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Abstract

We present a novel stochastic framework for non-blind
deconvolution based on point samples obtained from ran-
dom walks. Unlike previous methods that must be tailored
to specific regularization strategies, the new Stochastic De-
convolution method allows arbitrary priors, including non-
convex and data-dependent regularizers, to be introduced
and tested with little effort. Stochastic Deconvolution is
straightforward to implement, produces state-of-the-art re-
sults and directly leads to a natural boundary condition for
image boundaries and saturated pixels.

1. Introduction
Image deconvolution or deblurring has applications in

astronomy, microscopy, GIS and photography among other
disciplines. As such it has seen considerable research in
graphics and vision.

This paper presents Stochastic Deconvolution, a new
framework for non-blind image deconvolution based on
stochastic random walks. Stochastic Deconvolution is
based on an adaptation of a recent stochastic optimiza-
tion method for solving computed tomography problems [6]
to the problem of deconvolution. The resulting algorithm
amounts to a variant of coordinate-descend optimization,
where the descent direction is chosen using a random walk
that utilizes spatial coherence. By solving the image deblur-
ring problem in this fashion, the Stochastic Deconvolution
framework directly addresses several issues inherent in de-
veloping deconvolution algorithms:

• Ease of Implementation. Both the basic algorithm and
its regularized variants are very straightforward to im-
plement, and is based on only two very simple opera-
tions: splatting of the point spread function (PSF) and
point-evaluation of the regularization term.

• Regularization Research. Because of the simplicity of
implementing new regularizers, Stochastic Deconvolu-
tion enables research into new regularization terms and
image priors for deconvolution through rapid experi-
mentation. We demonstrate that the methods works
for a large array of regularizers, including ones that

are smooth, non-smooth but convex, non-convex, dis-
continuous, and even data-dependent.

• Boundary Conditions. When capturing blurred im-
ages, information is propagated into the captured im-
age where no data is captured. Deblurring in these re-
gions requires some condition on scene content out-
side the captured region. An additional benefit of
Stochastic Deconvolution is that it naturally handles
these boundary conditions and can use a near-identical
process to deal with saturated regions.

• Shift-variant Kernels. Finally, Stochastic Deconvolu-
tion generalizes naturally to deblurring problems with
spatially varying kernels such as the synthetic camera
shake example depicted in Figure 1.

The remainder of this paper is structured as follows: in
the next section we discuss related work while providing
an introduction to the deconvolution problem. We then in-
troduce Stochastic Deconvolution in Section 3. Results are
presented in Section 4 after which we conclude with a dis-
cussion of future research directions in Section 5.

2. Background and Related Work
In this section, we introduce the notation for the decon-

volution problem and summarize the optimization frame-
work from Stochastic Tomography [6], which we modify to
solve deconvolution problems.

2.1. Image Deconvolution

Image deconvolution attempts to remove the blurs intro-
duced when images are captured with real optical systems,
including motion blur (e.g. [4, 15, 21, 21, 8, 7]) and depth-
of-field blur (e.g. [12, 9, 3]). These artifacts are effectively
captured by a point-spread-function (PSF) k that measures
the projection of a point-light source on the captured image
for a fixed set of camera parameters.

In general, the PSF is a function of the projected co-
ordinate of the source x, the distance of the source from
the camera d, and the chromaticity of the image point (i.e.
k = k(x, d, λ)). However in many scenarios the PSF is as-
sumed to be spatially invariant, (i.e. independent of image
position). The captured image q is then represented as the
intrinsic (deblurred) image p convolved with the PSF:
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Figure 1. Left: Snapshot of the algorithm in progress showing stochastic random walks that form the basis of Stochastic Deconvolution.
Green points represent energy added while blue correspond to energy subtracted from the reconstruction. The algorithm automatically
focuses sampling effort in regions where the largest improvements to the system energy are obtained. Right: Example of deblurring
with a spatially-varying (per-pixel) PSF simulating strong motion-blur. Input image (center-left) and a sampling of per-pixel PSFs at full-
scale (center-right). Deblurred result using Stochastic Deconvolution algorithm (right). The Stochastic Deconvolution algorithm naturally
handles PSFs with strong spatial variation, including rotations around the optical axis, without resorting to patch-based approximations.

q = k ⊗ p. (1)

The goal of deconvolution is to invert Equation 1 to obtain
an estimate of the intrinsic image. In this paper, we are
focusing on the non-blind version of this problem, where
the PSF is assumed to be provided either by calibration or
some form of PSF estimation (e.g. [4, 10]).

