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Figure 1: Left: Our capture setup for transient images (from left: computer, signal generator, power supply, modulated light source, PMD
camera). Middle: A disco ball with many mirrored facets. Right: The same sphere as seen by our transient imager when illuminated from the
left, colored according to the time offset of the main intensity peak.

Abstract

Transient imaging is an exciting a new imaging modality that can
be used to understand light propagation in complex environments,
and to capture and analyze scene properties such as the shape of
hidden objects or the reflectance properties of surfaces.

Unfortunately, research in transient imaging has so far been hin-
dered by the high cost of the required instrumentation, as well as
the fragility and difficulty to operate and calibrate devices such as
femtosecond lasers and streak cameras.

In this paper, we explore the use of photonic mixer devices (PMD),
commonly used in inexpensive time-of-flight cameras, as alterna-
tive instrumentation for transient imaging. We obtain a sequence of
differently modulated images with a PMD sensor, impose a model
for local light/object interaction, and use an optimization procedure
to infer transient images given the measurements and model. The
resulting method produces transient images at a cost several orders
of magnitude below existing methods, while simultaneously sim-
plifying and speeding up the capture process.
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1 Introduction and Related Work

Transient imaging refers to a recent imaging modality in which
short pulses of light are observed “in flight” as they traverse a
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scene and before the light distribution achieves a global equilib-
rium. Specifically, a transient image is a rapid sequence of images
representing the impulse response of a scene. The original idea be-
hind transient imaging goes back to work performed in the late 70s
by Abramson [1978; 1983] under the name “light-in-flight record-
ing”. Abramson created holographic recordings of scenes illumi-
nated by picosecond lasers, from which it was possible to optically
reconstruct an image of the wavefront at a specific time. While the
scene complexity was limited by technical constraints of the holo-
graphic setup, other researchers already used this approach for tasks
such as shape measurements (e.g. [Nilsson and Carlsson 1998]).

Recently, interest in transient imaging has been rekindled by the
development of ultra-fast camera technologies [Velten et al. 2011],
which allow for simplified setups compared to the holographic ap-
proach, and significantly more general scene geometries. This new
imaging technology has many exciting applications. Starting with
the introduction of an image formation model [Smith et al. 2008]
and the pilot experiments by Kirmani et al. [2009], there have been
several proposals to use transient images as a means of reconstruct-
ing 3D geometry that is not directly visible to either the camera
or the light sources [Pandharkar et al. 2011; Velten et al. 2012], to
capture surface reflectance [Naik et al. 2011], or simply to visual-
ize light transport in complex environments to gain a better under-
standing of optical phenomena [Velten et al. 2013]. Wu et al. [2012]
recently proposed to use transient images together with models of
light/object interaction to factor the illumination into direct and in-
direct components.

Unfortunately, transient imaging currently relies on expensive cus-
tom hardware, namely a femtosecond laser as a light source, and
a streak camera [Velten et al. 2011] for the image capture. To-
gether, these components amount to hundreds of thousands of dol-
lars worth of equipment that is bulky, extremely sensitive, difficult
to operate, potentially dangerous to the eye, and slow. For exam-
ple, a streak camera measures only a single scanline of a transient
image in each measurement. To obtain a full transient image it
is therefore necessary to mechanically scan the scene. Due to the
very limited amount of light in a femtosecond pulse, averaging of
multiple measurements and complicated calibration and noise sup-
pression algorithms are required to obtain good image quality. All
in all, capture times of an hour or more have been reported for a
single transient image.

In our work, we seek to replace this complex setup with a modi-
fied, but simple, photonic mixer device (PMD). PMD sensors are
commonly used in time-of-flight cameras, and can be obtained for
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a few hundred dollars. This camera is used in conjunction with in-
expensive laser diodes as an illuminant. The acquisition process
involves taking several dozen images with different temporal mod-
ulation functions, a task that only takes about a minute. We demon-
strate how models for local light interaction similar to the ones used
by Wu et al. [2012] can be used to extract transient images from
such a setup, thus enabling research on the applications of transient
imaging on a much smaller budget.

Our specific technical contributions are as follows:

• We derive a theoretical model for the relationship between tran-
sient imaging and traditional time-of-flight imaging using pho-
tonic mixer devices (PMD, see Section 2).

• We formulate the estimation of transient images from PMD
measurements as an inverse problem that is ill-conditioned but
can be solved by introducing regularization terms as well as a
model of local surface/light interactions, and by splitting the
resulting hard problem into a sequence of simpler optimization
problems (Section 3).

• We demonstrate a prototype system with a modified PMD cam-
era that allows for flexible measurements of time-of-flight im-
ages using a range of different modulation frequencies and
phases (Section 4). The system is inexpensive, portable, eye-
safe, insensitive to background light, and acquires data at a
much higher rate than streak cameras, enabling transient imag-
ing even outside lab environments.

