). To illustrate the flexibility of our system, we applied
it to a number of image formation models (see Fig. 1), including
joint Bayer demosaicking and denoising, deconvolution of camera
shake and out-of-focus blur, interlaced HDR reconstruction and mo-
tion blur reduction, image fusion from color camera arrays, joint
image stack denoising and demosaicking, and optimization all the
way to the output representation.

All these image formation models are combined with a set of state-
of-the-art image priors. The priors can be implemented independent
of each other or the image formation system that they are applied
to. This enables sharing and re-using high-performance implemen-
tations of both the image formation process stages and the image
priors for different applications. We analyzed a variety of image
priors and determined a single set that we use for all applications,
and which consistently outperforms the best specialized algorithms
for well-researched problems such as demosaicking, denoising, and
deconvolution, sometimes by a significant margin. Since the op-
timization of the forward model and the image priors is highly
parallelizable, we also provide a very efficient GPU implementation.
This allows us to process high-resolution images even on mobile
devices (such as modern tablets with integrated mobile GPUs). We
call this flexible image signal processing system FlexISP.

Contributions Our main contributions include: a flexible end-
to-end camera image processing system that can handle different
applications, sensor types, and priors, with minimal code changes; an
in-depth analysis of the design choices made to create our system—
in particular of the priors used in our optimization; and an evaluation
of our framework against many state-of-the-art methods, demon-
strating the high image quality we achieve.

2 Related Work

Camera image processing pipelines Most modern digital cam-
eras implement the early image processing as a pipeline of simple
stages [Ramanath et al. 2005]. These image signal processors (ISPs)
usually take in raw Bayer sensor measurements, interpolate over
stuck pixels, demosaic the sparse color samples to a dense image
with RGB in every pixel [Zhang et al. 2011], attempt to denoise the
noisy signal [Shao et al. 2013], enhance edges, tonemap the image to
8 bits per channel, and optionally compress the image. The camera
capture parameters are controlled by the auto exposure, focus, and
white balancing algorithms [Adams et al. 2010].

Demosaicking Many methods exist for demosaicking Bayer im-
ages [Zhang et al. 2011], and some extend to videos (or stacks of
images) [Wu and Zhang 2006; Bennett et al. 2006]. Unlike our
proposed technique, these methods only focus on demosaicking and
do not jointly handle denoising, for example.

Denoising Self-similarity and sparsity are two key concepts in
modern image denoising. Non-local image modeling utilizes struc-
tural similarity between image patches. Non-local means (NLM)

[Buades et al. 2005] filters a single image using a weighted average
of similar patches for each pixel.

Many orthogonal transforms, such as DFT, DCT, and wavelets, have
good decorrelation and energy compaction properties for natural
images. This property has been utilized in local transform-based
denoising schemes, such as wavelet shrinkage [Coifman and Donoho
1995] and sliding window DCT filtering [Egiazarian et al. 1999].

BM3D [Dabov et al. 2007a] was the first denoising algorithm to
simultaneously exploit sparse transform-domain representations and
non-local image modeling. We use BM3D as a self-similarity-
inducing denoising prior. Combining internal (such as BM3D) and
external (such as Total Variation – TV) denoising has been recently
shown to be advantageous; Mosseri et al. [2013] run two methods
separately and then merge the results. We combine internal and
external information in a single optimization framework. We also
modify standard BM3D to perform better as a natural image prior.

Using multiple images Capturing several images allows one to
overcome some inherent camera limitations. High-dynamic-range
(HDR) imaging [Reinhard et al. 2010] commonly captures an image
stack with different exposure times, and reconstructs more detail
in the very dark and bright areas than would otherwise be possible.
Multiple frames can be combined to deblur images [Tico and Pulli
2009] or to superresolve more detail than is available from a sin-
gle image [Irani and Peleg 1991]. We demonstrate an application
where a low-light image burst is first registered and then jointly
demosaicked and denoised to create a better output image.

Modified camera designs It is also possible to redesign the cam-
era to extend its imaging capabilities. Camera arrays can capture a
light field [Wilburn et al. 2005], which can be post-processed for
changing the view point or focus, creating a large virtual aperture,
extracting depth from the scene, etc. An extremely thin design
without a main lens is possible by integrating several small lenses
over a sensor, as in the PiCam [Venkataraman et al. 2013] design.
Cameras have also been modified to extend the dynamic range that
they capture. For example, the density of the color filter array can be
varied per pixel [Nayar and Branzoi 2003], but this comes at the cost
of reduced light efficiency. Alternatively, the sensor design itself can
be modified to allow for per-row selection of the exposure time or
sensor gain [Gu et al. 2010; Hajisharif et al. 2014]. Our system can
be easily adapted to handle such new camera designs. For instance,
in one of our applications, we use a camera sensor similar to the one
by Gu et al., but instead reconstruct the HDR image with our joint
optimization system, which significantly improves the results.

Joint optimization approaches Addressing subproblems sepa-
rately does not yield the best-quality reconstructions, especially
for complex image formation models. Recently, a number of re-
searchers have identified this problem, and proposed joint solutions
to several subproblems (Table 1). Examples include joint demosaick-
ing and denoising [Chatterjee et al. 2011; Jeon and Dubois 2013],
demosaicking and deblurring [Schuler et al. 2011], demosaicking
and HDR reconstruction [Narasimhan and Nayar 2005; Ajdin et al.
2008], demosaicking and superresolving an image stack [Farsiu
et al. 2006; Bennett et al. 2006], and image fusion with superreso-
lution for color camera arrays [Venkataraman et al. 2013]. These



Paper Method Application Priors
[Chatterjee et al. 2011] Unkown DM + DN p-norm (p = 0.65)
[Schuler et al. 2011] Alt. Min. DM + DC TV + color
[Schuler et al. 2013] ML DC (restoration) (MLP)
[Narasimhan and Nayar 2005] Lin. Regr. DM + HDR —
[Ajdin et al. 2008] Stoch. Opt. DM for HDR Color
[Farsiu et al. 2006] Grad. Desc. DM + SR Bilat. TV + (cross-)color
[Bennett et al. 2006] Bayes DM + SR 2-color
[Venkataraman et al. 2013] Bayes Fusion + SR Bilat. TV
[Afonso et al. 2010] ADMM DC | inpainting TV | wavelets
[Chambolle and Pock 2011] PD DN | DC | flow | . . . TV | Huber-ROF | curvelet
[Heide et al. 2013] PD DC TV + cross-channel
[Venkatakrishnan et al. 2013] ADMM Tomographic DN KSVD | BM3D | TV | ...
Ours PD Flexible BM3D + TV + color

Table 1: Table comparing previous work and ours. ML = machine
learning, PD = primal dual, DM = demosaic, DN = denoise, DC =
deconvolution, SR = superresolution.

techniques all address a specific subset of the image processing
pipeline for a single camera design. We extend these ideas into a
single, flexible image optimization framework called FlexISP, that
can be applied to many different applications and camera designs.
Our approach uses proximal operators and the primal-dual method
for optimization (see [Parikh and Boyd 2013] for an accessible intro-
duction). Primal-dual methods, and the related Alternating Direction
Method of Multipliers (ADMM), have been used in many imaging
applications, such as deconvolution, inpainting [Afonso et al. 2010],
superresolution, optical flow [Chambolle and Pock 2011], denoising
[Venkatakrishnan et al. 2013], and deconvolution for simple lenses
[Heide et al. 2013] using various priors (Table 1). In contrast, we
formulate a framework that allows easy integration of various natural
image priors, and demonstrate that a specific set (BM3D + TV +
cross-channel) is sufficient for all our applications while outperform-
ing all state-of-the-art methods. We discuss the application of the
priors, their effects, and the way they should be combined; we also
discuss some priors that we discarded and explain why they are not
needed, given the priors we adopted. Our approach improves on the
current state-of-the-art methods in demosaicking (Figs. 8 and 10),
deconvolution (Table 4), interlaced HDR reconstruction (Fig. 11),
burst denoising (Fig. 13), and JPEG deblocking (Fig. 14).