Traditional methods for solving deconvolution problems
include Fourier-space division, the Wiener Filter [18], as
well as iterative methods such as Richardson-Lucy [16, 14].
All these methods produce significant artifacts in cases
where certain image frequencies are completely eliminated
by the blur, which is common especially in defocus blur.

Although the results can be improved significantly
with variations of the original Richardson-Lucy algorithm
(e.g. [21, 22, 5]), most state-of-the art deconvolution meth-
ods take a slightly different approach. The basic problem
from Equation 1 can be seen as an linear inverse problem
that is usually ill-posed, since the PSF filters outs some fre-
quency components. General deconvolution methods de-
fine a quadratic fitting energy (either in the Fourier or im-
age domain) that is minimized when the solution estimate
convolved by the PSF equals the captured image, e.g. when
defined in the image domain:

Ffit = ||q − k ⊗ p||22 (2)

Since the system is ill-posed, infinitely many solutions
weakly minimize the fit energy (Equation 2). To address
this, a prior or regularizer Γ(p) is typically added, weighted
by λ, to give the system energy, Equation 3.

F = Ffit + λΓ(p) (3)

The regularizer penalizes solutions that do not conform to
prior expectations on the solution such as smoothness or
sparsity. Good regularizers suppress ringing and noise with-
out introducing other undesirable artifacts.

However a problem arises because the regularizer typi-
cally changes the mathematical structure of the problem. In
particular, priors favoring piecewise smooth solutions can-
not be expressed as linear systems, making it necessary
to develop highly specialized, regularizer-specific solvers
(e.g. [12, 11, 19]). Developing such solvers is a demand-
ing task, complicated further by problems with millions of
unknowns.

The goal of our work is to design a simple, reasonably
efficient, general-purpose deconvolution algorithm capable
of handling effectively arbitrary priors. To do so, we adapt
the random walk optimization strategy from Stochastic To-
mography [6] and modify it to solve deconvolution prob-
lems. The result is a straightforward method for image de-
convolution that allows the use of arbitrary priors with no
change to the underlying algorithm. Another benefit of our
method is natural handling of boundary conditions and sat-
urated pixels.

2.2. Review of Stochastic Tomography

Recently, Gregson et al. [6] presented a stochastic ran-
dom walk algorithm for solving tomographic reconstruction
problems. The method minimizes a convex objective func-
tion F by continuously placing discrete point samples in
a volume that each improve the objective. The change to
the objective can be evaluated efficiently due to the small
support of each sample. A local sample mutation strat-
egy inspired by Metropolis-Hastings then focuses the sam-
pling efforts in regions with high payoff, i.e. regions where
samples have recently been placed successfully, leading to
a method that makes many (107-109) low-cost incremen-
tal solution updates. However, as their work pointed out,
the method deviates from Metropolis-Hastings in a number
of key ways, including the fact that the random walk de-
pends on the full history of the sampling process and does
thus not represent a Markov Chain, but rather a stochas-



tic coordinate-descent method that employs a Metropolis-
Hastings style heuristic for picking the next coordinate axis
to descend along. The final result of the tomographic re-
construction is given by the volume density of the placed
samples. Algorithm 1 reproduces the full method for com-
pleteness sake.

