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Figure 1: Left: Photo of an acquisition rig for fluid phenomena, consisting of 5–16 strobe-synchronized consumer cameras. Middle:
Example capture of one of the cameras. Right: Reconstruction of an unsteady two-phase flow at different points in time. Note how the novel
tomographic technique introduced in this paper manages to capture the fine-scale features in this challenging dataset. SAD regularizer, 100M
sample mutations/frame, 6 min/frame.

Abstract

We present a novel approach for highly detailed 3D imaging of tur-
bulent fluid mixing behaviors. The method is based on visible light
computed tomography, and is made possible by a new stochastic
tomographic reconstruction algorithm based on random walks. We
show that this new stochastic algorithm is competitive with special-
ized tomography solvers such as SART, but can also easily include
arbitrary convex regularizers that make it possible to obtain high-
quality reconstructions with a very small number of views. Finally,
we demonstrate that the same stochastic tomography approach can
also be used to directly re-render arbitrary 2D projections without
the need to ever store a 3D volume grid.
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1 Introduction

The capture of dynamic 3D phenomena has been the subject of con-
siderable research in computer graphics, extending to both the scan-
ning of deformable shapes, such as human bodies (e.g. [de Aguiar
et al. 2007; de Aguiar et al. 2008]), faces (e.g. [Bickel et al. 2007;
Alexander et al. 2009]), and garments (e.g. [White et al. 2007;
Bradley et al. 2008]), as well as natural phenomena including liquid
surfaces [Ihrke and Magnor 2004; Wang et al. 2009], gases [Atch-
eson et al. 2008], and flames [Ihrke and Magnor 2004]. Access
to this kind of data is not only useful for direct re-rendering, but
also for deepening our understanding of a specific phenomenon.
The data can be used to derive heuristic or data-driven models, or
simply to gain a qualitative understanding of what a phenomenon
should look like before simulating it.

In this paper we focus on the capture of mixing processes between
two liquids, as well as the dissolving of powdered dye into liq-
uid. Like several other recent works [Ihrke and Magnor 2004; Ihrke
et al. 2005; Atcheson et al. 2008], our capture process is based on
visible light computed tomography (CT), which allows us to use
inexpensive, off-the-shelf camera arrays. However, in addition to
devising an effective capture setup for this specific problem, we
also make significant algorithmic improvements to tomographic re-
construction techniques in general. In particular, we develop a new
stochastic tomography algorithm that is especially well suited for
the types of application scenarios encountered in graphics. Such ap-
plications typically have a relatively sparse set of views compared
to more traditional settings for CT, such as medical imaging.

To our knowledge, Stochastic Tomography is the first CT algorithm
that is both matrix-free and, by default, also gridless. Neither the to-
mography matrix nor the final volume grid need to be stored, which
enables the reconstruction of larger, more detailed volumes than
would be feasible with traditional methods. Moreover, we show
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that our approach is straightforward to implement and can easily
and seamlessly integrate additional convex regularization terms on
an auxiliary grid. This also includes non-linear and non-smooth
terms such as total variation (TV) or sum-of-absolute-differences
(SAD). Our particular contributions are therefore as follows:

• We devise an inexpensive, practical setup for time-varying op-
tical tomography of liquid mixing and dye immersion.

• We develop a novel stochastic tomographic reconstruction
algorithm based on random walks inspired by Metropolis-
Hastings sampling. This avoids spatial discretization of the
reconstruction volume by representing the volume as a set of
samples rather than a grid.

• We show how to incorporate arbitrary convex regularizers into
the Stochastic Tomography framework using an auxiliary grid,
and demonstrate the approach with both 3D and 2D sum-of-
absolute-differences (SAD) regularizers. We show that these
regularizers drastically improve the reconstruction quality com-
pared to both unregularized Stochastic Tomography and stan-
dard methods such as SART [Andersen and Kak 1984], espe-
cially when considering setups with small numbers of cameras.

• We show that our Stochastic Tomography framework can also
be used for re-rendering, i.e. the direct generation of novel pro-
jections without explicitly generating a 3D volume. We further
demonstrate an image-space prior that improves the visual qual-
ity of renderings without requiring an auxiliary grid.

The remainder of this paper is structured as follows: in Section 2
we review the general computed tomography problem, as well as
the specific image formation model for our liquid capture setup.
We then discuss related work (Section 3) before describing the de-
tails of Stochastic Tomography (Section 4), including both 3D re-
construction and re-rendering. Section 5 details the experimental
capture setup, with results being discussed in Section 6. We con-
clude with a discussion of other potential applications and future
research directions (Section 7).

2 Computed Tomography

In this section we provide a concise introduction to traditional com-
puted tomography, the specific image formation model relevant to
our system, and the challenges associated with computed tomogra-
phy based on visible light imaging.

2.1 The Tomographic Reconstruction Problem

Computed tomography is the process of reconstructing an un-
known, volumetric, scalar signal from a collection of line integrals
or projections taken through the signal using an image-formation
model that describes the physics of the measurement process.