3 Optimization for Image Reconstruction

In this section we present our image reconstruction framework. We
start by formulating the problem as a linear least-squares problem
with non-linear and possibly non-convex regularizers. Once cast in
this framework, we show how standard, non-linear optimization al-
gorithms can be applied to the solution of this inverse problem using
proximal operators for the data term and the individual regularizers.

3.1 Inverse Problem

We represent the unknown latent image x ∈RN and the observed im-
age z ∈ Rn as vectors. Depending on the camera and its lens, sensor,
and so forth, the latent image undergoes various transformations. In
the example of the Bayer pattern sensor, the observed image z is an
n-vector with only one color sample per pixel, while the latent image
x is a N = 3n-vector, where the first n terms are the red channel
values, the next n are the greens, and the rest the blues. This sub-
sampling can be modeled as a projection operator, expressed as an
n×N matrix D. As another example, consider that the latent image
usually undergoes blurring due to the camera’s anti-aliasing filter
and scattering in the optics. Due to the linear nature of these optical
processes, the image transformation can be expressed as a matrix B
operating on the image vector. We subsume these transformations in
a matrix A, and express our observation model as

z = Ax+η , (1)

where η is additive Gaussian noise. The definition of matrix A
changes based on the exact application (see Sec. 4), but does not
vary based on the image content.

Our goal is to find the underlying latent image x from the (usually)
sparse and noisy observations z. Given the Gaussian noise model,
this can be achieved with a standard `2 minimization. Unfortunately,
the data term by itself is typically not sufficient due to information
loss inherent in transformations such as blurring and subsampling.
The inverse problem must therefore be regularized with a non-linear,
and possibly non-convex term Γ(x), which narrows down the solu-
tion space. Γ(·) is itself a weighted sum of individual natural image
priors (Sec. 3.3.2). Solving for x in Eq. 1 then amounts to solving
the following minimization problem:

min
x

1
2
‖z−Ax‖2

2︸ ︷︷ ︸
data fidelity

+ Γ(x).︸ ︷︷ ︸
regularization

(2)

For mapping this problem onto known non-linear solvers, it is useful
to rewrite the data term and image formation model as G(x) =
1
2‖z−Ax‖2

2 and the regularization term as Γ(x) = F(Kx), where F
is a non-linear function, and K is a matrix. For example, for the well-
known TV regularizer Γ(·)= ‖·‖TV , we define F(·)= ‖·‖1 as the `1
norm, and K = ∇ as a discrete gradient operator. Using this notation,
we can rewrite Eq. 2 as a canonical constrained optimization problem
using a new slack variable y:

min
x,y

G(x)+F(y), subject to Kx = y. (3)

We note that finding appropriate priors is crucial for yielding high-
quality image reconstructions. We provide an analysis of different
priors in Sec. 5.

3.2 Solvers

Equation 3 is a standard problem in numerical optimization, and a
large array of existing and well-documented non-linear solvers pro-
vide convergence guarantees when F and G are both convex. Many
such solvers can be expressed in terms of the proximal operators for
G and F [Parikh and Boyd 2013]:

proxτH(v) = argmin
u

(
H(u)+

1
2τ
‖u−v‖2

2

)
, (4)

where H stands for either G or F . These proximal operators can be
interpreted as minimizing G and F , while staying close to the starting
point v. After deriving the proximal operators for our data term
(Sec. 3.3.1) and regularizers (Sec. 3.3.2), we can use a wide range of
non-linear solvers. We have experimented both with ADMM [Parikh
and Boyd 2013] and the primal-dual algorithm (Algorithm 1 of
Chambolle and Pock [2011], reproduced below for reference). We
found that both algorithms produce very similar results, with the
latter being about 20% faster in our applications, which is why we
settled on the primal-dual algorithm for all examples in this paper.

Algorithm 1 – First order primal-dual
Initialization: γτ‖K‖2 < 1, θ ∈ [0,1], (x0,y0), x̄0 = x0.
Repeat until convergence:

penalty: yk+1 = proxγF∗
(
yk + γKx̄k)

data fidelity: xk+1 = proxτG
(
xk− τKT yk+1)

extrapolation: x̄k+1 = xk+1 +θ
(
xk+1−xk)

We initialize x0 with the observations—missing values are copied or
averaged from observed nearby values; y0 can be set to zero.

The primal-dual algorithm actually requires the proximal operator
for the convex conjugate F∗ of F [Chambolle and Pock 2011]. This



operator can be expressed in terms of the original operator proxγF
using the Moreau decomposition [Parikh and Boyd 2013]

proxγF∗(v) = v− γ ·prox 1
γ

F (
v
γ
). (5)

We can therefore focus on deriving the primal proximal operators
for all regularization terms.

3.3 Proximal Operators

Applying the solver to our problem requires deriving the proximal
operators for a given image formation model and regularizers.

3.3.1 Data Fidelity Operator

The data fidelity (primal) step in Alg. 1 updates the current estimate x
of the latent image. Loosely speaking, this operator takes a gradient
descent step of the data term while remaining close to the argument
of the operator. From Eqs. 2 and 4 we see that

x = proxτG(v) = argmin
u

(
1
2
‖z−Au‖2

2 +
1

2τ
‖u−v‖2

2

)
. (6)

This is a simple least-squares problem, whose solution x is obtained
as the solution to the following linear system:(

τAT A+ I
)

x =
(

τAT z+v
)
. (7)

There are many ways to solve this linear system, but as the matrix
is symmetric and positive semi-definite, we can use the Conjugate
Gradient (CG) algorithm. The advantage of CG in our setting is that
the image formation model A and its transpose can be represented
algorithmically, without explicitly generating the system matrix.

3.3.2 Regularization Operators

The regularization (penalty) step in Alg. 1 updates our current esti-
mate of the slack variable y, making a gradient step on the regular-
ization terms. We now describe the set of regularization terms that
work well in our framework (cf. Sec. 5).