Algorithm 1 Stochastic Optimization Algorithm, from [6]
// Start the walk from a random point
x0 ← random()
for k = 1 to N do

// New sample from xk−1 using
// transition PDF t(xk|xk−1)
xk ← sample(xk−1, t(xk|xk−1))
a← ∆F (xk)/∆F (xk−1)
if ∆F (xk−1) < 0 or random() ≤ a then

// Record only samples that reduce the objective fn.
if ∆F (xk) > 0 then

// Incorporate the sample into the output
record(xk)

end if
else

// Keep exploring space from previous sample
xk = xk−1

end if
end for

A key advantage of Stochastic Tomography over other
tomographic solvers is that the objective function F may
contain arbitrary convex regularizers without a change in
the fundamental algorithm, allowing for easy experimen-
tation and testing of new priors and regularizers. Using
L1 regularizers on several captured and synthetic examples,
Gregson et al. demonstrated that Stochastic Tomography
can be an effective method for regularized tomographic re-
construction.

One of the contributions of our work is to recognize that
this framework for stochastic optimization with a random
walk is in fact more general, and can be adapted to inverse
problems other than tomography. This is significant since
frequency content in measured quantities can differ signifi-
cantly between deblurring and tomography, leading to more
aggressive, often non-convex priors that are more difficult
to optimize. The key features required of problems is to
have i) a strong geometric structure in which many degrees
of freedom can be explored by walks in a low dimensional
space, and ii) to have small stencils, so local updates can be
performed efficiently.

Deconvolution fits this definition nicely since the PSF
links the intrinsic and captured images geometrically in 2D
and has relatively compact support allowing efficient local
updates. To apply this random walk framework, we only
need to derive problem-specific functions for sample mu-
tation, i.e. a transition probability t(xk|xk−1) for choos-

ing sample xk based on the previous sample location xk−1,
a method for keeping track of the change ∆F (xk) of the
objective function when placing a new sample xk, and fi-
nally a method for accepting and recording a new sample
record(xk). The next section describes how to derive meth-
ods for these tasks in the case of deconvolution problems.

3. Stochastic Deconvolution
Stochastic Deconvolution begins from Equation 2, which

is used as the data-fitting term of the system objective func-
tion (Equation 3), and from an initial estimate of the p(0) of
the intrinsic image. We create a random walk of pixel loca-
tions xk at which we add or remove an energy quantum ed,
thus generating a sequence p(k) of estimates of the intrinsic
image:

p(0) = q (4)
p(k) = p(k−1) ± ed · δxk , (5)

where δxk is the characteristic function (Kronecker Delta)
for pixel xk. Both positive and negative energies are tested
for each sample location xk in Algorithm 1 but only the sign
causing the greatest improvement kept.

Evaluating ∆F . The quantity ∆F (xk) measures the
change in the objective function if a given sample xk with
value±ed were to be accepted and added to the solution. In
order to efficiently compute ∆F (xk), we also keep track of
a second sequence of images q(k) = k ⊗ p(k), which rep-
resents the observed image we would expect if p(k) was the
intrinsic image. q(k) can be efficiently updated during the
random walk:

q(0) = k ⊗ p(0) = k ⊗ q (6)
q(k) = q(k−1) ± ed (k ⊗ δxk) (7)

In other words, q(k) can be updated by splatting k⊗δxk , a
shifted and mirrored copy of the PSF at the sample location
xk. With this second image, the change in the data term
Ffit can be computed efficiently through local updates.

The change in the regularization energy is evaluated in an
analogous manner, but is specific to the chosen regularizer.
For example, if the total-variation (TV) function is used,
then the change in λΓ is simply the sum of differences of
affected gradient magnitudes, scaled by λ.

Mutation Strategy. The mutation function generates a
new sample xk from the previously accepted sample xk−1.
We use a simple, symmetric strategy where new samples
are generated by a Gauss-distributed offset from the most
recently accepted sample. The width of the Gaussian is a
user parameter typically set to 50-100% of the PSF width,
with the choice not being critical. Using a Gaussian distri-
bution ensures ergodicity; this ensures the sampling process
does not erroneously ’miss‘ areas.



We also add a Russian-roulette chain terminating mu-
tation where the sample is simply moved anywhere in the
image domain with uniform probability. This mutation is
applied with 1% probability, leading to sample chains with
expected length of 100. We have found this helps to over-
come any start-up bias while also contributing to ergodicity.