While our approach does currently not achieve quite the same tem-
poral resolution as a streak camera setup, we believe that our contri-
butions will significantly lower the barrier for conducting research
in transient imaging in slightly larger environments, and will thus
improve the practical applicability of many transient imaging meth-
ods that have already been explored.

2 PMD Image Formation Model

Photonic Mixer Devices (PMD) are time-of-flight image sensors
where each pixel can direct the charge from incoming photons to
two or more storage sites within the pixel [Schwarte et al. 1997;
Schwarte 1997; Lange et al. 2000; Lange and Seitz 2001]. This op-
erating principle is similar to recently proposed multi-bucket sen-
sors [Wan et al. 2012], although PMDs can switch between the sites
at much higher rates of dozens of MHz. This effectively allows
PMDs to modulate the incident illumination with another signal
during light integration, which, in combination with a modulated
light source, can be used for time-of-flight depth imaging.

Recent improvements and extensions to PMD design and opera-
tion include heterodyne modulation of light and PMD sensor to
improve resolution [Conroy et al. 2009; Dorrington et al. 2007],
multi-path and scattering suppression for depth estimation [Dor-
rington et al. 2011], as well as tomography based on time of flight
information [Hassan et al. 2010].

In our work we apply some of the same hardware strategies de-
veloped in these papers — increasing the number of modulation
frequencies and phases — to acquire a large set of correlated modu-
lation measurements. Using these measurements we derive a novel
optimization strategy that allows us to infer the full transient im-
age under global illumination and complex lighting by solving an
optimization problem.

In the following we present a slightly simplified model for the imag-
ing process of photonic mixer devices, and show how measure-
ments obtained with PMD sensors relate to time-of-flight imaging
and transient images. For detailed information operating princi-

ples of the hardware we refer the interested reader to the work by
Schwarte et al. [1997; 1997].

PMD Sensor. Photonic mixer devices (PMDs, [Schwarte 1997;
Schwarte et al. 1997]) are image sensors that can modulate the ex-
posure incident at a single pixel with a periodic function fω dur-
ing light integration, where fω is a zero-mean function with period
T = 2π/ω:

fω(t+ k · T ) = fω(t);

∫ T

0

fω(t) dt = 0. (1)

Specifically, a PMD sensor measures the modulated exposure

Hω,φ =

∫ NT

0

E(t)fω(t+ φ) dt, (2)

where φ is a programmable phase offset. fω is often a sinusoid, but
may be any zero-mean periodic function, such as a rectangle wave.

Illumination. For time-of-flight (TOF) applications, PMDs are
used in conjunction with illumination that is also modulated in
intensity. Although some researchers have suggested working in
a heterodyne setup [Dorrington et al. 2007; Conroy et al. 2009],
where the light modulation frequency differs from the modulation
frequency of the PMD, most current PMD applications assume a
homodyne setup, where both frequencies are the same. In the ho-
modyne setting, the modulation is provided by some function gω
which may be different from fω , but has the same frequency and a
fixed relative phase.

Furthermore, standard TOF applications assume that the modulated
irradiance arriving at a sensor pixel is due only to direct illumina-
tion of a single object point by a single point light source, effec-
tively meaning that only a single light path contributes to the sensor
reading (see left of Figure 2). Under this assumption we obtain,
again for a single pixel,

Eω(t) = E0 + αEmgω(t+ τ), (3)

whereE0 is the DC component of the light source plus any ambient
illumination, Em is the modulation amplitude for the light source,
α is an attenuation term due to surface reflectance and distance-
based intensity falloff, and τ is the total travel time from the light
source to the object point and then to the PMD pixel.

PMD Time-of-Flight Imaging. With the light and sensor modu-
lations described above, the modulated exposure measured by the
PMD sensor becomes

Hω,φ =

∫ NT

0

(E0 + αEmgω(t+ τ)) fω(t+ φ) dt

=E0 ·N
∫ T

0

fω(t+ φ) dt︸ ︷︷ ︸
=0

+ αEm ·N
∫ T

0

gω(t+ τ)fω(t+ φ) dt︸ ︷︷ ︸
=cω,φ(τ)

.

The correlation coefficients cω,φ(τ) can either be determined ana-
lytically for specific fω, gω such as sinusoids, or they can be cali-
brated using objects at different known distances d using the rela-
tionship τ = ω/c · d, where c is the speed of light.



Figure 2: Left: Operating principle of a conventional PMD time-of-flight sensor. Light from a modulated light source arrives at a pixel
sensor via a single light path with time delay τ . The PMD sensor modulates the incident light with a reference signal fω and integrates
the resulting modulated exposure to obtain a distance-dependent correlation between the two modulation functions. Right: in the presence
of global illumination, the incident illumination is a superposition of light with different phase shifts. Multiple measurements at different
frequencies and phases are taken to analyze such complex light interactions (see text for details).