Image gradient sparsity prior The first regularization term is the
standard (isotropic) Total Variation regularizer, which minimizes the
`1 norm of the gradient magnitudes [Rudin et al. 1992]. We express
the term in our framework by defining F0(·) = ‖ · ‖1, for which the
proximal operator is the component-wise soft shrinkage

proxγ0F0
(v0) =

 v0− γ0 if v0 > γ0
v0 + γ0 if v0 <−γ0
0 otherwise.

(8)

K0 = ∇, which means that K0x produces x- and y-gradient images.

Denoising prior We show that any Gaussian denoiser can be
expressed as a proximal operator and be used in our framework.
While the derivation is general, we are particularly interested in using
powerful self-similarity-imposing denoisers. For specific denoisers
with simple structure (such as TV), the properties have been well
explored [Oymak and Hassibi 2013]. However, we extend this to
complex cases that do not have a closed-form solution. We use a
prior probability distribution g(x) to express that we expect the latent
image x ∈ RN to be locally self-similar. Furthermore, we assume
that our observation z ∈ RN may have been polluted by per-pixel
Gaussian noise with standard deviation

√
γ1, yielding the likelihood

f (z|x) of noisy observations z given the latent image x:

f (z|x) = 1√
(2πγ1)N

exp
(
−‖z−x‖2

2

/
2γ1

)
. (9)

This enables us to treat x as a random variable and, assuming the
prior distribution g(·), characterize its uncertainty using Bayesian
statistics. Applying Bayes’ rule, the posterior distribution of the la-
tent image x given the noisy measurement z is f (x|z) ∝ g(x) f (z|x).
The maximum-a-posteriori estimate xMAP is the mode

xMAP = argmax
x

g(x) f (z|x). (10)

Note that this is only the MAP estimate for the denoising prior, not
for the inverse problem in Eq. 2.

By estimating the mode, we find a tradeoff between the likelihood
(i.e., trust in our observations) and the prior knowledge. We maxi-
mize the negative log of the posterior to get

xMAP = argmax
x

g(x) f (z|x) = argmax
x

log(g(x) f (z|x))

= argmax
x

log(g(x))+ log( f (z|x))

= argmin
x
− log(g(x))+ 1

2γ1
‖z−x‖2

2.

(11)

Comparing Eq. 11 with the definition of the proximal operator in
Eq. 4, we see that setting F1 ≡− log(g(·)) yields

proxγ1F1
(v1) = xMAP (12)

for x = u and z = v1. This means that any Gaussian denoising
algorithm that can be formulated as a MAP estimation, can be
interpreted as a proximal operator, is consistent with our framework,
and can be integrated if desired.

To apply the proximal operator, we set K1 to identity I and then
simply run the chosen denoiser on the image v1 = yk

1 + γ1K1x̄k.

We have experimented with various denoisers: Sliding DCT which
uses collaborative filtering, NLM which uses self-similarity, and
patch-based NLM and BM3D which use both. The choice depends
on the application and on the desired reconstruction speed and qual-
ity, which we will discuss in detail in Sec. 5. Out of those properties,
self-similarity, which helps to inpaint in case of missing data, ap-
pears to be the most important.

Cross-channel gradient correlation To ensure edge consistency
between color channels and avoid color fringing we include the
cross-channel prior [Heide et al. 2013]. We enforce that chroma-
gradients of channels l,k are similar and sparse by equating ∇zl/zl ≈
∇zk/zk ⇔ ∇zl · zk ≈ ∇zk · zl with an `1-penalty term. The corre-
sponding K2 computes the difference between scaled gradients of
the channels (see the details in the code in the supplemental mate-
rial). The penalty F2 is the `1 norm, and the proximal operator is
again a component-wise soft shrinkage (Eq. 8).

Combining the operators We combine the individual regulariz-
ers and image priors as a weighted sum

F(Kx) =
k

∑
i=0

φiFi(Kix). (13)

The combined K is obtained by stacking the component matrices;
with our three regularizers K = [K0;K1;K2]≡ [KT

0 KT
1 KT

2 ]
T , where

the semicolon notation stacks the components vertically. Note that
we actually never form and multiply the full K matrix, instead, for
K0 we just compute x- and y-gradient images, for K1 we simply use
the image, and for the components of K2 we multiply an image with
a gradient image and take the difference of two such images.

The proximal operator of F becomes the vector

proxγF (v) =
[
proxγ0F0

(v0) ; . . . ; proxγkFk
(vk)

]
, (14)



where γi = γφi, and the component vi is obtained as shown in Alg. 1
(penalty step), which together with Eq. 5 produces the next iteration
yk+1 of the slack variable.

4 Applications

Next we describe our applications and their objective functions.

Matrix Function
D Image down-sampling or sub-sampling
M Masking of pixels (e.g., saturated or broken pixels)
B Image blur
S Resampling matrix implementing an image warp
C Color matrix
F Fourier transform or DCT
Q JPEG quantization matrix

Table 2: Matrix symbols used in the image formation models.

4.1 Demosaicking

Our first application performs demosaicking of a Bayer raw image
and simultaneous denoising, if required. The data model is quite
simple: we set A = D, the Bayer array decimation matrix, and get

G(x) = ‖z−Dx‖2
2 . (15)

4.2 Deblurring

We next demonstrate non-blind deconvolution, i.e., assuming a
known (pre-calibrated) PSF. Like Xu and Jia [2010] and Heide
et al. [2013], we encode the blur in the matrix A = B and get

G(x) = ‖z−Bx‖2
2 . (16)

As demonstrated by Schuler et al. [2011], one can also incorporate
Bayer array sensing into deconvolution by setting A = DB.

4.3 Interlaced HDR

Our third application focuses on HDR imaging. Some recent sen-
sors (e.g., Aptina AR1331CP and Sony IMX135) can record two
exposures in a single frame by allowing the exposure time to be set
independently for even and odd macro-rows (a pair of consecutive
rows that cover all the color samples) of an otherwise normal Bayer
sensor. Figure 1(c) depicts the exposure pattern; odd macro-rows
integrate light for a longer time than the even ones. The advantage
is that two exposures, together covering a wider dynamic range than
a single shot, are captured essentially at the same time, while tra-
ditional stack-based HDR allows time to pass and objects to move
between the shots. However, samples are more sparse: odd macro-
rows may saturate in bright regions and even macro-rows may be too
noisy to be useful in dark regions. We easily adapt our framework
to reconstruct high-quality HDR images from such sensors.

We introduce a binary diagonal indicator matrix M for masking
bad pixels, where 0 indicates a useless pixel (either saturated or too
noisy), and 1 means that the pixel has useful data. The blur matrix
B models the optics and sensor anti-aliasing filter by measuring the
camera’s PSF; all applications model blur in this fashion, unless
otherwise noted. We measure the blur like Xu and Jia [2010]. Other
calibration-target-based methods, such as Brauers et al. [2010], could
be used as well. Finally, we set A=MDB for the blurred, decimated,
and saturated observation matrix, i.e.,

G(x) = ‖Mz−MDBx‖2
2 . (17)

Note that, when solving Eq. 7, we also need to replace z with Mz.

