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Figure 1: Stages of light source measurement and rendering (from left to right): a) photo of flashlight – b) flashlight in measurement setup –
c) 2D reconstruction of the measured data in a virtual plane – d) measured light used in a global illumination simulation.

Abstract

Realistic image synthesis requires both complex and realistic mod-
els of real-world light sources and efficient rendering algorithms to
deal with them. In this paper, we describe a processing pipeline for
dealing with complex light sources from acquisition to global illu-
mination rendering. We carefully design optical filters to guarantee
high precision measurements of real-world light sources. We dis-
cuss two practically feasible setups that allow us to measure light
sources with different characteristics. Finally, we introduce an effi-
cient importance sampling algorithm for our representation that can
be used, for example, in conjunction with Photon Maps.

CR Categories: I.3.3 [COMPUTER GRAPHICS]: Picture/Image
Generation—Digitizing and Scanning, I.3.3 [COMPUTER
GRAPHICS]: Three-Dimensional Graphics and Realism—
Raytracing, I.4.1 [IMAGE PROCESSING AND COMPUTER
VISION]: Digitization and Image Capture—Radiometry, I.4.1 [IM-
AGE PROCESSING AND COMPUTER VISION]: Digitization
and Image Capture—Sampling.

Keywords: Modeling – Light Sources; Modeling – Object Scan-
ning/Acquisition; Modeling – Physically-based Modelling; Ren-
dering – Global Illumination; Rendering – Image-based Rendering;
Rendering – Raytracing

1 Overview and Related Work

Convincing and realistic light source models are an important pre-
requisite for photorealistic image synthesis. Given the exact de-

sign of a luminaire (including geometry, materials, and emission
characteristics of the illuminant), one can apply standard global
illumination computations to incorporate complex luminaires into
synthetic scenes. This approach, however, is impractical in most
real-world scenarios since the precise design data represents an in-
tellectual property of significant value, and is unlikely to be shared
for rendering purposes. But even if such design data is made avail-
able, it does not account for manufacturing tolerances. However,
relatively minor variations of parameters like the glass thickness in
halogen light bulbs can have a significant impact on the illumination
patterns generated. In addition, rendering based on the geometric
model can be computationally very demanding.

As an alternative, one can incorporate measured light data from
complex luminaires directly into the rendering system. Such data
is provided by many companies in the form of goniometric dia-
grams [Verbeck and Greenberg 1984], which represent measure-
ments of the far field of a luminaire (i.e. directional information
of the emitted light from a point light source). Unfortunately, the
far field is only a faithful approximation of the emitted light when
the light source is sufficiently far away from the object to be illumi-
nated – as a rule of thumb at least five times the maximum luminaire
dimension [Ashdown 1995]. Even improved models using spatial
intensity maps or complex emitting geometry [Rykowski and Woo-
ley 1997] are still too weak to represent the near field of a complex
light source.

On the other hand, a light field [Gortler et al. 1996; Levoy and
Hanrahan 1996] completely represents near and far field illumina-
tion of a light source, and can thus be used to represent the light
source without knowing its geometry and internal structure.

1.1 Near Field Photometry

In his work on near field photometry [Ashdown 1993; Ashdown
1995], Ashdown has presented methods for measuring the light
field of luminaires in both its near field and its far field compo-
nents. A digital camera mounted on a robot arm observes a light
source from many positions on a surrounding (hemi-)sphere. Both
Rykowski and Wooley [1997], and Jenkins and Mönch [2000] em-
ploy a similar setup to acquire the light field of a luminaire, while
Siegel and Stock [1996] replaced the camera lens with a pinhole.

On the rendering side, Heidrich et al. [1998] have described rel-
atively efficient algorithms based on a similar representation they
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called a canned light source. While their algorithms are faster
than a brute-force rendering approach, they are still quadratic in
the light field resolution. However, the similarity between the rep-
resentations used by Ashdown and by Heidrich et al. illustrates that
measurement and rendering can work on the same data structures,
thereby allowing for an efficient processing pipeline from acquisi-
tion to image synthesis.

In near field photometry, a number of cameras are pointed at the
luminaire to be measured (or, more practically, a single camera is
moved around), and then the irradiance incident to the film plane is
recorded using an imaging sensor (e.g. a CCD chip). The camera
positions correspond to a sampling of some virtual sampling sur-
face S. In practice, the light source may produce arbitrarily high
spatial frequencies on S, in which case we have just introduced
aliasing by not applying a low-pass filter before the sampling step.

This issue has been raised by Halle [1994] and was noted by
Levoy and Hanrahan [1996]. They both propose to use the finite
aperture of the camera lens as a low-pass filter by choosing the
aperture size equal to the size of a sample on the camera plane.
The shape of the filter kernel is thus a side effect of the lens system
rather than a deliberate choice based on sampling theory.