In normal TOF applications, two measurements Hω,0◦ and Hω,90◦

are obtained for per pixel. Using the known cω,φ(τ), it is then
possible to solve for the pixel intensity αEm and the distance d of
the object visible at that pixel.

Multiple Modulation Frequencies and Phases. In our setting,
we generalize this acquisition process to obtain measurements
Hωi,φi for many different modulation frequencies and phases
(ωi, φi). This yields a collection of different, travel-time dependent
correlation coefficients cωi,φi(τ). While Dorrington et al. [2011]
have recently also proposed to use more than one modulation fre-
quency to improve depth estimates in the presence of indirect il-
lumination, for our transient imaging system, we significantly in-
crease the number to hundreds of different frequencies.

Global Illumination. Using a multitude of measurements over a
wide frequency range, we can relax the requirement that light only
arrives at the sensor via single light path, and move to a full global
illumination model instead (see Figure 2, right). For the modulated
exposure, this yields

Hωi,φi = Em

∫ ∞
0

α(τ) ·N
∫ T

0

gωi(t+ τ)fωi(t+ φi) dt︸ ︷︷ ︸
=cωi,φi

(τ)

dτ,

(4)
where α(τ) physically represents the integral of all contributions
from different light paths p that correspond to the same travel
time τ :

α(τ) =

∫
P
δ(|p| = τ)αp dp. (5)

Here, αp is the light attenuation along a given ray path p connecting
the light source and the sensor pixel, P is the space of all such ray
paths, and |p| is the travel time along path p.

Relationship to Transient Imaging. The sequence of α(τ) for
different values of τ is a transient pixel, which is the impulse re-
sponse of a sensor element, i.e. the intensity profile of a pixel as a
function of time when the scene is illuminated by a very short pulse
of light. A regular grid of such transient pixels αx,y(τ) is known as
a transient image

I(x, y, τ) = αx,y(τ).

A model for the formation of transient images was proposed
by [Smith et al. 2008]. In recent experimental work, the authors

used a femtosecond laser in conjunction with fast detectors (pho-
todiodes, streak camera) to measure a version of I(x, y, τ) that is
discretized in both space and time [Kirmani et al. 2009; Velten et al.
2013].

3 Transient Imaging with PMD Sensors

This section describes how we reconstruct a transient image from
the sensor measurements H . We first formulate the corresponding
optimization problem as a linear inverse problem and then present
a method to solve this optimization problem.

3.1 An Optimization Problem for Transient Image Re-
construction

We wish to reconstruct a transient image I (discretized in space and
time) based on a sequenceHωi,φi of modulated exposures that have
been measured for each pixel in the image according to the model
from Equation 4. The corresponding vectorized image (with the
components stacked) is i, and h denotes the vector of all modulated
exposures observed at all pixels in the image. The correlation coef-
ficients cωi,φi can be arranged in a matrix C that maps a transient
image to the vector of observations h. Ignoring any measurement
noise, this yields the following linear inverse problem for the recov-
ery of i, which is a discrete version of Equation 4:

Ci = h (6)

This problem, however, is poorly conditioned, since the correla-
tion coefficients vary slowly with distance for the range of feasible
modulation frequencies and scene scales (Section 4). This makes it
impossible to directly solve for i.

To solve this challenging inverse problem, we introduce both spa-
tial and temporal regularization terms, impose a non-linear model
m(u) ≈ i for the local interaction of light with objects, and opti-
mize for both the transient image i and the model parameters u in
a least-squares sense:

(uopt, iopt) = argmin
u,i

1

2
‖Ci− h‖22 +

λ
∑
x

‖∇τ ix‖H + θ
∑
τ

‖∇xiτ‖H +

1

2
‖Cm(u)− h‖22 +

ρ

2
‖i−m(u)‖22 ,

(7)



where the first line is a data term corresponding to the original lin-
ear inverse problem from Equation 6. The two terms in the second
line respectively represent gradient regularizations along the tem-
poral direction for each individual pixel, and along the spatial di-
mensions for each individual time slice. We expect the gradients
for both the spatial and temporal slices to be sparse, but with oc-
casional outliers (discontinuities). This motivates the use of robust
norms in both regularizations terms. In our work we chose the Hu-
ber penalty function1 ‖.‖H since it suppresses outliers, but gives a
smooth reconstruction for small gradient magnitudes.

Finally, the last line from Equation 7 contains two terms that fit the
data with a model m(·), and tie the estimated model parameters u
back to the reconstructed intrinsic image i.

Thus, in Equation 7, we use three additional priors to regularize
our strongly ill-conditioned problem from Equation 6. That is a) by
using a model m(·), b) a temporal smoothness regularizer and c) a
spatial smoothness regularization.