4.4 Color Array Camera

Single-chip array cameras provide thin camera designs and a poten-
tial for depth-map-based applications [Venkataraman et al. 2013].
The color filters are per lens and not per pixel, and each lens can be
optimized for the wavelength passed by the respective filter. Since
each sub-image has only one color, no demosaicking is required. In-
stead, the images have to be registered, but this is a challenging task
since each sub-image has a different color and a slightly different
viewpoint, leading to parallax and occlusions.

We use our framework to fuse images from a 2×2 single-chip color
array camera, shown in Fig. 1(d). This prototype uses R, G, and B
sensors, with a 1.4mm baseline. Additionally, we use a second 2×2
camera array with a larger baseline (2.55cm) for larger scenes.

We first estimate the registration between the sub-images, which we
encode in the matrix A, and use the matrix M as a confidence mask
modeling the uncertainty in this registration. This uncertainty occurs
both in flow-based or depth-based registration. We have opted for
a novel cross-channel optical flow for registration across different
color channels, as it avoids any geometric calibration. Each channel
is replaced with a normalized image z̃ = ‖∇z‖

z+ε
(Fig. 3), and we solve

for the cross-channel optical flow ∆v between the color channels zC
(for C = {R,B}) and the fixed green channel zG with

min
∆v

∥∥∥z̃C +(∇z̃C)
T

∆v− z̃G

∥∥∥2

2
+‖∆v‖1 (18)

using a standard optical flow algorithm [Liu 2009].

Figure 3: R, G, and B color planes, and corresponding normalized
images. The normalized gradient magnitude images look similar,
apart from noise. Prominent edges show up on all channels, helping
the optical flow algorithm to converge on a good motion estimate.

We detect the reliable flow estimates through forward-backward
consistency check and mark them in the indicator matrix M.

Having computed the flows ∆vR and ∆vB, we form flow matrices Si
for each capture i. We also account for the optical blur in the 2×2
camera and recover some of the sharpness in the reconstructed image.
The blur is encoded in the matrix B as before. The mosaicking matrix
is not needed for this camera. We set Ai = MiBSi for each capture i
(out of k), and get

G(x) = ‖[M1z1; . . . ;Mkzk]− [M1BS1; . . . ;MkBSk]x‖2
2 . (19)

As before, F(·) contains the BM3D denoiser and the cross-channel
image prior, which now helps to reconstruct missing colors in oc-
cluded regions by using information from the other channels.

4.5 Burst Denoising and Demosaicking

Many compact cameras produce very noisy results in low-light situ-
ations due to their small sensor size. Instead of a single photograph,
one can take a rapid burst of multiple exposures and then combine
them to reduce noise. This is not a new idea in itself [Tico 2008;
Buades et al. 2009], and some cameras have a multi-frame denoising
mode. However, previous techniques demosaic each image first
and then denoise the stack of images. This is not ideal since demo-
saicking will modify and possibly even amplify noise. Furthermore,
additional frames can aid the demosaicking process [Wu and Zhang
2006; Bennett et al. 2006]. We demonstrate that our framework



can jointly demosaic and denoise a stack of burst images, yielding
results that are superior to methods that pipeline these two processes.

The image stack is likely to be slightly misaligned due to small cam-
era and object motion. We handle this by aligning all k observations
zi to the reference frame (e.g., the first one) by computing a brute-
force 1/8th sub-pixel-accurate nearest-neighbor search (`1-norm on
15×15 patches). We represent it as a warp matrix Si. Note that we
also bake the resampling filter into this matrix. While our captures
did not contain any motion blur, one could easily incorporate and
calibrate the blur as described for interlaced HDR in Section 4.3.
Finally, we set Ai = MiDSi to get

G(x) =
k

∑
i=1
‖Mizi−MiDSix‖2

2

=‖[M1z1; . . . ;Mkzk]− [M1DS1; . . . ;MkDSk]x‖2
2 .

(20)

The masking matrix Mi can be used to mask out pixels for which no
good alignment is found; however, we did not find this necessary.

4.6 Beyond Linear RGB

We next demonstrate that we do not need to stop at linear RGB, or
even at non-linear YUV with subsampled chroma, we can extend
our processing pipeline all the way to the JPEG-compressed image.
JPEG compression works by taking an RGB image x, converting it
to YUV space with a linear color transform C, downsampling the
chroma components (DJ), performing a block-based DCT on the
individual channels (F ), and reweighting the individual frequencies
according to a quantization matrix Q [Wallace 1991]. Finally, the
integer JPEG coefficients are obtained through rounding:

[c] = round(QFDJC︸ ︷︷ ︸
J

x). (21)

We can see that all steps except for the final quantization can be
expressed as a linear operator. Likewise, JPEG decompression can
be expressed as a linear operator J−1 = C−1UJF−1Q−1, where the
upsampling operator UJ = D†

J is a pseudo-inverse of the chroma
subsampling.

With this observation it becomes possible to directly perform im-
age reconstruction in the JPEG transform space, by setting A =
MDBJ−1, where D denotes the Bayer decimation, as below:

min
c

∥∥∥Mz−MDBJ−1c
∥∥∥2

2
+Γ(J−1c), (22)

where Γ(J−1c) is simply F(KJ−1c). Hence, we can add this
compression-space optimization to any image-formation model and
priors, directly optimizing for the best JPEG DCT coefficients c. If
we do not want to optimize all the way to the JPEG coefficients,
but only to a YUV or other color space representation, we can set
A = MDBC−1UJ .

Note that we can use a similar approach for JPEG image decom-
pression in an image viewer. Depending on the quantization matrix
Q, JPEG-compressed images may exhibit severe artifacts, including
blocking, ringing, and loss of texture. We can use our usual image
priors to alleviate these artifacts by using A = J to get

G(x) = ‖c−Jx‖2
2 , (23)

where c are the JPEG coefficients, and x the reconstructed image.
Intuitively, using Eq. 23 as the data term in our minimization scheme
determines the image that best matches the image priors while still
compressing to the given JPEG coefficients c. In effect, we are
deblocking the displayed JPEG image [Foi et al. 2007].

4.7 Applying Our Framework to New Applications

We have described a large number of different applications. This
is possible due to the flexibility of our system; adapting it to a new
image formation model is very easy and only requires changing
the matrices A and M with a few lines of code (see supplemental
material).

5 Design Choices

We now discuss our decisions that led to the proposed framework.

5.1 Optimization Method

While many optimization methods can be used to solve Eq. 2, we
decided to pose our framework as a non-linear optimization prob-
lem (Eq. 3). In order to facilitate code reuse, we opted to express
our priors as proximal operators, which are used by a number of
optimization methods, such as ADMM [Parikh and Boyd 2013] and
the primal-dual method [Chambolle and Pock 2011]. This enabled
us to quickly test both methods with much of the same code. We
decided to use the primal-dual method as it turned out to converge
more quickly than ADMM. However, ADMM is easier to program
and requires less code.