For our application, the image formation process can be modeled
by an emissive volume, in which the light emitted by each point in
a glowing or, in our case, fluorescing volume integrates along each
line of sight (see Section 5 for details). More precisely, the (un-
known) 3D volume is described by a continuous field v(x) of light
emissions. The volume is observed by a number of detectors imea-
suring the integral of the emissions along a ray Ωi, (see Figure 2):

oi =

∫
Ωi

v(x)dx. (1)

In other settings, one may encounter light absorption (e.g. [Trifonov
et al. 2006; Wetzstein et al. 2011b]) or more exotic image forma-
tion processes (e.g. [Atcheson et al. 2008; Lanman et al. 2011]),
but even these models can usually be transformed into the form of
Equation 1.

Figure 2: Measurement oi is formed by the integral of the observed
scene along the ray path Ωi. The collection of measurements for
each camera forms a projection image, the set of which from all
cameras forms the input to our method.

Standard tomographic reconstruction techniques proceed by dis-
cretizing the unknown scalar field as v(x) ≈

∑
j vjBj(x) into

basis functions Bj(x) with a compact spatial support, typically ar-
ranged on a uniform grid of voxels. In this discrete setting, Equa-
tion 1 becomes

oi = bi · v, (2)

where the row vector bi consists of the coefficients of the linear
equation describing the contribution of each voxel to the ith ray
according to the basis functionsBj , and v is the vector of unknown
emissivities for each voxel. Combining many such measurements
yields a linear system, although the number of sensors does not
typically exactly match the number of voxels. Consequently v is
estimated as the solution of the corresponding linear least-squares
problem, which can be computed by a variety of methods [Kak and
Slaney 2001]:

BTo = BTBv. (3)

2.2 Visible Light Tomography

The image formation model described above applies to both tradi-
tional CT problems, and the more recent applications in computer
graphics. As an example, consider an array of calibrated cameras
observing an emissive volume. Each pixel in each image corre-
sponds to a known ray through the volume, and thus obtains a mea-
surement modeled by Equation 1. After discretizing Equation 1 to
obtain Equation 2, the coefficients of the row-vector bi model the
integral of the projection of each basis function onto the ray Ωi.

However, most computer graphics applications share several char-
acteristics that distinguish them from traditional CT settings such as
medical imaging. First, the number of cameras that can be used is
typically about 8–16, far below the number of views used in med-
ical CT. Although each individual camera may have high resolu-
tion, the sparse set of viewpoints means that the measurements are
very unevenly spaced over the directional domain. As a direct con-
sequence, additional priors and regularizers are usually required in
order to obtain high resolution reconstructions from such data, lead-
ing, for example, to the development of visual hull constrained to-
mography in graphics [Ihrke et al. 2005].

Second, medical imaging often uses specific imaging geometries
that allow slice-by-slice reconstruction of the volume, thus break-
ing the 3D reconstruction problem down into many 2D problems.
This is typically not possible in visible light tomography settings,
since camera ray geometries do not line up exactly in volume slices.
Instead, the full 3D system needs to be solved at once, despite the
3D system typically being too big to store even as a sparse matrix.
This rules out many standard linear solvers. Instead, CT often relies
on matrix-free solvers such as simultaneous algebraic reconstruc-
tion tomography (SART, [Andersen and Kak 1984; Kak and Slaney



2001]), which represent the matrix procedurally in terms of vol-
ume rendering and backprojection operators. This approach solves
the memory problem but makes it hard to incorporate the priors and
regularizers required for reconstruction from sparse data, especially
more powerful non-linear regularizers such as TV and SAD.

On a more fundamental level, imposing a discretization early on
immediately imposes a fixed tradeoff between system size and re-
construction fidelity. In this paper we present a method for tomo-
graphic reconstruction employing stochastic random walks, which
is straightforward to implement and is gridless This allows the
method to adaptively sample small features automatically. In ad-
dition, the design of our method makes it possible for tomographic
reconstructions to be simultaneously computed and rendered with-
out storing volume data.

In the event that gridded data is acceptable or desired, our method
trivially incorporates state-of-the-art priors evaluated on an auxil-
iary grid. The ability to easily experiment with different regulariza-
tion terms without a large development burden is a key advantage of
our method. We believe that this will be particularly advantageous
in graphics, where tomography has been used in a wide variety of
applications, each of which may benefit from customized priors.

3 Related Work

The capture of dynamic phenomena has been an extremely prolific
area of research in recent years. In this section we focus on work
most directly related to ours: work in fluid capture, computed to-
mography, and Metropolis sampling.

Fluid Imaging is a very active research area in mechanical en-
gineering. Most optical measurements in this community are per-
formed with Particle Imaging Velocimetry [Grant 1997], which pro-
duces images of a single slice through the volume but has several
shortcomings, such as the difficulty of injecting particles uniformly,
and measuring out-of-plane flows. In computer graphics and ma-
chine vision, researchers have worked on imaging the surfaces of
liquids [Morris and Kutulakos 2005; Ihrke et al. 2005; Wetzstein
et al. 2011a], as well as volumetric smoke [Hawkins et al. 2005],
flames [Hasinoff and Kutulakos 2007; Ihrke and Magnor 2004],
and refracting gases [Atcheson et al. 2008]. In our work, we focus
on imaging the mixing process of liquids, which is particularly in-
teresting due to the fine-scale, turbulent structures that are formed.
We note, however, that our stochastic tomography algorithm is gen-
eral, and could be applied to other tomographic settings, such as the
work by Atcheson et al. [2008]).