1.2 Contributions

In this paper, we describe a measurement system that significantly
improves on near field photometry by projecting the light field emit-
ted by the light source into a finite basis before sampling. This is
done using a simple optical system. The shape and support of the
basis functions are specifically designed for a particular sampling
scheme. Based on the resulting measurements we can exactly re-
construct the least-squares approximation of the true light field in
our basis. Alternatively, we can reconstruct with a more efficient,
shift-invariant filter, and obtain a close approximation to the least-
squares solution that is suitable for hardware accelerated rendering
with the approach proposed by Heidrich et al. [1998].

In comparison to previous acquisition approaches, our optical
setup lets us move in very close to the surface of the light source.
In particular, the distance between the light and the aperture of our
system is smaller than the distance between the aperture and the
imaging plane. This allows us to capture a much wider field of
view in a single photograph.

On the rendering side, we introduce a solution to perform impor-
tance sampling of our light field representation. This allows us to
integrate the acquired light sources into global illumination meth-
ods like the Photon Map Algorithm [Jensen 2001b]. In contrast to
the work by Heidrich et al., this algorithm has constant time com-
plexity, i.e. it is independent of the light field resolution.

The remainder of this paper is structured as follows: first, we
present out conceptual approach to filtered light source measure-
ment (Section 2) before we discuss the theoretical underpinnings of
our method in Section 3. We then describe the physical setup we
use for measurement in Section 4, and our rendering algorithm in
Section 5. Finally, we present results based on both measurements
and simulation (Section 6), and conclude with some ideas for future
work (Section 7).

2 Basic Approach

The conceptual setup for our approach to filtered light source mea-
surement is depicted in Figure 2. Light rays are emitted from the
light source and hit a filter in a plane S. This plane is opaque ex-
cept for the finite support area of the filter which can be moved to a
number of discrete positions on a regular grid. The filter is a semi-
transparent film, similar to a slide, containing the 2D image of a
basis function Φ′

ij(u, v). The light falling through this filter hits a
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Figure 2: Cross section through the conceptual acquisition setup.

second plane M, on which we are able to measure the irradiance
with a high spatial resolution.

When comparing this setup with the work on near field photome-
try [Ashdown 1993; Siegel and Stock 1996], S roughly corresponds
to the plane on which the pinholes or finite apertures of the cam-
eras are located, while M corresponds to the imaging sensor of
the camera. The fundamental difference in our approach is that we
can select an arbitrary filter Φ′

ij(u, v) which projects the light field
emitted by the luminaire into an arbitrarily chosen function space.
This results in an optical low-pass filtering of the light field before
sampling, and thus helps avoiding aliasing artifacts.

In general, we will select a standard reconstruction filter
Φij(u, v) for rendering, and its biorthogonal basis Φ′

ij(u, v) for
measurement. This will make it necessary to perform measure-
ments with filters that contain negative values, and can therefore
not be implemented optically as an opacity. In this case, we split
the filters into a positive and a negative component:

Φ′

ij(+)(u, v) :=

(

Φ′
ij(u, v) Φ′

ij(u, v) ≥ 0

0 else

Φ′

ij(−)(u, v) :=

(

0 Φ′
ij(u, v) ≥ 0

−Φ′
ij(u, v) else

We then perform separate measurements for both parts, and sub-
tract the results in software. Similarly, we can rescale basis func-
tions with values > 1, and correct for it in software.

In principle, one also has to perform low-pass filtering on the
measurement plane M. This, however, is optically very difficult
or even impossible to implement if the filter kernels overlap. For-
tunately, it is technically easy to achieve a very high measurement
resolution on M, so that we can consider the measured data as point
samples, and implement an arbitrary filter kernel while downsam-
pling to the final resolution.

Note that the filter kernels for S and M can be chosen inde-
pendently as required by the reconstruction process. In this pa-
per, we are using a piecewise quadratic basis to construct Φ′

ij(u, v)
(see Section 4.2), and a box filter for Φ′

kl(s, t). The latter works
best with our importance sampling algorithm (Section 5 and Ap-
pendix B).

3 Theoretical Framework

Before we discuss the theory behind the proposed method in detail,
we first introduce the mathematical notation used throughout this
document. This notation is summarized in Table 1 and Figure 2.
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Symbol Meaning
Ψijkl(u, v, s, t) basis function for approximating the light field
Φi 1D basis used for reconstruction
Φijkl(u, v, s, t) 4D tensor product basis for reconstruction
Φ′

i biorthogonal 1D basis used for measurement
Φ′

ijkl(u, v, s, t) 4D tensor product basis for measurement
M surface on which the irradiance is measured (measurement surface, or (s, t)-plane)
S surface on which the optical filters are placed (sampling surface, or (u, v)-plane)
L(u, v, s, t) radiance passing through (u, v) on S and (s, t) on M

L̃(u, v, s, t) projection of L(u, v, s, t) into basis {Ψijkl(u, v, s, t)}
Lmn(u, v, s, t) radiance Φ′

mn(u, v) · L(u, v, s, t) projected through one filter Φ′
mn(u, v)

Emn(s, t) irradiance caused by Lmn(u, v, s, t) on the measurement surface M

Table 1: Notation (overview) – see also Figure 2.