Convergence Both ADMM and the primal-dual algorithm are
guaranteed to converge to the global optimum for convex F and G,
with the primal-dual algorithm having provably optimal convergence.
However, we make use of non-convex regularization terms in F , so
theoretical convergence guarantees are not available. That said, we
always combine both convex and non-convex terms in F (a deliberate
choice, see the following subsection), and therefore can control the
degree of non-convexity simply by adjusting the weights for the
individual terms. This weight selection depends on the ill-posedness
of the data term G for a given camera design and image formation
model A, but in our experiments we have not found a need to vary it
based on the image content. In practice, we get convergence for all
initial iterates we tried (even for x0 = 0, see Fig. 4).
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Figure 4: Effects of different initial iterate x0 on the convergence for
a simple demosaicking example. We compare starting with x0 = 0,
averaging of neighbors, and the output of a classical demosaicking
method. All cases converge to the same solution; with a good
starting point, 5 iterations suffice. More details in the supplemental.

5.2 Choice and Importance of Priors

The choice and combination of priors is crucial for high-quality
results [Mitra et al. 2014]. We now detail our reasoning for our
choice of priors. The priors can be divided into two main categories:
internal priors use intra-image information, while external priors
use external knowledge about natural images. While most priors fall
in one or the other category, a few have mixed characteristics, so
the boundary is somewhat vague. We have experimented with many
internal and external priors to yield a combination that achieves the



highest quality but remains efficient to compute. We next analyze
the internal and external priors separately.

5.2.1 Choice of External Priors

We considered three different external priors (in addition to the
complementary cross-channel prior; for its analysis we refer the
reader to Heide et al. [2013]): the simple TV prior [Rudin et al.
1992], a curvelet prior [Candès and Donoho 1999], and the EPLL
prior [Zoran and Weiss 2011]. We explore their use for reconstruct-
ing interlaced HDR (Sec. 4.3) images with a simulated lens blur
(Gaussian, varying σ ) using a synthetic dataset consisting of 12
different images. This dataset provides ground truth and helps to
determine which priors are adequate. We set the internal prior to
BM3D and reconstruct the 12 images by varying the weights be-
tween the internal (BM3D) and the three investigated external priors.
The reconstruction quality is listed in Table 3.

The complex EPLL prior can give a slight image quality increase (f)
in the case of a large blur (σ = 1.83), but its computational cost is
prohibitive (60 times higher than TV). Just using TV gives a similar
boost. For a smaller lens blur (σ = 0.14), EPLL also only yields
a minor increase in image quality, but larger gains are achieved by
the much cheaper TV prior. The curvelet prior does not provide any
benefit for σ = 1.83; on the contrary, the quality decreases slightly
with its use. For σ = 0.14, the curvelet prior can achieve gains, but
is quite sensitive to the chosen weighting. Furthermore, using the
curvelet prior is about 15% slower than using TV.

We note that the benefit of using TV in addition to BM3D lies in
making the problem more convex. To further illustrate this, we
show results for five different Gaussian blurs (bottom of Table 3).
Smaller blurs make the data term less convex, thus making the
problem successively more difficult to solve by only using BM3D.
Adding TV convexifies the problem, and image quality increases.
Convergence plots (see supplemental) demonstrate that adding TV
makes the solver more stable and makes it converge faster than just
using the non-linear, non-convex BM3D prior.

Figure 5 demonstrates the complementary benefits of using BM3D
and TV. The top row illustrates that by exploiting structural self-
similarity (BM3D) we can reconstruct significantly more detail than
just by using a TV prior. The bottom row illustrates that the BM3D
prior may fail for correlated noise or reconstruction artifacts, but
those problems can be fixed by the external TV prior.

We conclude that TV is the most cost-effective external prior giving
similar performance as much more computationally complex priors
and can help to increase convexity. In all our applications, a small
amount of TV has improved the resulting reconstruction quality. The
cross-gradient prior further complements the TV and BM3D priors.

5.2.2 Choice of Internal Priors

We showed in Sec. 3.3.2 that we can incorporate any Gaussian de-
noiser into our framework. We are particularly interested in internal
denoising priors that exploit self-similarity within the image [Buades
et al. 2005; Dabov et al. 2007a]. We experimented with the most-
commonly-used non-local operators: BM3D [Dabov et al. 2007a],
NLM [Buades et al. 2005], patchwise NLM [Buades et al. 2011],
Sliding DCT [Egiazarian et al. 1999], and simple averaging of simi-
lar patches, which we compared for demosaicking, interlaced HDR,
and burst image stack processing in Fig. 6.

All denoisers except Sliding DCT operate on a stack of similar
patches. For this experiment, we configured all of them to search for
the 16 most-similar 8×8 patches in a 15×15 pixel vicinity. BM3D
performs a 3D transform (DCT on xy and Haar on z) on this stack

(a) (b) (c) (d) (e) (f) (g)
φ ext.

0 0 1/32 1/16 1/4 1/2 1/2 1
φ BM3D

1 1 1 1 1 1 1/2 0

EPLL (σ = 1.83) 0.00 +0.01 0.00 0.00 -0.03 +0.07 -0.34
Curvelets (σ = 1.83) 0.00 -0.02 -0.01 -0.41 -1.03 -0.90 -1.78
TV (σ = 1.83) 0.00 +0.03 +0.04 +0.05 -0.02 -0.19 -0.61

EPLL (σ = 0.14) 0.00 0.00 +0.03 +0.04 +0.07 +0.05 -0.82
Curvelets (σ = 0.14) 0.00 -0.02 -0.02 -0.25 +0.12 -0.05 -0.40
TV (σ = 0.14) 0.00 +0.04 +0.13 +0.16 +0.02 -0.39 -0.95

TV (σ = 1.83) 0.00 +0.03 +0.04 +0.05 -0.02 -0.19 -0.61
TV (σ = 1.38) 0.00 +0.05 +0.10 +0.12 +0.03 -0.18 -0.79
TV (σ = 1.00) 0.00 +0.05 +0.12 +0.14 +0.05 -0.21 -1.12
TV (σ = 0.55) 0.00 +0.02 +0.05 +0.10 0.00 -0.40 -1.23
TV (σ = 0.14) 0.00 +0.04 +0.13 +0.16 +0.02 -0.39 -0.95

Table 3: Different weighting between internal and external prior
and the resulting change in SNR.
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Figure 5: Illustration of using both the TV and BM3D priors for
reconstructing images from the interlaced HDR sensor (Sec. 4.3).

and thresholds all coefficients followed by Wiener filtering; NLM
computes a weighted average of the patch centers based on patch
similarity; patchwise NLM computes the weighted average for all
8×8 pixels; simple averaging assigns a uniform weight to all patches.
Sliding DCT simply thresholds DCT-transformed patches for each
pixel and aggregates the results. We only use the denoising prior for
this comparison.

Figure 6 shows the resulting PSNR values for each denoiser. Over-
all, BM3D and patchwise NLM achieve very similar results, with
BM3D being slightly better in all applications. Hence, all results
in this paper were generated using BM3D. Simple averaging works
well for reconstructing interlaced HDR images and burst denoising,
but not for Bayer demosaicking. Pure NLM achieves reasonable
PSNR values in all applications, but is always worse than BM3D and
patchwise NLM. Sliding DCT achieves fairly good PSNR for de-
mosaicking and burst denoising, but not when applied to interlaced
HDR with a significant number of pixels being either too dark or
bright. Since significant information is missing in interlaced HDR,
a self-similarity prior is needed to recover it.