Computed Tomography is another vast research area that we
can only summarize briefly. For reasons outlined in Section 2, the
state of the art in CT for general camera geometries are matrix-
free iterative solvers such as SART [Andersen and Kak 1984], as
well as regularized versions of these algorithms. Unfortunately,
the specific structure of SART makes it difficult to implement so-
phisticated non-linear regularizers so regularized implementations
of SART are often highly specialized to the regularization strategy,
as in [Yu and Wang 2009].

One of the first links between tomography and probabilistic meth-
ods was due to Shepp and Vardi [1982], who discretized the domain
into voxels and formulated the detection of photons in emission to-
mography as a maximum likelihood problem solved by an itera-
tive method. Many have since extended this approach, particularly
as the field seeks to limit the radiation doses received by patients,
e.g. using new results from compressed sensing [Xu et al. 2011].

A work closely related to ours is that of Barbuzza and
Clausse [2011], where a voxelized reconstruction was generated

using a Metropolis-Hastings optimization for each voxel to min-
imize an energy function incorporating weighted L2 smoothness
constraints intended to promote sparsity. Our work extends this idea
by allowing the random walk to choose the sample locations con-
tinuously in space, as well as their contribution to the image. This
allows our method to concentrate effort on regions of the recon-
struction which contribute most. In addition, we introduce true L1

regularizers into the reconstruction, removing their need for thresh-
olding of the smoothness energy.

Our method is also related to recent work on stochastic linear
solvers (e.g. [Srinivasan and Aggarwal 2003; Srinivasan 2010]).
However, unlike these general methods, we exploit the special ge-
ometric structure of tomography problems to derive a matrix-free
stochastic solver. Since general tomography matrices tend to be-
come very large—in the order of gigabytes—a matrix-free algo-
rithm is of central importance for arriving at a practical method.
Our matrix-free representation also allow us to easily incorporate
general convex regularizers that make the overall system non-linear.

Finally, we note that computed tomography is emerging as a stan-
dard tool in graphics and vision. Besides 3D reconstruction [Hasi-
noff and Kutulakos 2007; Ihrke and Magnor 2004; Ihrke et al. 2005;
Atcheson et al. 2008], tomography has recently been used for im-
age generation on 3D displays [Wetzstein et al. 2011b; Lanman
et al. 2011] and high dynamic range imaging [Rouf et al. 2011].
We believe that Stochastic Tomography could be of use for many
of these applications.

Metropolis-Hastings Sampling [Metropolis et al. 1953; Hast-
ings 1970] is a random walk algorithm that generates samples pro-
portional to a probability distribution that only needs to support
local evaluation. It is commonly used to perform difficult inte-
grations stochastically (e.g. [Veach and Guibas 1997; Cline et al.
2005]), or as an efficient method to probe a parameter space in
optimization (e.g. [Talton et al. 2011]). The advantage of the
Metropolis-Hastings algorithm is that it generates efficient sam-
pling patterns in scenarios where the underlying target probabil-
ity distribution (PDF) for the samples can be evaluated, but it is
not easily possible to draw samples proportional to it. Inspired by
Metropolis-Hastings, we also use a random walk scheme. How-
ever, it is designed to minimize an objective function in a situation
where the target PDF for the samples is not even available for eval-
uation. Therefore, despite its similarity, Stochastic Tomography is
not truly Metropolis-Hastings sampling or even a Markov-Chain
Monte Carlo method.

4 Stochastic Tomography

Instead of immediately discretizing Equation 1 like existing CT
methods, we first define residuals ri on the observations based on a
current volume estimate ṽ

ri = oi −
∫

Ωi

ṽ(x)dx. (4)

These residuals are then squared and summed over all measure-
ments, and an (as yet unspecified) convex regularization function
Γ(ṽ(x)) is added to obtain a convex objective function F (ṽ(x)):

F (ṽ(x)) =
∑
i

(
oi −

∫
Ωi

ṽ(x)dx

)2

+ βΓ(ṽ(x)). (5)

At this point it is useful to note that no spatial discretization has
occurred except in taking discrete measurements, that the function
F (ṽ(x)) is convex, and that (as before) the integral over Ωi simply
projects the approximation of the arbitrary field ṽ(x) onto the ith

measurement.



We would like to infer a volume estimate ṽ that minimizes F . To
do so, ṽ is represented as a set of discrete samples {xk} ∝ ṽ, each
of which deposits a certain amount of emissivity ed. That is, ṽ will
be represented as the density of {xk}, and the task is to determine
a sample set whose density estimate minimizes F .

To keep track of the improvement of the objective function during
the sampling process, we define ṽk to be the volume estimate after
choosing the first k samples, and ∆F (xk) = F (ṽk−1) − F (ṽk)
to be the change in the objective function due to a new sample xk.
Note that ∆F (xk) > 0 indicates that a sample xk improves on F .

4.1 Random Walk

A brute-force stochastic approach for minimizing Equation 5 would
be rejection sampling: simply draw uniformly distributed random
samples within the volume, and accept the sample if ∆F (xk) > 0;
discard it if not. Since our objective function is convex, and each
accepted sample reduces the objective, clearly this simple strategy
will converge eventually, albeit very slowly.

For a more practical approach, we turn to the Metropolis-Hastings
algorithm [Metropolis et al. 1953; Hastings 1970]) for inspiration to
derive a new sampling strategy that explores areas with high payoff.
In a similar fashion to Metropolis-Hastings, we perform a random
walk that is based on mutating a current sample xk−1 in order to
propose a new sample xk. The proposed sample is accepted with
some probability that depends on the improvement ∆F (xk) that it
provides on the objective function. Pseudo-code for our Stochastic
Tomography algorithm is provided in Algorithm 1.