Our model is inspired by recent work by Wu et al. [2012] and ap-
plies to each pixel independently. Specifically, we model the light
interaction at each local surface point as a combination of surface
reflection and subsurface scattering. For surface reflection, the tem-
poral impulse response to a short pulse of light is a Dirac peak,
which we represent as a Gaussian Gσ , where σ is related to the
temporal resolution of the acquisition system. For subsurface scat-
tering, the temporal impulse response can be modeled as an expo-
nential decay E [Wu et al. 2012]. In a complex scene with global
illumination, the model mx(·) for the time profile at pixel x can
therefore be expressed as a superposition of a number of Gaussians
and exponentials

mx(u) =

Kx∑
i

gx,iGσ(τ − px,i) + ax,iE(dx,i, τ − px,i), (8)

where the model parameters u are the set of all (temporal) positions
px,i for the Gaussians and exponentials, combined with their am-
plitudes gx,i and ax,i, and finally the exponential decay parameters
dx,i which depend on the density of the scattering medium.

u =
⋃
x,i

{gx,i,px,i,ax,i,dx,i} .

3.2 A Splitting Algorithm for Reconstruction

With the model defined, we can now in principle minimize Equa-
tion 7 by alternating between two steps, one where we solve for i,
given fixed values of u from the previous iteration and vice-versa.
This can be interpreted as splitting the non-linear and non-convex
part of the joint optimization problem from the simple linear part,
which results in two simpler subproblems are connected to each
other with coupling terms (a common technique in optimization,
e.g. [Beck and Teboulle 2009; Chambolle and Pock 2011]).

In the very first i-step, all terms containing the model m(·) are ig-
nored. However, the u-subproblem is still non-convex, and so we
add additional constraints to restrict the space of possible solutions
for this subproblem to a region where we expect at least locally a

1The Huber penalty function [Huber 1973] is an `1/`2 hybrid error mea-
sure and defined as

‖x‖H =
∑
i

hε(xi) with hε(x) =

{
|x| − ε/2 ; |x| > ε
x2/(2ε) ; else

convex function:

(uopt, iopt) = argmin
u,i

1

2
‖Ci− h‖22 +

λ
∑
x

‖∇τ ix‖H + θ
∑
τ

‖∇xiτ‖H +

1

2
‖Cm(u)− h‖22 +

ρ

2
‖i−m(u)‖22 +

β

2

∑
x

‖maxima(ix)− px‖22

s.t. ∀x, i : Kx = #maxima(ix) ∧
gx,i,ax,i,dx,i ∈ [0, 1]

(9)

Here maxima(ix) are the positions of all local time maxima for a
pixel x, and #maxima(ix) is number of such local maxima. The
two additional constraints therefore express that we prefer locations
of Gaussians and exponentials close to the onset positions, that we
restrict the number Kx to be the number of onsets, and constrain
the numerical range of Gaussian and exponential amplitudes and
decays.

We now discuss in detail how to solve the two subproblems. We
initialize our method with i = 0,u = 0.

3.2.1 Solving the i-subproblem

By fixing u in Equation 9 and neglecting the terms constraining the
location of maxima, we obtain the following optimization problem
for i:

iopt = argmin
i

1

2
‖Ci− h‖22 +

λ
∑
x

‖∇τ ix‖H + θ
∑
τ

‖∇xiτ‖H +

ρ

2
‖i−m(u)‖22

(10)

In this subproblem, neglecting the maxima terms is justified by
the fact that these terms will be dominated by ρ

2
‖i−m(u)‖22 for

large ρ (recall that we only introduced the extra terms to account
for the non-convexity of the u-subproblem).

Equation 10 is a regularized linear-inverse problem. We solve
it with the first-order primal-dual framework by Chambolle and
Pock [2011], which considers general problems of the form

iopt = argmin
i

F(Ki) + G(i), (11)

where the operators F,K,G are the same as in [Chambolle and
Pock 2011]. For example, in an inverse problem with a TV reg-
ularizer, the first term in Equation 11 is the regularizer (that is
K(i) = ∇i, F(j) = ‖j‖1 for TV), while the second term is the
data fitting term. Equation 10 can be expressed in this framework
by defining

K(i) = Si

F(j) = ‖j‖H

G(i) =
1

2
‖Ci− h‖22 +

ρ

2
‖i−m(u)‖22 ,

(12)

where here the matrix S applies the temporal derivative operator
to all pixel time sequences and the spatial gradient operators to all
time slices (according to Eq. 10).