For the measurement, we assume that the light field emitted by
the light source is well represented by a projection into a basis
{Ψijkl(u, v, s, t)}

ijkl∈ZZ
:

L(u, v, s, t) ≈ L̃(u, v, s, t) :=
X

i,j,k,l

Ψijkl(u, v, s, t) · Lijkl. (1)

We assume that Ψijkl has local support, and i, j, k, and l roughly
correspond to translations in u, v, s, and t, respectively. Note, how-
ever, that the translated basis functions will not in all cases have the
same shape, i.e. Ψi′j′k′l′(u, v, s, t) may not be an exact copy of
Ψijkl(u, v, s, t) in general.

We also define two additional sets of basis functions, one for
measuring and one for reconstruction. For reconstruction we use a
1D basis {Φi}i∈ZZ

with the property Φi(x) = Φ(x + i). The 4D
reconstruction basis is then given as the tensor product basis

Φijkl(u, v, s, t) :=Φij(u, v) · Φkl(s, t) (2)

=Φi(u) · Φj(v) · Φk(s) · Φl(t). (3)

For measurement, we use the biorthogonal (or dual) {Φ′
i(x)}

i∈ZZ

of the reconstruction basis with
Z

∞

−∞

Φ′
i(x) · Φi′(x) dx =



1 ; if i = i′

0 ; else
(4)

and again we use a tensor-product construction for the 4D basis.

3.1 Measured Irradiance

Our approach is based on measuring the irradiance Emn(s, t)
in the (s, t)-plane that is caused by the incident radiance
Lmn(u, v, s, t) = Φ′

mn(u, v) ·L(u, v, s, t). In Section 4.1 we will
discuss two physical setups for performing this kind of measure-
ment. The result of such a measurement is

Emn(s, t) =

Z

∞

−∞

Z

∞

−∞

cos2 θ

R2
· Φ′

mn(u, v) · L(u, v, s, t) du dv

≈

Z

∞

−∞

Z

∞

−∞

cos2 θ

R2
· Φ′

mn(u, v) · L̃(u, v, s, t) du dv

=
X

i,j,k,l

Z

∞

−∞

Z

∞

−∞

cos2 θ

R2
· Φ′

mn(u, v) (5)

· Ψijkl(u, v, s, t) · Lijkl du dv.

The geometric term cos2 θ/R2 is composed of the distance R of
the point on the (u, v)-plane from the point on the (s, t) plane, as

well as the cosine of the angle θ between the plane normals and the
vector connecting the two points. Note that this term also accounts
for any differences in the parameterizations on the two planes (i.e.
different grid spacings).

3.2 Exact Reconstruction

We now describe an exact reconstruction algorithm given the mea-
surements Emn. To this end, we first define what the relationship
between the basis functions Ψijkl and the reconstruction and mea-
surement bases should be. We define

Ψijkl(u, v, s, t) :=
R2

cos2 θ
· Φij(u, v) · Φkl(s, t). (6)

Inserting this definition into Equation 5, and using the biorthog-
onality relationship (Equation 4) yields

Emn(s, t) =
X

k

X

l

Φkl(s, t) · Lmnkl. (7)

To determine which reconstruction filter to use, we now rewrite
Equation 1 using Equations 6 and 7:

L̃(u, v, s, t) =
X

m,n,k,l

Ψmnkl(u, v, s, t) · Lmnkl

=
X

m,n,k,l

R2

cos2 θ
· Φmn(u, v) · Φkl(s, t) · Lmnkl

(8)

=
X

m,n

R2

cos2 θ
· Φmn(u, v) · Emn(s, t)

This indicates that we can exactly reconstruct L̃, the projec-
tion of L into the basis {Ψijkl} by using the reconstruction filter
R2/ cos2 θ · Φmn(u, v).

Note that this reconstruction filter does contain a shift-variant
component in form of the geometric term. Interestingly, this geo-
metric term will cancel out for the Photon Map particle emission al-
gorithm we discuss in Section 5. However, for other rendering algo-
rithms such as the ones proposed by Heidrich et al. [Heidrich et al.
1998], the reconstruction step should ideally only involve a convo-
lution with a shift-invariant filter kernel. In Appendix A we discuss
an approximate reconstruction scheme that satisfies this property.
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4 Physical Setup and Measurements

In this section we explain how the theoretical framework can be
transformed into a practical acquisition method. We propose two
different hardware setups and discuss their advantages and disad-
vantages. Finally, we describe the filter kernels used in our mea-
surements.

4.1 Possible Implementations

The first setup we propose – Setup A – is based on a standard photo-
graphic camera where the lens is removed and replaced by the filter
Φ′

ij (see left side of Figure 3). As with conventional light fields, the
camera has to be positioned at the vertices of a regular grid within
the S plane and images can be captured. Although this setup is
compact and easy to handle, it does have some drawbacks. The
fixed and often quite small size of the imaging sensor (e.g. a CCD
chip) imposes a strong limitation on the size of the filter kernel and
the incident angles of illumination covered by the measurement. In
addition, the distance between the filter plane and the imaging plane
determines the focal length of the camera (similar to a pinhole cam-
era). A large distance leads to a tele-lens effect and further limits
the useful incident angles.