Convergence. In each iteration, the Stochastic Deconvo-
lution framework picks a single pixel in the image and
checks if the objective can be improved by depositing en-
ergy in this pixel. This corresponds to picking a single
degree-of-freedom and descending along that axis, mak-
ing it a form of Coordinate Descent. What distinguishes
Stochastic Deconvolution from other Coordinate Descent
methods [13, 17] is that we use the random walk process
to exploit spatial coherence in the deconvolution problem,
and focus the computational effort on regions with sharp
edges, where most work is to be done in deconvolution.

Coordinate Descent methods provably converge for
smooth objective functions for a fixed step length so long
as all possible descent directions (i.e. pixels) are examined
with a finite probability. In our framework, this condition is
met by the ergodicity of the sampling process in the limit of
number of samples.

For general, non-smooth objectives, no proof of con-
vergence is available for Coordinate Descent, although
convergence has been shown for specific, separable L1-
regularized problems such as basis pursuit [17, 13]. In this
paper, we show empirical evidence of the convergence of
Stochastic Deconvolution for convex objectives, in particu-
lar a total variation (TV) regularized deconvolution problem
(Section 4).

As with other optimization strategies, no theoretical re-
sults are available for the use of non-smooth, non-convex
objectives with Coordinate Descent. Our results in Sec-
tion 4 empirically show that Stochastic Deconvolution is
competitive for such regularizers and even for a simple dis-
continuous and data-dependent prior.

Boundary Conditions and Saturated Pixels. The issue
of boundary handling is difficult in deconvolution algo-
rithms, since the process of capturing an image necessar-
ily cuts off some of the data needed to deconvolve at the
image boundaries. Stochastic Deconvolution naturally han-
dles this situation by padding the input image by the PSF
width and creating a mask that indicates which pixels are
from the captured region versus from the boundary region.

During the sampling process, samples are allowed to be
placed anywhere within the image or padded regions, but
when evaluating the change in system energy due to a sam-
ple, only samples flagged as interior have their data-fitting
term Ffit evaluated, since the saturated and padding pixels
have no valid captured value.

The same strategy can be used for other pixels where the
measurements in the observed image are invalid, for exam-
ple excessively bright pixels, where the image sensor has
been saturated. Ignoring the data term for these regions
while enforcing the regularization term causes the method
to perform a simple form of inpainting in the padded and
saturated regions to improve the fit to the valid measure-
ments.

Choosing ed. To choose the deposition energy ed, an ini-
tially large value is assigned, e.g. ed = 0.05 (assuming
pixel values in [0, 1]). An outer iteration of the sampling
procedure from Listing 1 is then started with a total of one
mutation per-pixel, and the percentage of accepted samples
computed. If this value falls below 7.5%, ed is scaled by
0.75 before starting the next outer iteration. Outer iterations
are continued in this manner until a set number of iterations
is exhausted or convergence stalls. This simple adaptive
choice for ed works well in practice and frees the user from
specifying a specific value.

Comparison with Stochastic Tomography. While
Stochastic Deconvolution uses the same basic random walk
as Stochastic Tomography [6], there are also a number of
differences that are worth pointing out. First, adapting the
method to deblurring requires very specific modifications
to handle boundaries and saturation, while switching from
continuously placed samples to discrete pixel locations.

Perhaps more significantly, deblurring can be thought of
as redistributing the energy from the blurred image to form
the sharp intrinsic image. This makes the need for nega-
tive energy samples obvious since both negative and posi-
tive samples are needed near edges. For Stochastic Tomog-
raphy, such samples were only needed to prevent the algo-
rithm from stalling due to startup-bias.

3.1. Regularization

We have implemented a host of different regularization
strategies in the Stochastic Deconvolution framework but
summarize here several that highlight the flexibility of the
method.