To solve this problem with Chambolle and Pock’s algorithm, we
need to derive the proximal operators for F∗ and G. These are
provided in Appendix A.
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Figure 3: A single synthetic pixel signal (over time) reconstructed with Eq. 7. Left: Solution obtained by solving for i only. Notice that the
solution is smooth in temporal and spatial domain and contains the right number of modes. Center: solution after one full iteration plus one
extra i-step to reconstruct the transient image from the mixed Gaussian and exponential model parameters u. Notice the drastically improved
reconstruction fidelity. Right: an additional iteration does not improve the result significantly.

3.2.2 Solving the u-subproblem

In the second subproblem, we fix i in Equation 9 and solve u, lead-
ing to the following problem:

uopt = argmin
u

1

2
‖Cm(u)− h‖22 +

ρ

2
‖i−m(u)‖22 +

β

2

∑
x

‖maxima(ix)− px‖22

s.t. ∀x, i : Kx = #maxima(ix) ∧
gx,i,ax,i,dx,i ∈ [0, 1]

(13)

This is a regularized data-fitting problem that is globally still non-
convex, so there are no guarantees of obtaining a global optimum.
However, by constraining the parameters, and especially the on-
set p, we limit the search to regions where we expect locally convex
behavior.

We first determine Kx = #maxima(ix) by explicitly detecting
the number of peaks in time for each pixel signal ix. No noise
suppression or further smoothing is needed since we require only
a good lower bound for Kx. Accurate fitting is then handled by
solving Equation 13.

The resulting problem (with Kx now fixed) can be solved indepen-
dently for each pixel. To account for the non-convexity we per-
form a two-step optimization per pixel signal: first, several steps
of a global search in the constrained parameter space are done us-
ing the derivative-free Mesh Adaptive Direct Search method for
non-linear constrained optimization (MADS) [Audet and Dennis Jr
2006]. This direct search method models the parameter space us-
ing a mesh. By adaptively probing the mesh and also adaptively
changing the mesh refinement this method makes good progress in
regions around local minimizers. We use the implementation in the
MATLAB generalized pattern search function ”patternsearch” in
the Global Optimization Toolbox, random polling and a maximum
number of 1000 iterations.

We expect the parameters found by this derivative-free global op-
timization to lie at least in a locally convex region. To effectively
find the according minimum in this region we now use the gradient
and do local constrained gradient-descent iterations using the spec-
tral projected gradient method from the minConf package [Schmidt
2013]. The projection operator that encodes our constraints is
straightforward to derive since in our case we only have simple box
constraints.

We use here analytic gradient information of the unconstrained ver-
sion of Eq. 13, i.e.,

uopt = argmin
u

1

2
‖Cm(u)− h‖22 +

ρ

2
‖i−m(u)‖22 +

β

2

∑
x

‖maxima(ix)− px‖22︸ ︷︷ ︸
Φ(u)

(14)

For this subproblem, all the components ux for a pixel x are inde-
pendent of the components for other pixels. So, for a single com-
ponent j of u, we obtain the following gradient component:

∇jΦ(u) = 2

[
∂mx(u)

∂uj

]T
CT (Cmx(u)− h) (15)

Thus, with Eq. 15, we have reduced the gradient computation for
Φ(u) to the evaluation of the partial derivatives of a pixel time se-
quence mτ (u) with respect to its parameters (that is the Gaussian
amplitude, exponential amplitude, exponential decay and the posi-
tion of the Gaussian and exponential). These partial derivatives are
straightforward to derive from Equation 8.

3.3 Discussion

With optimization split into two stages as described above, the i-
subproblem is fast and convex, and provides a data term plus spatial
and temporal regularization, with the tendency to overly smoothen
the results. The u-subproblem, on the other hand, is a very ex-
pensive, non-convex fitting of the model parameters, that produces
higher temporal resolution, but may in turn introduce some visually
objectionable spatial artifacts. After the final u-step, we always
perform another i-step to obtain a final transient image from the
model parameters.

Figure 3 compares the time sequences obtained for a single pixel
with ground truth data for a synthetic example (more details on
the dataset can be found in Section 5). The left image shows the
over-smooth reconstruction after solving just the i subproblem. The
center and right image show reconstructions after one and two full
iterations, respectively (each followed by a final i-step). We can
see that the method is converged after only a single iteration. This
is consistent with behavior we observe for the time sequences of
other pixels and datasets.

Figure 4 shows results for a simple scene where a wavefront travels
along a diffuse wall, captured using our PMD camera setup (Sec-



Figure 4: Reconstructions for a simple real dataset of a wavefront
traveling along a wall. Top row: image reconstruction after only
solving the i subproblem. Bottom: the same images after one itera-
tion of the full optimization problem.
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Figure 5: Pixel time sequences for two selected pixels of Figure 4
after a full iteration and after only solving the i subproblem.

tion 4). Using the model, pixel time profiles (Figure 5) show a sim-
ilar sharpening effect as in the synthetic data set. However, as the
full-frame reconstructions show, this extra sharpness comes at the
cost of some spatial quantization artifacts. We refer to the accompa-
nying video to observe the full dataset. Because of the tradeoff be-
tween temporal sharpness and spatial artifacts, it may in some cases
be preferable to only run the i subproblem, depending on whether
the goal is to obtain the most detailed measurements possible, or
simply to produce visually pleasing results.