Filter

Moving Camera

Light Source Moving Light Source

Camera

Diffuse Reflector

Filter

Opaque mask

with a filter

Setup A Setup B

Figure 3: Possible setups for the acquisition. Setup A (left): The
camera lens is replaced by a filter and the light field is directly pro-
jected onto the imaging sensor inside the camera. Setup B (right):
The filter Φ′

ij(u, v) projects an image on a diffuse reflector which
is captured by a camera.

These problems can be avoided with Setup B. Here, the filter
Φ′

ij is used to project an image of the light source onto a diffusely
reflecting screen. If a high quality diffuse (Lambertian) reflector
material is available, the filter size and viewing angles are (almost)
only limited by the size of the reflector. On the other hand, the
larger setup makes it potentially harder to use, and errors due to
indirect light reflecting from parts of the equipment such as the re-
flection screen or the environment tend to increase. Furthermore,
the calibration effort increases since the intrinsic and extrinsic pa-
rameters of the camera system relative to the projected image need
to be recovered.

4.2 Filter Design

The theoretical framework and the implementations detailed above
allow for the use of arbitrary filters Φi and Φ′

i with finite support.
It is therefore possible to design filters adapted to the specific

properties of the light source at hand, for example taking the struc-
ture of the light source or the intended use of the data into account.

–0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

–3 –2 –1 1 2 3

x

Figure 4: A quadratic reconstruction basis and one dual. Left: func-
tion Φi (green) and a dual Φ′

ii (red) used in this paper. Center and
right: 2D filter images used for the acquisition (split into positive
and negative components and normalized).

For our measurements we use a piecewise quadratic basis function
Φi,bellq

Φi,bellq =

8

>

<

>

:

1 − 2 x2 |x| ≤ 1
2

2 (|x| − 1)2 1
2

< |x| ≤ 1

0 else
. (9)

Although it would also be possible to use the classical quadri-
linear basis, we choose this one due to its C1 continuity that helps
preventing Mach bands. Figure 4 shows a plot of this function and
its dual.

Note that some parts of the dual basis are negative. Using this
function as a filter will result in negative coefficients. This will
occur in places with strong intensity gradients in the original light
field. There are two ways of dealing with this situation. The first
one is to clamp the value of the coefficients after measurement,
guaranteeing that each query in the light field will be positive. How-
ever, this approach will remove fine details in the light field and
contradicts our filtering approach. We therefore choose to keep the
negative coefficients in the data structures, and to only clamp neg-
ative results after reconstruction. With this approach, the positive
parts of the reconstructed light field remain unaltered.

5 Rendering

In this section, we discuss the integration of our measured light
sources into a particle based global illumination system. We chose
the Photon Map algorithm [Jensen 1996; Jensen 2001a; Jensen
2001b] for rendering, as it is one of the most common and simple to
use methods available. We present a solution to emit particles from
our measured data, and we also describe some adjustments to the
classical Photon Map algorithm. Note that our importance sampling
approach does not only apply to Photon Maps, but to any algorithm
that requires shooting from the light source such as particle trac-
ing [Walter et al. 1997] or bidirectional path-tracing [Lafortune and
Willems 1993].

5.1 Importance Sampling

For the scene description, we attach the light field to a virtual ge-
ometric object, representing an impostor for the area from which
light is emitted. This can be, for example, the glass surface of a car
head light, or simply a planar polygon representing one of the light
field planes. This geometry helps in positioning the light source
in the 3D scene and can also be used to aid the sampling in our
rendering algorithm.

To emit a particle from our light source representation, we could
then use the standard method of selecting a random point on the im-
postor geometry and then a random direction. While this approach
might be sufficient for a relatively uniform light source, it can be in-
efficient when high spatial and directional frequencies are present.
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Figure 5: A light field cell for PDF computation formed by a single
pixel on the measurement plane M and by 1/4 of a filter on the
filter plane S. This corresponds to the region on S where Φi(u),
Φi+1(u), Φj(v), and Φj+1(v) overlap.

We therefore develop an importance sampling strategy for our light
field representation.

The particles that we want to emit have to estimate the total en-
ergy E coming from the light field:

E =

Z

u,v,s,t

L̃(u, v, s, t)
cos2θ

R2
(10)

In order to achieve a constant energy for each photon, the probabil-
ity density function (PDF) of the photon emission has to be:

p(u, v, s, t) =
1

E
L̃(u, v, s, t)

cos2θ

R2
(11)

To generate random photons distributed according to this PDF,
we use the standard approach of generating uniformly distributed
random points in 4D, and passing them through the inverted cu-
mulative density function (CDF, [Pitman 1992]). If we have pre-
inverted and tabulated the CDF, then generating a new random pho-
ton according to this importance is possible in constant time, i.e.
independent of the light field resolution.

