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Correlated Visibility Sampling for Direct Illumination

Abstract State-of-the-art importance sampling strategies
for direct illumination take into account the importance
of the incident illumination, as well as the surface BRDF.
Hence, these techniques achieve low variance in unoccluded
regions. However, the resulting images still have noise in
partially occluded regions as these techniques do not take
visibility into account during the sampling process.

We introduce the notion of correlated visibility sam-
pling, which considers visibility in partially occluded re-
gions during the sampling process, thereby improving the
quality of the shadowed regions. We aim to draw samples in
the partially occluded regions according to the triple prod-
uct of the incident illumination, BRDF and visibility using
Monte Carlo sampling followed by Metropolis sampling.

Keywords Monte Carlo Techniques · Ray Tracing

1 Introduction

Image-based representations for illumination, such as envi-
ronment maps, textured area lights, and light fields, have
become very popular in recent years as these images can
capture complex real-world illumination that is difficult to
represent in other forms.

The use of a good sampling strategy for illumination
is paramount when integrating image-based lighting, such
as environment maps, into a rendering system. This is be-
cause direct illumination in the form of high dynamic range
(HDR) environment maps can have high frequency detail.
The problem of efficient sampling of the illumination is
compounded when the scene contains materials with high
frequency BRDFs. Several researchers have recently worked
on this problem, by either combining samples drawn inde-
pendently according to the importance of the illumination
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Fig. 1 Buddha model (Phong BRDF s = 50, ks = kd = 0.5) in Grace
Cathedral EM. Left: Bidirectional importance sampling, 20 sam-
ples/pixel. Right: Correlated visibility sampling, 16 bidirectional sam-
ples (1st pass) and 16 Metropolis samples per unoccluded sample (2nd

pass). Rendering times are identical (24 seconds).

and the BRDF [31], or more recently, by drawing sam-
ples from the product distribution of the illumination and the
BRDF [2] [3] [30]. These approaches produce high quality
images with a small number of samples in unoccluded re-
gions. However, the resulting images still have noise in par-
tially occluded regions as these techniques do not take visi-
bility into account in the sampling process (Figure 1, left).

This paper introduces correlated visibility sampling, a
method that additionally takes visibility into account in the
sampling process for partially occluded regions, thereby im-
proving the quality of the shadowed regions (Figure 1, right).
The aim of this technique is to develop an efficient means
of drawing samples from the triple product of the incident
illumination, BRDF and visibility, which we achieve by em-
ploying the Metropolis-Hastings (MH) algorithm [18]. We
describe two variants of the method, one which is unbiased,
and a more efficient one that is consistent, but may exhibit a
small amount of bias.

Our solution is a two-step approach. In the first step,
energy estimates for each pixel are created using samples
drawn from the bidirectional importance (product distribu-
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tion) of the incident illumination and the surface BRDF
(Section 3). This estimate is built using the sampling-
importance resampling (SIR) algorithm, as discussed by
Burke et al. [2]. We create a visibility mask and mark pixels
for which one or more of the visibility tests failed, i.e., pixels
which are partially occluded. In the second step, Metropolis
sampling is started for the partially occluded pixels in order
to locally explore the shadowed regions more extensively
(Section 4). If desired, any image-space operation such as
dilation can be applied to the visibility mask. Our approach
has the following benefits:

– The energy estimates from the first round of sampling are
created with a small number of visibility tests. For unoc-
cluded regions, this small number of samples is sufficient
for providing a good estimate of the integral.

– By employing the visibility mask, visibility tests can
then be restricted in the second phase to the partially oc-
cluded regions where more samples are required in order
to achieve low variance.

– The sampling in the second phase can exploit correla-
tion in the energy estimates of neighboring pixels as a
powerful tool for variance reduction.

– Metropolis sampling in the second phase is started only
from those bidirectional samples that passed visibil-
ity tests in the first phase as these are the valid sam-
ples according to the target distribution. Markov chains
are started from an unbiased Monte Carlo estimate and
hence, have no startup bias.

The rest of this paper is structured in the following man-
ner. Section 2 reviews some of the relevant work in Monte
Carlo sampling from environment maps as well as product
distributions and Metropolis sampling for global illumina-
tion. Section 3 gives an overview of the bidirectional sam-
pling approach which is employed in the first phase of our
algorithm. Section 4 presents the idea of correlated visibility
sampling which we employ in the second phase of our solu-
tion. We conclude with results and a discussion in Sections 5
and 6.