Algorithm 1 Stochastic Tomography Random Walk

// Start the walk from a random point
x0 ← (random(), random(), random())T

for k ← 1 to N do
// New sample from xk−1 and transition PDF t(xk|xk−1)
xk ← sample(xk−1, t(xk|xk−1))
a← ∆F (xk)/∆F (xk−1)
if ∆F (xk−1) < 0 or random() ≤ a then

// Record only samples that reduce the objective fn.
if ∆F (xk) > 0 then

// Incorporate the sample into the output
record(xk)

end if
else

// Keep exploring space from previous sample
xk ← xk−1

end if
end for

Instead of generating just a single random walk, we start multiple
walks of lengthN from uniformly distributed random samples with
the volume until a user-specified sample budget is exhausted. This
process ensures ergodicity, i.e. that all points in the volume can be
reached by the sampling process.

Convergence and Relationship to Metropolis-Hastings De-
spite the similarities of this process to Metropolis-Hastings, it is
important to point out that the method does not produce a Markov
Chain and consequently differs from Metropolis-Hastings sam-
pling. Our sampling strategy explores local neighborhoods of sam-
ples that were previously successful in reducing the objective func-
tion, i.e. samples with ∆F > 0. However, ∆F (xk) depends on the
full sampling history, not just the previous sample xk−1. Second,
we do not have a closed-form analytical representation of the target

PDF for the samples since our target PDF is the unknown volume
estimate ṽ that we seek to infer.

The convergence arguments outlined above for the brute-force re-
jection sampling approach still hold for the Stochastic Tomography
algorithm since the objective function is convex and Stochastic To-
mography i) fully explores the solution space (i.e. is ergodic) and
ii) only accepts samples that reduce the objective function. Note
that, unlike the original Metropolis-Hastings algorithm we do not
require detailed balance to ensure convergence to the target solu-
tion.

Applying our random walk optimization strategy requires defining
and implementing three problem-specific functions. First, we re-
quire the mutation strategy for generating a new sample from the
previous one using a PDF t(xk|xk−1) for transitioning from one
sample location to the next. Second, it is necessary to define an
efficient way of estimating and updating ∆F (xk) of the objective
function due to a new sample xk. Finally, we require a way to
record accepted samples. We now discuss each aspect in turn.

Sample Mutation. The purpose of the mutation strategy is to
choose a new sample location xk based on a current sample xk−1,
and a transition probability t(xk|xk−1). The mutation strategy
should favor samples that are most likely to improve the resid-
ual. In our case, this means exploring the neighborhood of the
last successful sample (i.e. xk−1), which yields itself to a very
simple mutation strategy that is highly effective: mutated samples
are produced by simply adding a Gauss-distributed offset to each
of the three coordinate directions. The width of the Gaussian is a
user-specified parameter that affects the convergence rate but not
the final solution, and we have found empirically that 5 − 10% of
the diagonal of the reconstruction volume bounding box generally
works well. Note that a Gaussian mutation strategy is symmetric
(i.e. t(xk−1|xk) = t(xk|xk−1)) and selects every point in the vol-
ume with a non-zero probability. The latter point means that even
individual random walks are ergodic under this strategy. The new
sample xk is then accepted with probability

a=min(1,
∆F (xk)t(xk−1|xk)

∆F (xk−1)t(xk|xk−1)
)=min(1,

∆F (xk)

∆F (xk−1)
), (6)

so long as it also improves on the objective, i.e. ∆F (xk) > 0.

Evaluating the Objective Function A key component of mak-
ing our algorithm feasible is to find an efficient way to keep track
of and evaluate ∆F (xk) for each newly proposed sample, which is
illustrated in Figure 3. Ignoring regularizers (which are discussed
in Section 4.3), this task can be reduced to keeping track of residual
images rj for each of the M cameras, where the union of the M
residuals represents Equation 4. This is essentially a density esti-
mation problem in 2D, where new samples need to be added on the
fly. A suitable algorithm is kernel density estimation [Parzen 1962],
also known as splatting: if projj(xk) projects sample point xk into
the jth residual image rj , while splatj(rj , projj(xk), ed) splats
ed emissivity into rj and returns the resulting image, the change in
Equation 5 due to the new sample is given as

r̃±j = splat(rj , projj(xk),±ed)

∆±
j F (xk) = rj(projj(xk))2 − r̃±j (projj(xk))2

∆±F (xk) =
∑
j

∆±
j F (xk)

∆F (xk) = max(∆+F (xk),∆−F (xk)). (7)

Note that we allow for samples of both positive and negative emis-
sivity ed. We check both signs of ed when evaluating a sample’s



contribution and take the sign which contributes the largest decrease
in summed squared residuals over all images. This dramatically im-
proves convergence by allowing the method to “rough-in” areas and
refine them later (see Figure 6) and is also necessary for the regu-
larizers (discussed in Section 4.3) to function properly.

We make one other minor optimization: if a sample xk falls outside
the visual hull for any image (i.e. has a measured value of zero in at
least one camera) it is automatically rejected. The rationale for this
is that such samples cannot contribute to the final reconstruction
and will require more work later on to undo, which can be avoided
by simply not placing such samples in the first place.