One complication in our case is, however, that we have the PDF
represented in terms of some complicated and overlapping basis
functions instead of the usual point sampled (i.e. tabulated) rep-
resentation. We therefore do not directly generate and invert the
CDF from the basis representation, but rather choose a two-steps
approach. We first compute a 4D table of constant probabilities for
selecting a 4D cell from the light field (see Figure 5). A single
4D cell corresponds to all the directions coming from one pixel on
the measurment plane to 1/4 of a filter on the filter plane (corre-
sponding to the minimum overlap between two neighboring filters
in our basis). The probability on this cell can be computed by some
simple summations over the light field coefficients. The details are
described in Appendix B. Then, as we now have a constant prob-
ability for each cell, we can invert this table more easily than the
continuous representation of the PDF. Note that all these steps are
performed only once in a preprocessing stage. The resulting table
is part of the light source description that we save on disk.

5.2 Direct Illumination

As pointed out in the previous section, the light field is attached to
a virtual base geometry. The irradiance at a point x can easily be
computed by sampling this geometry. But as in the case of indirect
illumination, this approach can be quite inefficient depending on
the directional variation of the light source.

Our approach is therefore to separate the Global Map of the tra-
ditional Photon Map algorithm into two: the Direct Map (i.e. the
direct impacts from the lights sources), and a new Global Map (i.e.
impacts after one diffuse reflection). With this separation, we have
two possibilities for computing the direct illumination: we can ei-
ther choose to reconstruct it straight from the Direct Map, or we can
use the Direct Map for generating an importance to guide a standard
Monte Carlo lighting integration.

The former method promises to be quite efficient for highly di-
rectional light sources. The quality of this reconstruction can also
be increased by storing a larger photon number in the Direct Map,
while keeping a low number for the Global Map. This approach in-
volves either limiting the integration to regions where some direct
photons are present in the neighborhood, or building an importance
sampling table from the nearest particles in the Direct Map (similar
to the approach used for the Global Map by Jensen [1995]).

The idea of identifying the direct impacts was already introduced
in [Keller and Wald 2000]. However, instead of using two different
maps, they use the classical Global Map and extend the photon data
structure by storing a light source identifier. While this approach is
well suited for determining which light source the particle is com-
ing from, it is less efficient for finding all direct impacts, which is
what we require here.

In general, the separation of the Global Map into two maps gives
us a lot more flexibility in the reconstruction process. As pointed
out above, the user can choose between different methods for both
the direct and the indirect illumination. Note that this algorithm
is independent of our light source representation and can also be
used in other Photon Map implementations. This is also true for the
following section.

5.3 Other Photon Map Improvements

Our implementation uses a slightly different algorithm to find the
Np closest photons in one of the two maps. We find our approach
to be better in determining which photons actually contribute to the
irradiance estimate.

In the following, ~di will denote the impact direction of a photon
pi, and xi will denote its position. We then search for the particles
closest to a position x with a normal ~n. During the search, we
only consider the particles that have a negative dot product (~di ·
~n), meaning that the particle arrives from above the surface. This
guarantees that only the incident photons on one side of a wall, for
example, will contribute to the reconstructed illumination.

Then, with an approach similar to the one described by Lastra et
al. [2002], the density is estimated on the tangent plane. The parti-
cles pi are projected into the tangent plane at x, and the Euclidean
distance of that projection from x is used as the distance metric.
The distance is thus defined as:

δ(x, pi)
2 = α2 − 2α(x − xi · ~di) + ‖x − xi‖

2

α =
(x − xi · ~n)

(~di · ~n)

This allows us to increase the accuracy of the reconstruction,
especially for non-planar surfaces and corners.

6 Results

We first present results from a simulation of the complete process,
from acquisition (with Setup A) to rendering as a validation of our
approach. We then discuss our measurement setups and show ren-
derings of acquired data sets.
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6.1 Simulations

Before building the real setup, we validate our approach by simu-
lating the acquisition of a strongly directional light field such as a
slide projector. It has an aperture of 50 mm and a focal length of
59 mm. We use an inverted SIGGRAPH 2003 logo as a slide, to
create strong directional variations (see Figure 6). Simulations are
done using Setup A with a filter size of 5.068 mm×5.068 mm and
the quadratic basis. The simulated camera has an imaging sensor
with a size of 27.15 mm×18.1 mm and a resolution of 150 × 100
pixels. The distance between the filter and the imaging sensor is
39 mm, and the distance between the slide projector and the cam-
era is 20 mm. We simulate the acquisition of a 41 × 41 array of
images. We store the data in a signed version of the RGBE format
[Ward 1991] to have a more efficient usage of the memory. The
resulting simulation uses about 96 MB of memory.

Original configuration

Moving plane

In−focus plane

From light field

Figure 6: Projections from the simulated light field of a slide pro-
jector. The first image (left-up) is a projection on a plane in focus,
the second one (left-down) is a projection on a plane closer to the
slide projector.