BM3D modifications One can expect improved results by mod-
ifying the BM3D parameters for a given application, and we ex-
perimented with this for demosaicking. Note that we only varied
the prior parameters (just like the data-term weights for different
applications), but not the prior itself. We found that two changes to
the standard BM3D parameters both improve the running time and
increase the result image quality. The first parameter is the size of
the patch to be matched. Instead of using the standard 8×8 patch,
we use much smaller 4×4 patches. Obviously, smaller patches are
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Figure 6: The impact of selected natural-image priors on the recon-
struction quality of various image models.

faster to compare, but more importantly, it is likely that we can find
more patches that are similar. This is particularly important in areas
with irregular textures, such as foliage or grass.

The second parameter relates to the color spaces that we operate in,
and the 2D transformations we use. In the first stage, when patches
are matched, the modified version uses the YUV color space, and
matches patches based on the luminance component only; we use
DCT as the 2D spatial transform to sparsify the signal, and 1D Haar
for thresholding. For the second stage, Wiener filtering, we use
the 3-point DCT to decorrelate colors and then use DST (Discrete
Sine Transform) as the 2D spatial transformation, and again Haar
for thresholding. Use of different color spaces and transformations
decorrelates the two processing steps, yielding improved results.
The numbers reported in Sec. 6.1 use these improved settings. The
average improvement is +1.73 dB in pure demosaicking and +0.6 dB
in joint demosaicking and denoising over the default BM3D. Please
note that, even with the default settings, our technique still beats the
competing methods.

5.3 Choice of Weights

We found that a single setting for the prior weights is sufficient for
each application—no image-dependent modifications are necessary.
Furthermore, we need to find the right overall weighting between the
data term and the priors (Eq. 14), as illustrated in Fig. 7. We experi-
mented with different weights, and again found that a single setting
per application works well for any given image. User preferences
such as sharp but grainy vs. smooth with less noise, do influence the
settings. All settings are detailed in the supplemental material.

6 Results

Now we present our results for various applications.

6.1 Demosaicking of Conventional Bayer Images

First, we demonstrate that our system outperforms state-of-the-art
demosaicking methods. Zhang et al. [2011] compared several al-
gorithms on the McMaster color image dataset. We follow their
procedure and additionally run our method, DCRaw, and Adobe
Photoshop on the same dataset. Figure 8 lists the results of the
comparison. The full table and set of images are provided in the
supplemental material; representative examples are shown in Fig. 10.
Our framework shows a gain of 2.23 dB over the best existing demo-
saicking methods. Note that this is a very significant improvement,
given that demosaicking is a mature problem with hundreds of pub-
lications over the past decade.

In Fig. 9, we compare joint demosaicking and denoising against
other state-of-the-art methods, following Jeon and Dubois [2013].
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Figure 7: Impact of the regularizer weights (relative to the data
term) on the solution. The weights are γi = γ φi: γ is shown in the
images, while φi are φ0 = 0.1 (TV), φ1 = 1.0 (BM3D), and φ2 = 0.1
(cross-channel). High γ-values impair the reconstruction process by
enforcing too much sparsity in the output. On the other hand, a too
small γ ignores the priors, leading to sharp but aliased results.

Our method outperforms all competing methods by at least 0.68 dB.
A detailed list of PSNR values can be found in the supplemental.
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Figure 8: Demosaicking results for the McMaster color image
dataset. We show average PSNR over all images and color channels.
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Figure 9: Joint demosaicking and denoising results for the Kodak
color image dataset. We show average PSNR over all images, color
channels, and sigmas.

6.2 Deblurring of Out-of-focus and Camera-shake Blur

Deconvolution methods differ mostly by the image priors used. We
adopt the comparison of Schuler et al. [2013] with five state-of-the-
art priors: EPLL (Gaussian mixture models) [Zoran and Weiss 2011],
heavy-tailed gradient distributions [Levin et al. 2007; Krishnan
and Fergus 2009], self-similarity [Danielyan et al. 2012; Dabov
et al. 2008], Field-of-Experts [Roth and Black 2009], and neural
networks [Schuler et al. 2013].

Table 4 shows a quantitative comparison for five different blur and
noise scenarios (a)–(e) averaged over a test-set of 11 images (see
Schuler et al. [2013], Table 1). We outperform MLP (and others
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Figure 10: We compare our demosaicking method with commonly used demosaicking tools (DCRaw and Adobe Camera Raw) and the best
competing published method (LDI-NAT) on two patches of the McMaster dataset (left) and on two real-world examples (right). Note how our
method produces results virtually indistinguishable from ground truth, whereas other methods contain visible artifacts (please zoom in to the
pdf). More examples can be found in the supplemental.

Deconvolution method Reconstruction PSNR [dB]
(a) (b) (c) (d) (e)

EPLL [2011] 24.04 26.64 21.36 21.04 29.25
[Levin et al. 2007] 24.09 26.51 21.72 21.91 28.33
[Krishnan and Fergus 2009] 24.17 26.60 21.73 22.07 28.17
DEB-BM3D [2008] 24.19 26.30 21.48 22.20 28.26
IDD-BM3D [2012] 24.68 27.13 21.99 22.69 29.41
FoE [2009] 24.07 26.56 21.61 22.04 28.83
MLP [Schuler et al. 2013] 24.76 27.23 22.20 22.75 29.42
Ours 24.83 27.31 22.24 22.89 29.78

Table 4: Reconstruction quality for five non-blind deconvolution
scenarios as in Schuler et al. [2013].

more clearly), with the highest margin in the motion blur case (e),
which probably is the most common application of deconvolution.
Our mixed BM3D + TV (+ cross-channel) prior outperforms both
BM3D-based and gradient-based methods. Both internal and exter-
nal priors are needed for peak performance in image reconstruction,
only one is usually not enough [Mosseri et al. 2013]. The images
in this dataset were grayscale, so the cross-channel prior could not
be used. For visual comparisons, including color images using the
cross-channel prior, see the supplemental material.

6.3 HDR Image Reconstruction

The interlaced HDR sensor poses a challenging reconstruction prob-
lem. For scenes with a wide dynamic range, we use an exposure
time ratio as high as 16:1, so that odd macro-rows are exposed for 16
times longer than the even macro-rows. Now the short exposure has
a better chance to catch highlights and the long exposure can capture
shadows; unfortunately, short exposure may be too noisy in shadows
and long exposure may saturate in bright areas. While the reduced
number of valid input observations increases the difficulty of the
reconstruction task, our approach addresses this case efficiently. The
self-similarity prior of BM3D or NLM is now crucial to meaning-
fully filling in the missing data. We demonstrate this in Fig. 11 (a),
where we compare our method to the standard image processing
pipeline of demosaicking (DCRaw) plus HDR de-interlacing of Gu
et al. [2010], which is based on upsampling. We also compare
against the Magic Lantern firmware, which provides an efficient
method by Hajisharif et al. [2014] for fusing interlaced HDR images
(some Canon EOS sensors can capture interlaced dual-ISO images)—
followed by demosaicking with DCRaw, since Magic Lantern only
outputs mosaicked data. Note how Magic Lantern produces some
artifacts, whereas our reconstruction is virtually artifact-free.