ViewA View B

View C

x1

x3

x2

Figure 3: We evaluate how a given sample candidate affects the
residual in the individual projections (views). Red arrows denote an
increase of the residual, green arrows a decrease. Sample x1 con-
tributes a net decrease of the overall residual error, and is therefore
accepted. Sample x2 would also decrease the error function, but
lies outside the visual hull of View B, hence, it is rejected. Sample
x3 delivers a net increase in error, therefore it is rejected as well.

Storing Samples in Residuals When a sample xk is accepted
by the Stochastic Tomography sampler, it must somehow be incor-
porated into the reconstruction. Our method does this by splatting
±ed of emissivity (with the sign chosen according to largest de-
crease of Equation 5) into the residual images rj at xk’s projected
points. We perform this splatting with bilinear weights due to the
compact support.

rj = splat(rj , projjxk,±ed) (8)

In addition to storing the sample in the residual images, we also
need to post-process them to derive the desired volume data. We
can either process the samples on the fly, or save them to disk and
process them at a later point in time.

Choosing ed and Number of Samples Our algorithm has sev-
eral inter-related parameters that must be specified prior to start-
ing a reconstruction. The deposition emissivity ed is the quantized
emissivity per sample, N is the number of sample mutations per
sampling chain, and Γ is the total number of sampling chains to
start. We have found that the method is relatively insensitive to the
sample chain length N , and have used values ranging from 1000 to
20000 with success. After choosing N the remaining parameters
are related by the following expression

Γ = α
etot
Ned

(9)

where etot is the total observed emissivity, obtained by averaging
the sum of measurements oi over all cameras and α is scale factor
to account for the fact that not all samples are accepted. The choice

α is somewhat data-dependent, but values in the range of 10 − 40
work well.

The user must then choose either the deposition emissivity ed, or
number of sampling chains Γ. The choice of one uniquely deter-
mines the other. If the range of emissivity field values are known
approximately, choosing ed directly controls the quantization level
and is preferred for that reason. Otherwise, choosing Γ will directly
bound computation time by only considering ΓN samples.

4.2 Sample Processing

The sample-based representation of the volume supports several
ways of post-processing, detailed below.

Volume Reconstruction. The reconstruction of a 3D volume
from samples is a density estimation problem. In our implemen-
tation, we again choose a simple kernel density estimation ap-
proach [Parzen 1962], in which the samples are splatted onto a reg-
ular volume grid using trilinear weights, again for compact support.
However, we note that a sample-based representation also lends it-
self to adaptive reconstructions, for example using hierarchical data
structures such as an octree to represent the final volume. Note
that density estimation on an adaptive grid is potentially more ef-
ficient than performing standard matrix-free iterative solvers such
as SART on adaptive grids. It is also possible to employ more so-
phisticated density estimation algorithms, although the advantage
of kernel density estimation is that the samples can be splatted in-
dependently, and then discarded.

2D Re-rendering. If the ultimate goal is to simply render images
of the volume from novel viewpoints that are known a priori, then
the samples can be directly re-projected, and the density estimated
in 2D only. If we once again use kernel density estimation, we can
directly re-render any number of novel views without ever storing
either the 3D volume or more than one sample at a time.

Per-slice Reconstructions. For sake of completeness, we men-
tion that it is possible to use precomputed samples to reconstruct
individual 2D slices through a volume on-the-fly in an interactive
system. We believe this option may be of interest when applying
Stochastic Tomography in a medical imaging setting.

4.3 Regularization

In the discussion so far, the objective function for the random walk
algorithm was given directly by the linear system derived from the
tomographic image formation model. This simple objective func-
tion may not be sufficient if the observed measurements are very
sparse or noisy. In this case it is necessary to incorporate prior
information about the data to be reconstructed, in the form of a reg-
ularization term Γ(ṽ) (see Equation 5).

While the best choice of regularizer depends on the nature of the
problem, Stochastic Tomography supports any convex regularizer
with relatively compact support to be introduced simply and effi-
ciently. The convexity restriction ensures that the method finds the
true global minimum at the limit of number of samples and de-
position emissivity ed, while compact support is a more practical
restriction needed since the change in regularization term will be
evaluated once per sample. The regularization terms are simply
added to Equation 5, and are evaluated by the sampling procedure
in the same manner as the objective function: by computing the
difference in energy caused by accepting the sample. This energy
difference is simply added to the ∆F (xk) value returned by the
objective function.



To illustrate the flexibility of our method, we have implemented
several different regularizers, one based on a smoothness energy,
two L1 sparse-gradient priors and a third which operates only on
output rendered projections, allowing our method to operate en-
tirely without volume data.

Volume-based Regularization. If the goal is the reconstruction
of a 3D volume, we can incorporate regularizers by performing den-
sity estimation on a 3D grid (Section 4.2) on the fly during the ran-
dom walk. This grid-based volume representation can then be used
to estimate how a new sample would affect the gradients in the vol-
ume. In our work we have implemented three grid-based priors, an
L2 smoothness energy, an L1 Sum-of-Absolute-Differences (SAD)
energy and an L1 Total Variation (TV) energy.