Based on this data, we then computed a sequence of projections
on a plane moving from the lens of the slide projector to the pro-
jector’s focus plane, to show the directional changes (see Figure 6).
The in-focus image shows that we manage to capture the whole
shape of the light source, even if the small details are not present
which is expected for this setup geometry and the optical filtering.
We also used this data to compute a global illumination solution
that validates the particle emission approach (see Figure 7). This
scene has about 15,000 primitives, and it took about 2 minutes to
compute the inverted probability table (size 32× 32× 128× 128),
4 seconds for emitting 40,000 photons, and 52 minutes to render
one image.1

6.2 Measurements

In order to measure real light sources we built systems for each of
the two setups proposed in Section 4.1. The filters were printed
with 1016 dpi resolution on high density film using a calibrated
LightJet 2080 Digital Film Recorder. This produces slides with a
dynamic range of more than 1 : 50,000, which are then mounted
into suitable frames. The light sources to be measured – we used a
bike light as well as several different flashlight configurations – are
mounted on manually operated translation stages so that they can be
shifted in front of the camera with high precision and repeatability
(see Figure 8). The images were captured with a Kodak DCS 560

1All timings are for a 1GHz Pentium III Workstation.

Figure 7: Global illumination solution for the simulated acquisition
data.

Figure 8: Left: The Mini Mag-Lite and the bike light mounted to
the translation stage. Right: The negative part of the filter illumi-
nated by the bike light. Both images show parts of Setup B.

digital camera in our measurement lab which is covered with dark
material to avoid interference with the measurements [Goesele et al.
2000].

For Setup A, a custom-built filter holder was attached to the cam-
era instead of a lens, so that the filters can easily be exchanged with-
out affecting the geometry of the setup (see Figure 9, left). High-
dynamic range acquisition techniques [Debevec and Malik 1997;
Robertson et al. 1999] were used to acquire the images.

For Setup B, we used a 1.2 m × 1.2 m flat board that was spray-
painted with ultra matte paint as a projection screen. A black board
with an integrated filter holder was used to mount the filter and
shield the light source from the projection screen. To avoid oc-
clusion problems we mounted the camera above the whole setup
and equipped it with a 24 mm shift lens allowing us to capture the
whole projection screen. The camera parameters were recovered
using standard camera calibration techniques and the images were
rectified and registered to the filter setup. Figure 9 (right) shows an
overview of Setup B. A 5×5 median filter was used to suppress dark
current noise resulting from longer exposure times in this setup; re-
maining noise appears as background illumination in the light field.

6.2.1 Measured Data Sets

We acquired several data sets with these setups. Table 2 summa-
rizes the acquisition geometry, Table 3 gives an overview over the
number of views captured and the filters used. All acquired images
were downsampled to achieve a resolution of 300 × 300 pixels on
the measurement plane M. Acquisition times are on the order of
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Figure 9: Left: Setup A. The filter holder mounted to the camera in
front of the lens of a light source. Right: Setup B. The projection
screen is observed by the camera located above the setup. The black
board contains the filter holder. The light sources can be moved on
the table parallel to the filter and the projection screen.

1–2 min per view due to the manual work involved in moving the
translation stage.

Setup Distance Size of M Filter Width
M – S (Dual Basis)

Setup A 55 mm 18 mm × 27 mm 10 mm (small)
Setup B 750 mm 1.2 m × 1.2 m 20 mm (medium)

30 mm (large)

Table 2: Geometry of the acquisition setups.

Data Set Setup # Views Filter Width
(Dual Basis)

Mag-Lite A 9 × 9 10 mm (small)
Mag-Lite Medium B 7 × 7 20 mm (medium)
Mag-Lite Large B 5 × 5 30 mm (large)
Bike Light B 9 × 7 30 mm (large)
LED Flashlight B 5 × 5 30 mm (large)

Table 3: Parameters for the acquired data sets. Note that the width
of the reconstruction filter is 1/2 of the width of the dual filter, the
filter spacing on the filter plane S is 1/4 of the width of the dual
filter.

Figure 10: Mag-Lite acquisition with Setup A: Left, a projection on
a distant (3 m) plane, Right: a global illumination solution (Impor-
tance table construction - 20 s, Particle emission - 40 s, Rendering
20 min). The acquired data set was converted to grayscale.

Only the Mag-Lite data set was captured with Setup A. Due to
geometry constraints imposed by the dimensions of the camera (see
Table 2), we were only able to capture a small part of the light field.

Figure 10 shows on the left the light source pointed at a projection
screen and on the right onto the crypt. The captured part corre-
sponds roughly to the central dark region in the projection of the
real light source (see top of Figure 11). The low resolution is due
to the comparably large filter size. Using a smaller filter would in-
crease both the resolution and the number of views required. In this
configuration, Setup A serves as a proof-of-concept but can proba-
bly not be used to acquire a complete model of a real light source.

Figure 11: Top: photograph of the Mag-Lite illuminating a plane
at 75 cm distance. Bottom left: reconstruction of the same setup
from data measured with a filter of 30 mm width. Bottom right:
reconstruction from data measured with a filter of 20 mm width.

With Setup B, we can generally capture a much larger portion of
the light field of the light source due to the 67 ◦ viewing angle of
the configuration. Additionally, a much larger filter kernel can be
used for the filter plane while still improving the resolution of the
data set.