Total Variation. Total variation (TV) regularizers corre-
sponds to an assumption of sparse gradients, that is, of
piecewise-smooth solutions with occasional step disconti-
nuities. This is incorporated by adding the one of the fol-
lowing regularization energies at each pixel:

ΓTV (x) = ||∇p(x)||2 (8)
ΓATV (x) = ||∇p(x)||1 (9)

ΓMTV (x) = ‖
3∑

i=1

(
‖∇p(i)(x)‖22

)
‖2 (10)



where Equation 8 is the standard TV, Equation 9 is a sim-
ple, anisotropic variant and Equation 10 is an anisotropic
adaptation to color images [20]. The gradient terms are
evaluated with first-order finite differences. TV regulariz-
ers are simple and generally effective regularizers that have
the benefits of being convex.

Sparse 1st and 2nd Order Derivatives. We have also im-
plemented a version of the regularizer introduced by Levin
et al. [12] , which uses a fractional (0.8) norm to enforce a
heavy-tailed distribution for first and second order deriva-
tives. We refer to that paper and the code posted on the
corresponding project page for details.

Gamma-corrected Sum of Absolute Differences. Fi-
nally, we introduce a new regularizer that is designed to bet-
ter deal with dark image regions. A standard problem with
deconvolution algorithms is that the deconvolution has to be
performed in linear intensity space, but the results have to
be gamma corrected for viewing. The gamma curve, how-
ever, stretches the low intensity regions of the image dis-
proportionately, thus amplifying noise in the solution. To-
gether with the already low signal values, this results in poor
signal-to-noise ratio in dark image regions.

Our approach is to introduce a regularizer that minimizes
the data term in linear space, but ensures sparse gradients
in the gamma-corrected image. To achieve this, we apply
an gamma curve to the signal before evaluating a sum of
absolute differences (SAD) regularizer in a 3 × 3 window
W centered at x:

Γ(x) =
∑

i∈W (x)

|p(xi)
1
γ − p(x)

1
γ |, (11)

with γ ≈ 2 to simulate a regular display gamma.
This regularizer is non-convex and would be non-trivial

to design and implement a custom solver for, but is easily
added to the Stochastic Deconvolution framework.

Discontinuous and Data-Dependent Regularizers. In
Section 4 we demonstrate the flexibility of the Stochastic
Deconvolution framework by experimenting with a data-
dependent regularizer.

4. Results

The following sections present results comparing differ-
ent regularization strategies and objective functions, as well
as comparing to several existing methods. Runtimes vary
based on PSF and image size but are typically only a few
minutes. As an example, a 0.7 megapixel monochrome im-
age with a 21x21 PSF took 126 seconds with our unopti-
mized implementation.

Comparison with Existing Methods. Figures 2 and 3
show comparisons with the Coded Exposure Photography
method of Raskar et al. [15] . With the addition of pri-
ors, Stochastic Deconvolution produces results with less
noise and chromatic artifacts. However we note that this
is expected given that their method is effectively unregu-
larized. To illustrate the effect of different regularizers we
show results for an enlarged area of the train image using
the convex Total-Variation (TV) prior, the prior from Levin
et al. [12] , as well as the Gamma prior described in Sec-
tion 3.1.

All three priors reduce the noise and chromatic artifacts
present in the original results, however the two non-convex
priors, (Figure 2(d) and 2(e)), provide the smoothest results.
We note that our Gamma prior accomplishes its intended
aim of reducing noise levels in darker regions, as can be
seen by zooming in on the window and roof regions of Fig-
ures 2(d) and 2(e). We stress that it was straightforward
to implement all of these priors in our common framework,
while developing specialized solvers for each method would
have taken significantly more effort.

(a) Stochastic Deconvolution, Gamma prior

(b) Raskar et. al. (c) SD, TV prior

(d) SD, Levin prior (e) SD, Gamma prior

Figure 2. Comparison of Raskar et. al. (left) vs. Stochastic De-
convolution (right) using the regularizer of Levin et. al. Incor-
poration of the regularizer significantly reduces the noise in the
reconstructed image while preserving image detail.



Figure 3 shows a comparison between Raskar et al. and
Stochastic Deconvolution for the white-car image. We use
the Gamma prior which reduces the noise and chromatic
artifacts in dark regions such as the wheels and windows,
while slightly improving the legibility of the text on the cab.
We conclude that the Gamma prior is effective for preserv-
ing details and improving overall image quality.