4 Prototype Hardware Setup

Figure 6: The main components of our capture setup. Left: Mod-
ified PMD imager. Right: Light source with six uncollimated laser
diodes.

We now describe the physical setup we developed to acquire tran-
sient images of real scenes.

The camera is based on the PMDTechnologies CamBoard nano, an
evaluation platform for the PMD PhotonICs 19k-S3 image sensor.
We removed the on-board light source and the default 830 nm long-
pass filter. Since our technique is based on the use of a wide range
of modulation frequencies, we intercepted the on-board modulation

signal and replaced it with our own input from an external source,
and added a trigger output that signals the start of the integration
phase. We confirmed that the sensor can be operated at modulation
frequencies up to 180 MHz, but managed to obtain stable results
only up to 110 MHz.

Our light source is a bank of six 650 nm laser diodes with a total
average output power of 2.4 W. Since the beams are not collimated,
eye safety is not a concern at reasonable distances from the device.
Two groups of three diodes are driven through a iC-Haus 6-channel
constant current driver each (type iC-HG), with each diode occupy-
ing two driver outputs for DC bias and the high-frequency modula-
tion. Using a fast photodiode (Thorlabs FDS010) and a 500 MHz,
2 GS/s oscilloscope, we confirm that this setup can modulate the
output intensity by a full 100% up to a frequency of 180 MHz.

As our modulation source signal, we use the DDS9m/02 signal gen-
erator from Novatech Instruments, which is based on the Analog
Devices AD9958 direct digital synthesizer chip. We use the digital
output of the signal generator to modulate both the light source and
the camera with a square wave.

A microcontroller circuit sets modulation frequencies and phases
on the synthesizer board. Reacting to the trigger signal from the
camera, it switches the modulation signals for light source and cam-
era in accordance with the currently set integration time (we take
an exposure series from 120 to 1920 µs in steps of one f-stop). The
sensor data is read out through the API provided with the camera
board.

The hardware components add up to a total cost of approximately
$1500, which is well within reach for most research labs. We note
that the lab signal generator alone accounts for more than half of
the total budget. The Analog Devices chip that this signal generator
is based on is available for only $35, so that substantial savings are
possible for future revisions of our setup.

Measurement Routine. In order to complete a full measurement
over a frequency range from 10 to 120 MHz in steps of 0.5 MHz,
our capture system takes about 90 seconds. Note that we operate
the setup at a duty cycle of less than 1%, in order to avoid overheat-
ing of the critical components (signal buffer and laser driver ICs,
laser diodes, PMD sensor) that are not equipped with heatsinks or
active cooling. We therefore estimate that with proper thermal man-
agement, another significant speedup will be achieved, reducing the
overall acquisition time to only a few seconds.

There are several ways our methods deals with the dynamic range
issues. The working principle of PMD sensors is itself is very effec-
tive in suppressing ambient illumination, the sensor provides high-
bit depth readouts (14 bits) and, finally, we do take an exposure se-
quence as described just above. That said, if very bright light paths
and very dim light paths mix in the same pixel, the reconstruction
quality of the dim paths will suffer.

Calibration. In order to obtain the correlation matrix C, we per-
form a calibration step. We place camera and light source as close
to each other as possible, and facing a diffuse white wall, with no
other objects nearby that could scatter light into the line of sight.
For each frequency, we sample the distance-dependent correlation
coefficients by varying the relative phase between the sensor and
the light source modulation signals. This allows us to emulate dif-
ferent optical delays without mechanically moving parts.

The calibration measurements for frequencies from 10 to 120 MHz
in 1 MHz steps and distances from 0 to 20 m in 0.1 m steps take
about 6 hours to complete, with a further 30 minutes to extract the
matrix from the raw sensor readings. We average the calibration



matrices over a 40×40 pixel region in order to reduce acquisition
noise.

We note, however, that the calibrated matrix C obtained in this fash-
ion is also valid for different geometric configurations of sensor and
camera, with only a change in the physical interpretation of the re-
sulting reconstructed transient images. This means that the calibra-
tion step is essentially a one-time operation. Figure 7 shows a color
visualization of the recovered correlation coefficients, with the ver-
tical axis corresponding to different frequencies, and the horizontal
axis corresponding to different path lengths, or travel times.
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Figure 7: A visualization of the correlation coefficients for different
path lengths (horizontal axis) and modulation frequencies (vertical
axis).

5 Results

We evaluated our approach using both synthetic data for ground
truth comparisons, and measurements using our custom setup.