In Figure 11 we show the light pattern that a Mini Mag-Lite flash
light causes on a plane at 75 cm distance for a specific focus setting
on that flashlight. The top image is a photograph of the flashlight
pointed at a diffuse surface. The bottom row shows two synthetic
images that are reconstructed from measurements. The left image
was generated from a dataset where a dual filter width of 30 mm has
been used, while a dual filter of 20 mm width was used for the right
image. As expected, the larger filter size results in a slightly more
blurry image on the left. In comparing the reconstructed images
with the photograph, we can see that there are some tone-mapping
issues that result in slightly different colors. However, the main
features of the light cone, such as the black ring in the center, are
represented very well in both reconstructions.

In Figure 12 we show similar images for the light field emitted
by a bike light (the light source itself is depicted in the top left of
the figure). The top right of the figure again shows a photograph of
the light source illuminating a plane at 75 cm distance. The image
on the lower right is a reconstruction for the same distance, while
the image on the lower left shows the reconstruction at a distance
of only 18.7 cm.

The narrow vertical stripes are an interesting feature of the bike
light that should be preserved in a model. They are mainly emitted
form the upper and lower edges of the luminaire and are reproduced
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Figure 12: Acquisition on the Bike Light model. The upper right
image shows a plane illuminated by the real light source, at the
distance of 75 cm. The lower right image shows the same plane
illuminated by the acquired data, while the lower left image shows
the result for a plane at a quarter of that distance.

very well in the renderings. Furthermore, due to the effective size
of the luminaire (5 cm×2.5 cm) and its strongly varying emission
characteristics, the near field is quite extended and inhomogeneous.
In the rendered image of the Bike Light model projected at different
distances, variations of the near field are clearly visible. Figure 14
shows a global illumination solution based on this dataset. Note
both the distinctive patterns on the wall and the stripe patterns on
floor and ceiling.

Finally, we have performed the same test for a flashlight with
3 LEDs instead of a light bulb (see left of Figure 13 - the fourth,
smaller LED is a low battery light, and is not used in normal op-
eration). Although the actual flashlight is identical to the one from
Figure 11 except for the light bulb and the reflector, the cone of light
produced by this setup is quite different from the one before. In par-
ticular, the illumination is much more uniform, although roughly
triangular due to the LED layout. This illustrates the importance
of using actual measurements from real world light sources in im-
age synthesis, since even small changes in the reflectors can cause
major differences in appearance.

Figure 13: Photograph and reconstruction of the LED Flashlight.

Figure 14: Exploring the cloister with the Bike Light. Importance
table construction - 37 s, Particle emission - 12 s, Rendering 30 min.

7 Conclusions

In this paper we presented a novel approach for accurate light ac-
quisition. A model is measured using a simple optical system to
project the real light source into a finite element basis. This pro-
jection allows a correct optical pre-filtering of the acquired light
field. We introduced a theoretical framework for this approach and
two possible setups for real acquisitions. The tests we performed to
validate this approach both on a simulated process and on the two
physical setups, have shown that our setup can faithfully represent
rather complex near and far field information with a relatively small
number of measurements. The fact that we perform optical low-
pass filtering avoids aliasing artifacts such as missing directional
peaks. In our evaluations we found that the second setup, although
larger and harder to calibrate, is more practical for real-world light
sources, since it covers a larger field-of-view.

All our acquisitions where done manually. As only linear move-
ments are involved, the entire measurement can be speed up easily
by using a motor driven translation stage. This will lead to an en-
tirely automatic process, that would allow us to further increase the
resolution of the measurements.

We also presented an efficient algorithm to integrate our new
light representation into particle-based global illumination systems.
Using a pre-inverted cumulative density function, this method al-
lows a constant time importance sampling to emit those parti-
cles. Combined with the acquisition step, we therefore a complete
pipeline to bring real light into virtual worlds.
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A An Approximate Shift-Invariant Recon-
struction

For an approximate shift-invariant reconstruction, we start with the
measured irradiance from Section 3.1, but we define the relation-
ship between the Ψijkl and the measurement and reconstruction
bases differently than we did for the exact reconstruction (Sec-
tion 3.2). Here, we define Ψijkl(u, v, s, t) := Φij(u, v) ·Φkl(s, t).
From this, we get

Emn(s, t) =
X

i,j,k,l

Z

∞

−∞

Z

∞

−∞

cos2 θ

R2
· Φ′

mn(u, v) (12)

· Φij(u, v) · Φkl(s, t) · Lijkl du dv

This is still a shift variant filter, since the geometric term de-
pends on the integration variables u and v, and can therefore not be
moved outside the integral. However, if the distance d between the
(u, v)-plane and the (s, t)-plane is large compared to the support of
Φij(u, v), and if θ is small, then this term is well approximated by
one constant per point on the (s, t)-plane:

cos2 θ(u, v, s, t)

R(u, v, s, t)2
≈

cos2 θkl(s, t)

Rkl(s, t)2
. (13)

This yields an approximation of the measured irradiance:

Emn(s, t) ≈
X

k,l

cos2 θkl(s, t)

Rkl(s, t)2
· Φkl(s, t) · Lmnkl. (14)

Since both the approximate geometric term and Φkl(s, t) are
known, it is in principle possible to compute

E′
mn(s, t) ≈

X

k,l

Φkl(s, t) · Lmnkl (15)

by de-convolution. In practice, this is only feasible for basis
functions Φkl(s, t) with a small support. We do not expect this
to be a major problem, however, since the practical measurement
setups discussed in Section 4.1 have a very high resolution on the
(s, t)-plane, so that a bilinear or even box filter can be used. Again,
we apply the definition of Ψijkl to determine the appropriate recon-
struction filter:

L̃(u, v, s, t) =
X

m,n,k,l

Ψmnkl(u, v, s, t) · Lmnkl

=
X

m,n,k,l

Φmn(u, v) · Φkl(s, t) · Lmnkl (16)

≈
X

m

X

n

Φmn(u, v) · E′
mn(s, t).