In Fig. 11 (b, c top) we show the sparse input observations, with
pixels marked black when indicated by the matrix M as too noisy or

saturated (simple thresholding on intensities). Even though a signif-
icant portion of the input data is missing, our unified optimization
successfully reconstructs geometric structures, including detailed
textures (grass) and thin edges. Also, in Fig. 11 (d) we demonstrate
its performance on scenes with local motion (a runner), where differ-
ent amounts of motion blur in short- and long-exposure rows create a
challenging interpolation problem. By default, our optimizer prefers
the longer blur of the longer exposure, avoiding noise from the short
exposure, and producing a visually consistent result.

6.4 Fusion of Color Array Camera Images

We next apply our unified optimization framework to color-channel
fusion from a 2×2 array. We perform the experiment on both a large
and a small baseline design. In Fig. 12 we show the large-baseline
(top) and the small-baseline results (bottom). The first column shows
an overlay of the different channels to illustrate the extent of chro-
matic aberration due to the parallax. The second column shows the
images warped by the computed cross-channel flow. Note that there
are still color artifacts in the occluded and poorly-estimated flow re-
gions. In the third column we show the result by a method adapted
from Joulin and Kang [2013], which was originally proposed to
reconstruct full color stereo images from anaglyph (red/cyan) im-
ages. This method works by iteratively computing SIFTFlow [Liu
et al. 2008] between the channels, detecting poorly matching regions
through flow consistency check, and then colorizing these regions.
But the method does not enforce the cross-channel edge consistency
illustrated in Fig. 12, and produces visible artifacts. In the fourth
column we show that our combination of priors manages to maintain
the consistency of R and B channels with the G channel in just a
single pass and avoids color fringing. While some small artifacts
remain, this problem is hard and we believe we have made a large
step towards a robust solution. Note that we do not require a per-
fect registration, but rely on our image priors to refine the effective
registration. This is an important advantage, because registration
errors are unavoidable—whether images are registered via optical
flow or via depth estimates [Venkataraman et al. 2013]—and may
lead to very visible color bleeding at occlusion edges (Fig. 12). Our
conclusion is that the proposed framework is suitable for processing
color camera images, even without first extracting per-pixel depths,
but only operating in the 2D image plane.

6.5 Burst Denoising and Demosaicking

We demonstrate joint denoising and demosaicking on a real-world
and a simulated dataset in Fig. 13. To account for multiplicative
and Poisson noise in this application, we perform the generalized
Anscombe transform to stabilize variance [Starck et al. 1998]. It is
applied to the observation z, transforming the observations to fulfill
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Figure 11: Image reconstruction for interlaced HDR sensor data. (a) Upsampling-based reconstruction [Gu et al. 2010] improves the dynamic
range, but fails to recover highly structured details. The Magic Lantern method provides higher quality, but still loses resolution and produces
artifacts. Our method generates an artifact-free result and provides the best overall reconstruction quality. (b, c) In addition to extending the
dynamic range (bottom row), we account for local scene motion and simultaneously denoise and reduce interlacing artifacts (see insets).
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Figure 12: Image reconstruction for color-array camera. (a) Raw input red, green, and blue images overlaid. (b) Naïve registration of color
channels via optical-flow produces color leaks. (c) Anaglyph-based reconstruction [Joulin and Kang 2013] partially reduces the color leakage.
(d) Our method reconstructs the image without such artifacts.

our additive Gaussian model assumption in the data term.

We compare our technique (column (f) ) to a number of standard pro-
cessing pipelines for burst denoising. Demosaicking the first frame
(a) [Zhang et al. 2011] is the simplest approach, but also produces the
worst results. Demosaicking followed by the state-of-the-art BM3D
denoising method (b) significantly improves the image quality but
is still inferior to our approach, which is not surprising, as the full
stack contains a lot more information than a single image. We then
compare against VBM3D [Dabov et al. 2007b] on the (aligned) stack
of 8/16 demosaicked images, which yields good but still slightly
inferior results (c). Just blending the aligned, demosaicked images
together using exponential weights (as used in NLM [Buades et al.
2005]) computed from a 15×15 patch around each pixel produces
surprisingly good, albeit still slightly noisy images (d). Applying
BM3D to the NLM-weighted, demosaicked stack achieves good
PSNR numbers (e), but is still inferior to our proposed framework
(column (f) ) which jointly optimizes for the best latent image given
the noisy stack of images.

6.6 JPEG and Beyond RGB

To evaluate our joint optimization with JPEG’s DCT encoding us-
ing Eq. 22, we have reconstructed 12 images from the interlaced
HDR camera application. We first compare our joint optimization
by directly reconstructing these images in YUV420 vs. first recon-
structing them as full RGB and then subsampling and converting
to YUV420. On these 12 images, our method achieves an average
PSNR of 28.83 dB, in contrast to the pipeline approach, which only
achieves 28.45 dB. Some examples are shown in the supplemental.

We also compare JPEG images reconstructed directly from the in-
terlaced HDR inputs by our framework (quality 50) to the standard
pipeline approach of first reconstructing in full RGB, followed by
regular JPEG encoding (using the quality factor that best matches
the file size of the first JPEG). PSNR values of the decoded JPEG
images are then computed w.r.t. the ground-truth image. On average,
we achieve an improvement of 0.1 dB over the sequential approach.
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(a) First Frame of Stack (b) BM3D (First Frame) (c) VBM3D (Stack) (d) NLM-weighted Stack (e) NLM Stack + BM3D (f) Ours (g) Ground Truth

Figure 13: Burst Image Comparison. The first row shows a real-world example taken in low light (8 images at ISO 12800 on a Canon EOS
650D; GT was taken at ISO 100). Each image in the simulated doll dataset (16 images, courtesy Flickr user susan402) has multiplicative white
Gaussian noise with σ = 0.1 and additive white Gaussian noise with σ = 0.1. Parameters for each method were optimized for highest PSNR.

The improvement is quite modest, as the JPEG coefficients do not
couple much with the rest of the pipeline. However, strong JPEG
compression inevitably creates blocking and quantization artifacts,
which this approach cannot address. To overcome such issues, we
can extend the image pipeline all the way to decompression and
solve Eq. 23 on the receiver side, in essence deblocking the JPEG
image [Foi et al. 2007].
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Figure 14: Extending the reconstruction pipeline to the receiver. We
compare the JPEG (quality = 30), Adobe Photoshop deblocking, SA-
DCT, and our reconstruction on the display side (PSNR in images).
(Images courtesy of Wikipedia user kallerna, and A. Torralba &
B. Russell / LabelMe dataset.)