5.1 Synthetic Examples

For our synthetic experiments, we used a transient image that Velten
et al. obtained using a femtosecond laser and streak camera [Velten
et al. 2013]. Since this dataset was captured for a smaller scene than
the size of scenes we target with our setup, we simulated a larger
scene by scaling the time dimension by a factor of 20. We then
used the PMD sensor model from Equation 4 to simulate measure-
ments of Hωi,φi for different frequencies and phases, also adding
Gaussian noise with a sigma of 1%.

Figure 9 shows reconstructed frames (bottom row) in comparison
with the ground truth (top). The key features are reproduced, al-
though a certain amount of temporal smoothing is noticeable. An
examination of time profiles for additional pixels confirms this anal-
ysis (Figure 10). In green, we also show a direct least-squares fit
of the model to the ground truth curves. These curves demonstrate
the expressiveness of the model. Even though the direct fit exhibits
shows sharp discontinuities due to the use of exponential segments
with a step function onset, the examples show that the key features
of the time sequences can be represented using the model. Further-
more, in the actual reconstruction from PMD measurements, the
i-step smoothes out the discontinuities. These results demonstrate
that our method can qualitatively reconstruct transient images, in-
cluding complex scenarios with multiple discrete pulses of light ar-
riving at a surface point, as well as broad temporal profiles resulting
from indirect illumination via a diffuse surface. A full quantitative
analysis of the resolution limit for our method is complicated by
the non-linear nature of our optimization problem and is beyond
the scope of this paper.

Figure 9: A couple of selected frames from simulation with ground-
truth data. Top: Original ground-truth frames. Bottom: Recon-
structions using our method. Temporal profiles for a few represen-
tative pixels are shown in Figure 9. See supplemental material for
the full video.
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Figure 10: A selection of time profiles for different pixels from the
example in Figure 9. Each graph shows the original time profile,
which we treat as ground truth (blue), a direct fit of the model to
this ground truth curve (green), and finally the result of our full
optimization procedure using simulated PMD measurements (red,
see text).

5.2 PMD Measurements

Using our own setup, we captured a few settings with characteristic
light transport, including the simple scene from Figure 4 already
discussed in Section 3. Individual time slices of three additional
datasets are shown in Figure 8. The scenes and single-image visu-
alizations of the recovered transient images are shown in Figures 1
and 11. We also encourage the reader to watch the accompanying
video to see the full transient images.

The top row of Figure 8 shows a wavefront propagating though a
scene with a mirrored disco ball placed in the corner of a room.



Figure 8: Time slices from three transient images captured with our setup, and reconstructed with the method from Section 3. Top row: we
see light hitting a disco ball. We observe the wavefront propagating along the walls, and the caustics from the mirrors arriving shortly after.
Center row: light propagates through a scene containing several bottles filled with water. We see first reflection of the surface of the bottles,
followed by scattering inside the bottles, caustics, and light scattering onto the back wall. Bottom row: A scene with several objects and two
mirrors. We observe the objects being illuminated first, followed by the reflections of the object in the mirrors, and finally a reflection of the
right mirror in the left one. More detailed explanations of the sequences can be found in the text.

In the first frame, the wavefront has just reached the front of the
ball. In the second frame, the ball is now fully illuminated, and we
see the wavefront propagating along the left wall. The third frame
shows the first caustics generated by reflections in the mirror. More
caustics appear for longer light paths near the top and bottom of the
fourth image, and the direct illumination is now approaching the
back of the corner from both sides. First indirect illumination in the
floor is visible. In the last frame, the caustics have disappeared, and
the indirect illumination is now lighting up the shadow of the ball.

The second row of the figure shows a scene with several bottles,
filled with water and a small amount of milk to create scattering. In
the first frame, the wavefront has just reached the front of the left-
most bottles, and is reflecting off their surface. In the second frame,
scattering effects are becoming visible in the bottles. Next, the light
reaches the far wall, showing caustics of the light transport through
the bottles. Indirect illumination of the back wall from light scat-
tered in the bottles appears in the fourth frame. This light continues
to illuminate the back ball even after the bottles themselves have
darkened (last frame).

Finally, the bottom row of Figure 8 shows a scene with several fore-
ground objects and two mirrors. We first see initial reflections com-
ing off the foreground objects. As the light propagates further, the
foreground objects are now fully illuminated, and the wavefront
reaches the back walls, but the mirrors remain dark. In the third
frame reflections of the foreground objects are starting to become
visible in both the left and the right mirror. In the fourth frame,
the left mirror shows a reflection of an object in the right mirror.
This reflection lingers in the last frame, even after the wavefront
has passed by the foreground objects.