If ṽk−1 is the volume estimate after placing k − 1 samples, and
ṽk the estimate after splatting sample xk, then the regularization
energy change Γ(xk) due to a regularization function γ(.) is:

Γ(xk) = γ(ṽk)− γ(ṽk−1) (10)

All regularizers are evaluated on stencils centered at the sample,
with spacing equal to the grid spacing. The L2 regularizer energy
is evaluated with a standard 7-point (in 3D) Laplacian stencil, the
result of which is squared, while the TV regularizer energy returns
the gradient magnitude, computing each component with first-order
finite-differences. The SAD regularizer sums the absolute differ-
ence between the center sample and each of the 26 neighboring
samples in a 3×3×3 window.

In our stochastic framework, it is straightforward to swap one type
of regularizer for another, which makes it easy to experiment with
different kinds of regularization (also see Section 6). This is in stark
contrast to the use of non-linear regularizers in standard optimiza-
tion techniques, where different solvers need to be developed for
each type of regularization (e.g. [Yu and Wang 2009]).

Image-space Regularization. If the final goal is to render into
novel viewpoints, the regularization can also be performed directly
in 2D image space. This way, we can maintain the grid-free nature
of the re-rendering algorithm (Section 4.2). We can use 2D variants
of any of the 3D regularizers discussed for the volume case, and
apply them directly on the generated output images. The total reg-
ularizer value is then the sum of all individual image regularizers.

As will be shown in Section 6, the image-space regularization suc-
ceeds in increasing the visual fidelity of images generated with the
re-rendering approach. It may seem that, instead of this image-
space regularization, similar results could be accomplished by fil-
tering as a post-processing step. This is not the case: by adding
output-quality terms to our reconstruction, we bias the method
to produce solutions from the indefinite problem that satisfy the
measurements while also producing a smooth output, while any
smoothing as a post-process would yield results that are no longer
consistent with the measurements.

We also experimented with using only image-space regularizers to
improve the 3D grid reconstruction, but found that the 2D regular-
ization even for a relatively large number of novel image views is
not sufficiently strong to yield significant quality improvements for
the 3D volume.

5 Experimental Setup

To apply our stochastic tomography algorithm to the problem of
reconstructing 3D animated volumes of mixing fluids, we devised
an experimental setup to capture such data (Figures 1 and 4). At
the heart of the setup, we have a cylindrical glass beaker similar to

the one used by Trifonov et al. [2006], which is used to contain the
liquids used in the experiments. Observing this setup are between
5 and 15 Sony consumer camcorders. The per-pixel ray geome-
tries for each camera are calibrated with the two-plane approach
proposed by Trifonov et al.

Figure 4: Photograph of the experimental setup. An array of 5–15
consumer camcorders arranged in a semicircle focuses on a water-
filled glass beaker containing the reconstruction volume. A two-
plane calibration procedure is used to obtain ray-pixel correspon-
dences within the capture volume. Fluorescein-sodium fluorescent
dye is then introduced, either as a powder or mixed with water or
alcohol, from the top of the beaker, or by injection through a tube
into the bottom of the capture volume.

During the experiments, we mixed a clear liquid (typically water)
with a second liquid to which fluorescein-sodium, a fluorescent dye,
had been added. This second, dyed fluid was either water or iso-
propyl alcohol. In some experiments we also directly imaged the
insertion of un-dissolved dye into water.

Illumination. We used white LED strobes, which provide us with
the ability to optically synchronize the cameras for imaging fast-
moving effects [Bradley et al. 2009]. For slow moving effects
we were able to use constant illumination from ultra-violet LEDs,
which provide better contrast at reduced stray light, but only frame-
level camera synchronization. In both cases we assume an image
formation model where light from the illuminant is absorbed and
isotropically re-emitted by the fluorescent dye. By neglecting re-
absorption of the visible light on the path to the camera, we arrive at
the emission tomography image formation model from Equation 1.
We note, however, that the intensity incident in each voxel varies
based on the distance of the voxel from the illuminant, as well as
any volumetric shadowing that may occur on the way from the illu-
minant to the voxel. Therefore, our capture setup allows for qualita-
tive imaging of fluid mixing; a quantitative mapping from measured
intensities to dye concentrations is not currently possible.

Radiometric calibration. In order to compare measurements be-
tween camera views, we perform a straightforward radiometric cal-
ibration process that starts by lighting the calibration target plane
positions from [Trifonov et al. 2006] consistently using a calibra-
tion ’headlight’. This is the only illumination used during calibra-
tion, ensuring that the target plane is lit consistently from all views.
After applying an inverse gamma curve to the captured calibration
images, we designate one camera the master and find an exposure
scale factor for all other cameras that minimizes the luminance dif-
ferences for a set of corresponding points on the calibration plane
between each view and the master. These factors are then applied
to all frames from a given camera. Finally, portions of the image
falling outside the calibrated region are set to zero. The input pro-
jection data (i.e. the measurement vector o) is then computed by
subtracting a background image from each captured frame.



(a) Ground truth (b) SART, RMS 0.104 (c) ST, RMS 0.090 (d) ST-L2, RMS 0.085 (e) ST-TV, RMS 0.085 (f) ST-SAD, RMS 0.080

Figure 5: Reconstruction of the high-contrast Shepp-Logan phantom (a), a standard medical-imaging test-case, from 16 orthographic views
using SART (b) and Stochastic Tomography (ST) (c)–(f) on an 256×256 output grid (stochastic tomography results accumulated as in Section
4.2). All results are shown in the same scale and have runtimes between 47 and 55 seconds. RMS errors with respect to ground truth are also
provided.