Thus, an approximate reconstruction of L̃, the projection of L
into the basis {Ψijkl} is obtained using the shift-invariant recon-
struction filter Φmn(u, v). For example, if Φ is a hat function,
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the reconstruction process is reduced to quadri-linear interpolation,
which is frequently used for light field rendering algorithms.

The quality of this approximation depends on the error intro-
duced by assuming the geometric term constant over the support
of basis function Φij(u, v) in Equation 13. An analysis of this er-
ror [Heidrich and Goesele 2001] shows that it is below 10% if the
filter is no larger than 10% of the distance between M and S. That
error is reduced to about 1% for filter sizes no larger than 2% of
that distance.

B Importance Sampling Details

This appendix details the computation of the 4D probability table
introduced in Section 5.1.

To simplify the following equations and the creation of the 4D
table, we make the following assumptions: (a) - the configuration is
centered; (b) - the overlap between two consecutive basis functions
on the sampling plane S correspond to half of its size for width and
height; (c) - the width and height shift (sw and sh, in pixel number)
between two measurements are integers; (d) - the basis function Φi

is symmetric; (e) - the basis function on the measurement plane M
is the box filter; (f) - the support of the original reconstruction basis
function Φ is [−1, 1] and its integral is 1 on this support. With this
assumption, the integrals of the reconstruction basis function are (if
their dimension are wS × hS ):

Z

Φi(u) =
wS

2
,

Z

Φj(v) =
hS

2

With this we can compute the total energy emitted by the light field
(see Equation 10):

E =
wS × hS × wM × hM

4

X

i,j,k,l

Lijkl

Here, wM and hM represent the dimensions of a pixel on the mea-
surement plane.

The 1D-intervals defining a cell can be described by the follow-
ing equations (ISW,n and I

S
H,o on the sampling plane, and IW,n,p

and IH,o,q on the measurement plane - these depend on the selected
intervals on the sampling plane):

I
S
W,n = (−(WS + 1)/2 + [n, n + 1]) × wS ∀n ∈ [0..WS ]

I
S
H,o = (−(HS + 1)/2 + [o, o + 1]) × wS ∀o ∈ [0..HS ]

I
M
W,n,p =

(2n − WS − 1)wS/2 − wMWM

2
+ [p, p + 1] × wM

∀p ∈ [0..WM + sw − 1]

I
M
H,o,q =

(2o − HS − 1)hS/2 − hMHM

2
+ [q, q + 1] × hM

∀q ∈ [0..HM + sh − 1]

Note that WS × HS represents the resolution on the sampling
plane (width×height), and WM ×HM on the measurement plane.
A set of light directions Inopq =I

S
W,n×I

S
H,o× I

M
W,n,p×I

M
H,o,q

corresponds to all the rays passing through a rectangular patch
I
S
W,n×I

S
H,o on the sampling plane with the dimension wS/2×hS/2

from a existing pixel in the dataset I
M
W,n,p×I

M
H,o,q .

On these intervals, we define the events Un = (u ∈ I
S
W,n), Vo =

(v ∈ I
S
H,o), Snp = (s ∈ I

M
W,n,p) and Toq = (t ∈ I

M
H,o,q). We can

then compute the probabilities the conditional probabilities of these
events:

P (Un ∧ Vo ∧ Sp ∧ Tq) =
1

4

Pn

i=n−1

Po

j=o−1 Lijkinpljoq
P

i,j,k,l
Lijkl

P (Tq/(Un ∧ Vo ∧ Sp)) =

Pn

i=n−1

Po

j=o−1 Lijkinpljoq
Pn

i=n−1

Po

j=o−1

P

l
Lijkinpl

P (Sp/(Un ∧ Vo)) =

Pn

i=n−1

Po

j=o−1

P

l
Lijkinpl

Pn

i=n−1

Po

j=o−1

P

k,l
Lijkl

P (Vo/Un) =
1

2

Pn

i=n−1

Po

j=o−1

P

k,l,
Lijkl

Pn

i=n−1

P

j,k,l
Lijkl

P (Un) =
1

2

Pn

i=n−1

P

j,k,l
Lijkl

P

i,j,k,l
Lijkl

with kinp = p− (i− n+ 1)sw and ljoq = q− (j− o+ 1)sh.
The first probability concerns the choice of one cell, while the

others represent the conditional probabilities of selecting one inter-
val only.
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