6 Discussion and Conclusions

In this paper we presented a method for transient imaging with
PMD sensors, a technology that is widely available in commer-

Figure 11: Our test scenes. All scenes are illuminated from the
left, with the rainbow images encoding the temporal location of the
main intensity peak for each pixel. Top: Various objects on a table,
and their reflections in mirrors placed nearby. Note how the items
and mirrored counterparts light up at different times. Bottom: Four
bottles filled with slightly scattering water. The specular reflections
reach the camera before the light scattered inside the bottles.

cial time-of-flight cameras. The hardware was modified to allow
for different modulation frequencies and phases for both the sensor
and the illumination. Using a simple model for local light/surface
interaction, we can robustly reconstruct transient images from mea-
surements made with this hardware.

Unlike existing systems for the capture of transient images, ours
does not require ultrafast temporal sensing or illumination, but



works with correlation measurements obtained over longer integra-
tion periods. As a result, we achieve transient images with hardware
costing a fraction of the price of the femtosecond laser/streak cam-
era combination described in the literature. Additional benefits of
our approach include significantly reduced acquisition times, more
portable hardware, and easier modes of operation.

Although our prototype uses only red laser diodes as illumination,
true color measurements could be obtained easily by adding green
and blue lighting to the system and measuring the corresponding
channels in a time-sequential fashion.

A disadvantage of our system at the moment is the limited spatial
and temporal resolution of the sensor used. The PMD PhotonICs
19k-S3 has a spatial resolution of only 160×120 pixels, although
higher resolution variants of the technology are likely to become
available in the near future. The technology is also inexpensive
enough that multiple sensors could be tiled together for applica-
tions that require higher resolution. The time resolution of our ap-
proach is limited by the maximum modulation frequency that can
be applied to the illumination and the PMD sensor. In our prototype
we were able to achieve modulation frequencies of up to 110 MHz,
which corresponds to a spatial wavelength of about 2.70 m. The
size of the investigated scene should not be significantly below
this wavelength, otherwise the correlation matrix becomes too ill-
conditioned to reliably solve the problem. We therefore work with
larger-scale scenes than Velten et al. [2013].

In terms of computational post processing, solving the first half
of the optimization problem (the i-subproblem) takes only a few
minutes at the full sensor resolution, and can thus provide a quick
preview of a smoothed reconstruction. The second step (the u-
subproblem) is much more expensive, and takes several hours per
dataset. An interesting avenue for future research is to determine
ways to accelerate this step or derive alternative local models that
can be fit more efficiently. It would also be interesting to add a
spatial component to the model itself to avoid some of the spatial
quantization and banding artifacts that can occur in some results.

Our approach models the transient image as a sparse signal in a
basis that corresponds to certain light-object interactions, currently
surface reflection and subsurface scattering. In the future, this basis
could be extended to model other types of light-object interaction
with higher fidelity.

In summary, we have demonstrated the combination of an inexpen-
sive hardware setup and an optimization problem to acquire tran-
sient images using PMD sensors. It is our hope that this approach
will reduce the barrier of entry for performing research in transient
imaging and its applications, including the use of transient images
for reconstructing geometry from indirect illumination [Kirmani
et al. 2009; Pandharkar et al. 2011; Velten et al. 2012], and ana-
lyzing reflectance properties [Naik et al. 2011; Wu et al. 2012].
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A Proximal Operators for the i-Subproblem

Using i as the primary domain parameters and j as the dual domain
parameters, the proximal operators for the optimization problem

defined in Equation 12 can be derived as

j = proxσF∗ (̃j)⇔ ji =

j̃i
1+σε

max
(

1,
∣∣∣ j̃i

1+σε

∣∣∣)
i = proxτG(̃i)⇔

[
τCTC + I

]
i = τCTh + ĩ,

(16)

where in this equation, σ and τ are parameters described in Cham-
bolle and Pock’s original paper [2011], and ε is the parameter of the
Huber norm, which defines the transition point between the linear
and the quadratic segment of that norm.

Note that the first proximal operator amounts to a simple pointwise
evaluation. The second operator is a linear system that we solve to
high accuracy using SVD.

References

ABRAMSON, N. 1978. Light-in-flight recording by holography.
Optics Letters 3, 4, 121–123.

ABRAMSON, N. 1983. Light-in-flight recording: high-speed holo-
graphic motion pictures of ultrafast phenomena. Applied optics
22, 2, 215–232.

AUDET, C., AND DENNIS JR, J. 2006. Mesh adaptive direct search
algorithms for constrained optimization. SIAM Journal on opti-
mization 17, 1, 188–217.

BECK, A., AND TEBOULLE, M. 2009. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM J.
Imag. Sci. 2, 183–202.

CHAMBOLLE, A., AND POCK, T. 2011. A first-order primal-dual
algorithm for convex problems with applications to imaging. J.
Math. Imaging Vis. 40, 120–145.

CONROY, R., DORRINGTON, A., KÜNNEMEYER, R., AND CREE,
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