(a) Raskar et. al.

(b) SD, gamma prior

Figure 3. Comparison of Coded Exposure Photography (Raskar
et al.) (top) to Stochastic Deconvolution (bottom). Addition of a
prior helps to suppress noise and chromatic artifacts present in the
original results, while improving the legibility of the text.

Figure 4 shows a comparison of deconvolution results
using the method of Fergus et al. [4] with Stochastic De-
convolution. Stochastic Deconvolution produces sharper re-
sults with reduced ringing. Stochastic Deconvolution is also
able to reconstruct the entire image right up to the image
boundary through the use of the stochastic boundary condi-
tion.

Finally, we show a comparison of deconvolution results
between the relatively recent method for large-blur removal
of Xu and Jia [19] with Stochastic Deconvolution using
Levin et al.’s prior. Our results are very comparable for
this challenging dataset; both methods show minor artifacts
throughout the image, however the results are very similar
in terms of overall quality. Figure 6 highlights the effect of
the stochastic boundary condition for inpainting plausible
content in boundary regions, including additional windows
and staircase details.

Defocus Blur and Lens Aberrations. We have also ap-
plied Stochastic Deconvolution to remove defocus blurs and
lens aberrations in images taken with standard SLR cam-
eras. Results comparing Stochastic Deconvolution using the
Levin prior to the method of Levin et al. are shown in Fig-
ure 7. As expected, the results are very similar.

Figure 8 shows a color image blurred by a synthetic,
wavelength dependent PSFs. Deblurring using the MTV

(a) Fergus et. al.

(b) Stochastic Deconvolution

Figure 4. Comparison with the method of Fergus et. al. (top). The
Stochastic Deconvolution result (bottom) shows substantially re-
duced ringing as well as much-improved handling of image bound-
aries due to the use of the Stochastic boundary condition.

(a) input (b) Xu and Jia

(c) Method of Levin et
al.

(d) SD, Levin prior

Figure 5. Non-blind deconvolution comparison with Xu and Jia
(using kernels estimated by Xu and Jia) for the Roma image.

regularizer results in a slightly sharper image with reduced
chromatic artifacts. Optimizing for such priors has been the
focus of several papers, e.g. [20, 1], however they are easily
implemented within our framework.

Spatially Varying PSFs. Due to the local nature of
Stochastic Deconvolution, the deblurring problem can be
relaxed from deconvolution to deblurring with spatially
varying kernels. While many other deconvolution methods
require subdividing the image into tiles with approximately
constant PSF, in Stochastic Deconvolution every pixel can
have its own distinct PSF. Figure 1 shows a synthetic ex-
ample for deblurring results of a strong, spatially varying
motion blur with rotational components about the optical



(a) boundary inpainting (b) detail

(c) Method of Levin et al. (d) SD, Levin prior

Figure 6. Top row: inpainted details from the stochastic boundary
condition, windows are added to a building on the boundary (red
outline) and staircase details outside the image are introduced (yel-
low outline). Zoom in to the top-left figure for additional features.
Bottom row: the method of Levin et al. rings for highly saturated
pixels, while masking these from the reconstruction produces con-
siderably smaller artifacts.

(a) Blurred input. (b) SD, Levin prior (c) SD, Levin prior

Figure 7. Comparison of method of Levin et al. with Stochastic
Deconvolution for defocus blur from a standard SLR.

(a) SD, TV prior (b) SD, MTV prior

Figure 8. Comparison of per-channel TV (top) with the multichan-
nel MTV prior (bottom) for a blur kernel with chromatic aberra-
tion. Image sharpness is slightly improved and color artifacts re-
duced around the tree branches.

axis. For real motion blur, one could obtain spatially vary-
ing PSFs either using estimation methods such as the one by
Hirsch et al. [7] , or using IMU sensors that are becoming
increasingly available in cellphones and cameras [8].