6 Results

In the following we present results obtained using Stochastic To-
mography, both for standard tomography test cases and for data
captured using our optical tomography acquisition setup.

6.1 2D Synthetic Data

We start with a comparison of a reconstruction using the Simultane-
ous Algebraic Reconstruction Technique (SART) of Andersen and
Kak [1984] to several generated by Stochastic Tomography. We
chose to compare to SART because it produces reasonably high-
quality reconstructions while still being applicable to arbitrary cam-
era models. SART can also form the basis of several more sophis-
ticated regularized methods, such as [Yu and Wang 2009].

Figure 5 shows the results for reconstructing the ubiquitous Shepp-
Logan phantom from 16 orthographic cameras on a 256×256 out-
put grid. This is a very challenging task for CT algorithms since the
limited number of views causes the linear system to be drastically
under-determined. In the interest of a fair comparison, we have ad-
justed the parameters of Stochastic Tomography to achieve a run-
time smaller than the SART computation time. We also added the
visual-hull constraint of Atcheson et al. [2008] to the SART imple-
mentation. The basic, unregularized Stochastic Tomography result
(Figure 5(c)) shows artifacts that are structurally similar but more
pronounced than the one produced by SART (b); SART selects a
smoother solution from the null-space of the linear system.

This situation changes once we add regularizers to Stochastic To-
mography. The L2 regularizer removes the majority of artifacts but
blurs hard edges (Figure 5(d)), producing reconstructions compa-
rable to SART in quality. The L1 TV regularizer (e) improves the
sharpness of the result but still has prominent artifacts, while the
SAD regularizer (f) preserves the sharp edges and details of the
phantom best.

We have computed the RMS errors of our reconstructions with re-
spect to the ground truth, and found that as expected, the SAD reg-
ularizer performs the best with an RMS error of 0.080 as compared
to the unregularized RMS error of 0.090. Somewhat surprising is
that the unregularized Stochastic Tomography results have a lower
RMS error than the SART results, in spite of being visually less ap-
pealing. The very small number of cameras in this example cause
the visual hull to have a polygonal shape, and SART ends up de-
positing energy in the gaps between this visual hull and the true
elliptical shape. The Stochastic Tomography methods, for reasons
that will require further investigation, appears to be less sensitive to
this situation and do not produce the same artifacts.

(a) 10% (b) 30% (c) 50% (d) 70% (e) 90%

Figure 6: Illustration of the sampling process at work for varying
levels of completion. Positive samples are drawn in blue, negative
samples in red. The algorithm first roughs-in the reconstruction
with positive samples, then refines it using negative samples.

Although it is possible to create regularized versions of SART (e.g
as demonstrated by Yu and Wang [2009]), we note that changing
regularizers for SART and other linear solvers requires a complete
re-implementation of the solver, while it is straightforward to re-
place regularizers in Stochastic Tomography. This property allows
us to quickly test different kinds of regularization for a specific
problem and select the one that produces the best results for a given
application domain.

6.2 3D Capture of Mixing Fluids

We now turn to the reconstruction of real datasets of mixing fluids
obtained using the experimental setup of Section 5. To illustrate
the potential of our approach, we cover a range of different types
of fluid interactions, including thin, quasi-stable flows, as well as
turbulent behavior arising from pouring and buoyancy. We strongly
encourage the reader to refer to the supplemental video for the full
animated sequences. All reconstructions were performed on a sin-
gle core of an Intel i7 desktop. Sample budget and timings are
listed in the figure captions. Figure 1 shows several timesteps from
a capture of fluorescein-sodium dye in water being dropped approx-
imately 1cm through a thin tube into still water. As the dyed fluid



enters the still water, a quasi-stable vortex is formed which prop-
agates downwards, slowing and developing capillary waves which
form a complex petal-like pattern on the vortex trail. Stochastic
Tomography is able to capture fine-scale, transient features of this
flow; please see the supplemental video for the corresponding ani-
mated sequence. This reconstruction used 100 million sample mu-
tations with 65000 sampling chains from 16 cameras regularized
with grid-based SAD. In Figure 6 we show the reconstruction of
one frame from this sequence at varying levels of completion to
illustrate the placement of positive (blue points) and negative sam-
ples (red points). The method starts by placing a large number of
positive samples to quickly rough-in the scene. It then refines this
coarse approximation by placing a mixture of positive and negative
samples.

Figure 7 shows a comparison between one of the input images and
a grid-free re-rendering from a similar viewpoint for an alcohol-
and-fluorescein-sodium mixture being injected into the bottom of
the reconstruction volume and rising under buoyancy. Stochastic
Tomography captures much of the fine-scale detail of the transition
from laminar to turbulent flow both spatially and over time. Such
turbulent details and dynamics are challenging to simulate realisti-
cally, but can be captured easily with our setup and potentially used
to develop data-driven models for future simulations. We show a
series of renderings of this data from artificial views in Figure 9.
This dataset also shows a shortcoming of our specific capture setup:
reflections of the emissive volume can occur in the back wall of the
glass beaker (Figure 7). If these reflections are consistent across
cameras and cannot be properly separated from the actual volume
data, they can introduce some artifacts in the final reconstruction,
for example in Figure 9(d), where isolated patches are erroneously
reconstructed.