We compare our method to Adobe Photoshop CC’s deblocking
algorithm and SA-DCT [Foi et al. 2007] in Fig. 14. Our method
removes most of the blocking artifacts and ringing, and yields a
significant PSNR improvement (∼1.0 dB). Photoshop removes some
artifacts, but does not reconstruct the original image as faithfully as
our method does. SA-DCT achieves a good visual quality, but our
reconstruction is about 0.3–0.6 dB better.

6.7 Performance

We have implemented FlexISP system in both Matlab (CPU) and
CUDA (on desktop and tablet GPUs). We give the run times for
several different applications and denoising priors in Table 5. Unsur-
prisingly, the CPU-implementation is slow, with a single iteration of
BM3D (using the implementation from authors’ web-page) taking
149.39 seconds for a 13 MPix image. Apart from a BM3D step, each

iteration of our solver runs a conjugate gradient step and enforces
the other priors. Full numerical convergence is usually reached in
about 30 iterations as shown in Fig. 4 (note that the vertical scale
is logarithmic) and in the supplemental. The overall computation
cost seems high, however, in practice running 4–5 iterations from
a good starting point gets close enough to the converged result and
produces images with sufficient quality.

Our GPU-version is optimized for speed and memory usage. The
self-similarity based denoising priors (BM3D, NLM, etc.) are accel-
erated with an approximate-nearest-neighbor (ANN) method [Tsai
et al. 2014]. Furthermore, we split large images into tiles and process
these tiles separately to save memory. We found that a small overlap
of only four pixels is usually sufficient to prevent visible bound-
aries at tile borders. Now all intermediate buffers, even combined,
consume less memory than the output image, enabling a memory-
friendly image reconstruction. As a result, we can process high-
resolution images in a matter of seconds on a recent desktop GPU
(NVIDIA GTX TITAN) and can even enable interactive previews
(1.5 sec) on a recent NVIDIA Tegra K1 tablet for 1 MPix images.
As expected, the use of ANN leads to a slightly reduced quality
compared to the Matlab implementation (of about -0.6 dB to -1.0 dB
depending on the application). We have also experimented with a
GPU-based accurate nearest neighbor search. While this increases
the GPU run-time, e.g., when using BM3D as a prior it increases by
a factor of 4, it achieves full accuracy and is still magnitudes faster
than the CPU implementation. All the PSNR values provided in this
paper were computed using the Matlab implementation.

7 Discussion and Limitations

Priors Good priors help to solve inverse problems that are ill-
posed due to missing, noisy, or blurry data. Instead of choosing
just one, we have concentrated on three: TV, the denoising / self-
similarity prior, and the cross-channel prior. They are very use-
ful, but they may also introduce artifacts: TV can create unnatural
“watercolor-like” edges; self-similarity helps to reconstruct miss-
ing data, but it only works well if the image actually exhibits self-
similarity—in regions with unique patterns, such as vegetation, it
may over-smooth; and while the cross-channel gradient prior helps
to avoid color fringes, it sometimes mistakes colored pixels for ar-



Demosaic HDR Color Array Burst
Resolution (MPix) 5 13 0.6×3 0.4×16
Iterations 4 5 5 5
CPU BM3D 312.36 s 1471.55 s 74.21 s 303.21 s
CPU NLM 196.45 s 1094.84 s 52.41 s 291.35 s
CPU Patchwise NLM 198.72 s 1102.23 s 52.83 s 291.80 s
CPU Sliding DCT 89.63 s 747.67 s 32.31 s 280.89 s
CPU Averaging 194.17 s 1087.45 s 51.98 s 291.35 s
GTX Titan BM3D 2.13 s 7.45 s 0.94 s 0.82 s
GTX Titan NLM 0.73 s 2.78 s 0.19 s 0.30 s
GTX Titan Patchwise NLM 0.77 s 2.94 s 0.20 s 0.32 s
GTX Titan Sliding DCT 0.29 s 1.20 s 0.13 s 0.27 s
GTX Titan Averaging 0.45 s 1.89 s 0.14 s 0.30 s
Tegra K1 BM3D 40.5 s 147.4 s 18.1 s 16.7 s
Tegra K1 NLM 26.5 s 56.1 s 3.8 s 7.3 s
Tegra K1 Patchwise NLM 28.0 s 59.2 s 4.0 s 7.7 s
Tegra K1 Sliding DCT 7.0 s 30.9 s 2.8 s 7.0 s
Tegra K1 Averaging 6.7 s 33.2 s 2.2 s 6.6 s

Table 5: Running times for: desktop CPU (Core i7 2.4 Ghz), desktop
GPU (NVIDIA GTX TITAN), and mobile GPU (NVIDIA Tegra K1).

tifacts and removes the color altogether. However, combining the
priors appears to overcome their individual disadvantages.

While our priors are expressive, there are situations where they do
not provide enough information. For instance, in the interlaced HDR
application, if two consecutive rows are missing a nearly horizontal
thin line, it may be difficult for the priors to connect the segments.
Future priors that take content-aware information into account could
help in such situation.

In our approach we do not exploit the bound information given by
the data, such as the observation that a saturated (input) pixel should
have a very high value after reconstruction. Using these bounds
could improve the results. However, since we observe that our
optimizer tends to retain these areas bright, and explicitly accounting
for this would require constrained optimization, we did not choose
to include it in our method.

Failure cases If an image violates our priors, e.g., the input offers
no self-similarity (random noise for example), the result can appear
over-smoothed. Misconfiguring the solver parameters can lead to
overly sharp (the last row in the supplemental, Fig. 4) or overly
smooth results (Fig. 7). Large errors in the warp estimation in
burst imaging and color-array camera lead to inaccurate data-term
operators, and artifacts may still appear (e.g., around boundaries).
This can be seen, for instance, in Fig. 12 (d) in the supplemental.
However, we note that many of the small errors in warp estimation
are easily corrected by our choice of the cross-channel and self-
similarity priors.

Processing times While our system is very fast considering what
it can do, on a mobile device it cannot match the processing times
of an embedded ISP with a specialized ASIC. In a practical camera,
a traditional ISP could preprocess the image for immediate viewing,
and a higher-quality image could be processed in background, or
by a cloud service. Using the ISP-processed image as initialization
would also give a better starting point, requiring fewer iterations for
the optimizer to converge.

8 Conclusion

We have presented FlexISP, a framework and a system that replaces
the traditional image processing pipeline for reconstructing pho-
tographs from raw sensor data by a single, integrated, and flexible
system that is based on global optimization. The image formation
model and any image priors and regularization terms are expressed
as a single objective function, which is solved using a proximal
operator framework.

Proximal operators decouple the individual terms in the objective
function in a principled way, making it possible to separately im-
plement the operators for the data term and each regularizer. This
approach enables mixing and matching different, highly optimized
implementations of data terms and regularizers. Our framework
therefore achieves both the improved image quality of a fully inte-
grated optimization and the separation of concerns that gave rise to
the traditional pipeline approach.

We detail and analyze our design choices, and conclude that a single
specific set of priors can be used for a variety of applications, and still
outperforms other state-of-the-art methods. While we demonstrate
significant improvements in quality and simplicity for traditional
camera designs, we believe that our approach will achieve its full
potential with future computational cameras that have significantly
more complex image formation models.
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