Data-Dependent Regularizers We now provide a sim-
ple example of a discontinuous data-dependent regularizer.
An image known to consist of only five colors is blurred
and corrupted with noise. Deblurring with a TV regular-
izer yields gives an optimal peak PSNR value of 31.91 dB
among all prior weights tested, however by clustering the
image colors periodically and adding the L1 distance to the
nearest cluster this can be improved by 0.7 dB while simul-
taneously reducing the weight on the TV term by an order

of magnitude. Although something of a contrived exam-
ple, many applications can exploit similar domain-specific
knowledge, an example being magnetic resonance imaging
(MRI) where given tissue types and machine settings pro-
duce gray-values that are known a priori. Exploiting this
knowledge can reduce reliance on heuristic priors, e.g. spar-
sity of gradients, and as illustrated above and in Figure 9,
quantitatively improves reconstruction quality. However,
such discontinuous, discrete-choice regularizers are prob-
lematic to implement effectively in conventional, gradient-
based solvers.

(a) Blurred input (b) TV PSNR:
32.0 dB

(c) DD TV PSNR:
32.7 dB

Figure 9. Simple data-dependent TV regularizer. Adding the L1

RGB distance to the nearest of one of five RGB clusters (computed
by K-means) to a standard TV regularizer improves the best PSNR
values by 0.7 dB over all parameter values
Empirical Convergence As a variant of coordinate-
descent, our method has no theoretical convergence guaran-
tees for general, non-smooth objectives. However, we have
performed empirical convergence tests for the anisotropic
TV regularizer and compared final objective values to the
provably convergent method of Chambolle and Pock [2].
For the blurred image in Figure 10(a), the objective value
computed by Stochastic Deconvolution after 300×Npixels

mutations was 26.42, while the objective value by the
primal-dual method was 26.69. We attribute the minor dis-
crepancy to differences in boundary handling and termina-
tion criteria between the two methods. The objective func-
tion history is shown in Figure 10(c), showing a fast ini-
tial convergence rate that gradually flattens, as might be ex-
pected from a stochastic sub-gradient method. With that
said, visual convergence is in practice very quick; by iter-
ation 50 the gray-values are being adjusted by only 0.08%
of the maximum range and are indistinguishable from the
results at 300 iterations without careful, pixel-level exami-
nation.

5. Conclusions and Future Work
In this paper we have present Stochastic Deconvolution,

a new, general-purpose method for the deconvolution prob-
lem based on stochastic random-walks. Stochastic Decon-
volution is straightforward to implement, easily incorpo-
rates state-of-the-art priors and produces high-quality re-
sults.

The performance of our unoptimized implementation is
currently comparable to other recent methods such as the



(a) Blurred Input (b) Computed Solution

(c) Convergence History (d) Sample Histogram

Figure 10. Convergence history of method down to ed < 4 ×
10−9 for anisotropic TV regularizer with weight λ = 10−3.
Note that each Stochastic Deconvolution iteration has an approx-
imately equal computational cost to one gradient-descent step us-
ing image-space convolutions but is able to focus sampling effort
near details, as shown in the sampling histogram.

one by Levin et. al [12] . It is not currently competitive
with methods working in Fourier space, or other highly op-
timized solvers. On the other hand, we gain the flexibility
to not only incorporate arbitrary regularizers, but also to use
spatially varying PSFs and modify the solver at boundaries
and saturated pixels.

We also not that the algorithm as presented has signifi-
cant potential for optimization, including parallelization on
GPUs or multicore CPUs. For blurs with very large sup-
port, one could also adopt a multi-scale approach similar to
Yuan et al. [22] . Since the primary cost of our method is the
splatting of PSFs to update Equation 7, working in an image
pyramid like this could significantly improve performance.

Overall, we believe that Stochastic Deconvolution is an
excellent general-purpose method, particularly for evaluat-
ing the efficacy of new regularization strategies. Prior to
Stochastic Deconvolution, trying a new prior often meant
developing an entirely new solver. With Stochastic Decon-
volution, new priors can be implemented and tested in a
matter of minutes.
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