Figure 7: 95% isopropyl alcohol and fluorescein-sodium rising
under buoyancy after injection into standing tap-water. Cam-
era view (left) and grid-free stochastic tomography reconstruction
(right) from 15 views re-rendered from a similar viewpoint. Many
fine scale features of the transition from laminar-flow to turbulent-
mixing are captured by the rendering, however minor camera mis-
alignment limits the reconstruction resolution. Please see the sup-
plemental material for the corresponding animated sequence. This
reconstruction used 200 million mutations and 10 thousand sample
chains with no regularization. Computation time: 14 min/frame.

Figure 10 shows novel viewpoints of a diluted fluorescein-sodium
solution being poured into still tap water. Small eddies form almost
immediately, which then diffuse and grow over time. Each frame
was reconstructed by our stochastic tomography method from 9
cameras using 400 million sample mutations and the grid-based
SAD regularizer on a 2003 grid.

An extreme example of a reconstruction from just 5 cameras is
shown in Figure 8. In this capture, fluorescein-sodium dye pow-
der was introduced to the water surface and allowed to mix and
dissolve. On this dataset, we demonstrate the difference between
regularized and unregularized Stochastic Tomography using a very
coarse sampling to exaggerate the differences. The left image of
Figure 8 shows the result using our image-based SAD regular-
izer. The right column shows the difference between the unregu-
larized reconstruction (top inset), the grid-based SAD regularizer
(center inset) and the image-based SAD regularizer (bottom inset).
The regularized results show a clear improvement of output image-
quality over the unregularized case, with the differences between
the volume-based and image-based regularization being minimal.
This allows high-quality, regularized renderings of volume data to
be performed on the fly, without any volume data being stored.

7 Conclusions and Future Work

In this paper we have introduced Stochastic Tomography, a new
random walk algorithm for tomographic reconstruction of 3D vol-
umes. The key advantages of this approach are the avoidance of
spatial discretization, which allows us to represent the reconstructed
volume in a grid-free fashion without a fixed resolution tradeoff,
and the ease with which arbitrary convex but potentially non-linear
regularizers and priors can be incorporated into the reconstruction.
As we have shown, together these properties of Stochastic Tomog-
raphy allow us to push the state of the art in tomographic recon-
struction of detailed volumes from a very small number of input
views.

Figure 8: Deliberately undersampled reconstruction of dye-
powder added to the surface of the capture volume from only 5-
cameras using image-based regularization (left). The right column
shows a comparison of regularization strategies. From top to bot-
tom: Unregularized result, regularized with SAD, and with image-
based SAD. The image-based regularization can produce results
comparable to grid-based regularization for output-renderings, but
does not require volume data.
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Figure 9: Buoyancy-driven flow of fluorescein-alcohol solution in water. 200M mutations/frame, 14 min/frame.

(a) Frame 10 (b) Frame 20 (c) Frame 30 (d) Frame 40 (e) Frame 50

Figure 10: Time-resolved reconstruction of diluted fluorescein-sodium being poured into still tap water. Complex vortices and eddies develop
as the fluid propagates. 400 million mutations and 10 thousand sampling chains were used with the SAD regularizer. Computation time: 31
min/frame.

We also have shown how this new reconstruction approach can be
applied to the detailed imaging of complex fluid mixing behav-
iors. As mentioned in Section 5, currently our results are quali-
tative rather than quantitative, since we do not account for spatial
variations of the incident illumination at each point in the volume.
The setup itself also has several other shortcomings, such as the
tendency to produce reflections that can pollute the measurements
(Section 6). In the future we would like to explore variations of
this setup, for example with anti-reflective coating, or out-of-plane
cameras that eliminate the reflection problem. We want to expand
on the number and type of mixing effects, and would like to be able
to recover effects such as the transition from laminar to turbulent
flows in tubes, for example.

On the algorithmic side, Stochastic Tomography can be thought of
as a fixed step-length stochastic subgradient descent method. In fu-
ture work, we would like to consider adapting the method to alter-
native, stochastic optimization methods, with the aim of improving
the efficiency of reconstruction. Furthermore, Stochastic Tomogra-

phy currently uses non-linear regularizers, but the data term itself
is linear, in accordance with the image formation model introduced
in Section 2. In the future, we would like to explore the possibil-
ity to use convex, but possibly non-linear data terms. For example,
both emission and absorption tomography can individually be for-
mulated as linear problems, but the combined emission/absorption
problem is non-linear, yet still convex. It would be interesting to
solve these kinds of problems with Stochastic Tomography. This
would also provide an avenue for recovering actual quantitative dye
concentrations from our measurement setup.

Another promising avenue for future research is the expansion of
the system to the temporal domain. By sampling particles in a 6D
state space consisting of position and velocity, and computing resid-
uals in successive time steps, one could attempt to generate tracked
particles directly in the reconstruction, rather than a separate post-
processing step. We believe that this can serve as a way to tran-
sition from measuring per-frame dye concentrations to measuring
fluid motion.



Despite some shortcomings in the current capture setup, we believe
our fluid mixing results show many interesting details and intricate
behavior currently difficult to generate with fluid simulators used
in computer graphics. In addition to providing specific datasets for
a computer animation, we believe that capture techniques such as
ours play an important role in understanding natural phenomena,
and can provide data to further enhance simulation algorithms. All
of our datasets will be made publicly available for this purpose.
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