2 Related Work

The computation of the direct illumination in a scene is a
costly task in all rendering systems, both global and local.
This task is complicated in presence of complex real-world
light sources such as environment maps and other image-
based representations. Much effort has focused on the de-
velopment of efficient techniques for completing this task.

2.1 Sampling from Environment Maps and BRDFs

Illumination from environment maps has been a topic of
much recent research. Most of this work focuses on inter-
active applications and therefore uses expensive precompu-
tation [8–11]. In some recent work, the illumination and/or

the BRDF are projected into finite bases such as spherical
harmonics (e.g., [21, 22, 25]) and wavelets [19].

Other researchers have used importance sampling tech-
niques to distribute samples according to the energy distri-
bution in the environment map, either by using point re-
laxation schemes [5, 13] based on Lloyd’s clustering algo-
rithm [16] or by using an efficient hierarchical Penrose tiling
scheme [20].

Agarwal et al. [1] introduced a sampling method for en-
vironment maps taking into account both the energy distri-
bution in the environment map and the solid angle separat-
ing the samples. In this way, close clustering of environment
map samples is avoided, which reduces redundant shadow
tests.

In the context of stippling, Secord et al. [23] described an
algorithm for computing and inverting the cumulative den-
sity function (CDF) based on image intensities. Inversion of
CDFs is also used by Lawrence et al. [15] to sample from
environment maps. This is a simple and efficient method, a
variant of which we use in our work for drawing samples
from environment maps.

Importance sampling from the BRDF is a common op-
eration, though the exact mechanics depend on the specific
representation used. Simple analytical models such as dif-
fuse, Phong, or generalized cosine models can be sampled
analytically (see e.g., [24]). For tabulated BRDFs, kd-tree
representations [17] and more recently, factored represen-
tations [14] have been used for efficient importance sam-
pling. For procedural shaders, cosine lobe approximations
have been used for importance sampling [26]. In our work,
we use only Phong and diffuse reflection models. However,
our method could easily be extended to incorporate more so-
phisticated materials using any of the above methods.

2.2 Multiple Sampling Approaches

Veach & Guibas [31] proposed multiple importance sam-
pling as an effective variance reduction technique. They
combined different sampling distributions such as illumi-
nation and BRDF distributions in an optimal manner using
their proposed balance heuristics. However, methods that di-
rectly sample from the product distribution generally reduce
variance further than is done by multiple importance sam-
pling [2, 3].

Szecsi et al. [29] sample the unoccluded illumination us-
ing correlated sampling and the difference due to visibility
using importance sampling. This method generally performs
well in fully visible regions, but rather poorly in occluded or
partially occluded regions, since the sampling of visibility
does not follow a special sampling pattern.

2.3 Sampling from Product Distributions

Burke et al. [2] introduced the notion of bidirectional sam-
pling which takes into account the energy of incident illumi-
nation as well as the BRDF in the sampling process. They
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present two Monte Carlo algorithms for sampling from the
product distribution - one based on rejection sampling and
the other based on sampling-importance resampling (SIR),
the latter of which is also used by Talbot et al. [30]. In our
work, we use their SIR algorithm during our first phase of
bidirectional sampling.

Clarberg et al. [3] present a technique for efficiently sam-
pling the product of the illumination and the BRDF using a
hierarchical wavelet representation. Their method is very ef-
ficient for tabulated BRDFs but requires significant precom-
putation for environment maps. Lawrence et al. [15] present
an approach for compressing cumulative distribution func-
tions for efficient inversion and they apply it to sampling
from many precomputed environment map PDFs for differ-
ent surface orientations, which is a step towards approximat-
ing the product distribution.

2.4 Metropolis Sampling for Global Illumination

Veach & Guibas [32] first applied Metropolis sampling to
the problem of image synthesis and developed a general, ro-
bust and unbiased algorithm called Metropolis Light Trans-
port (MLT) that was well suited for hard cases for sampling
because of its localized exploration and path re-usage prop-
erties. Fan et al. [7] recently applied the Metropolis algo-
rithm for efficiently sampling coherent light paths for photon
mapping.

Cline et al. [4] presented an efficient unbiased method to
solve correlated integral problems with a hybrid algorithm
that uses Metropolis sampling-like mutation strategies in a
standard Monte Carlo integration setting, overcoming the
startup bias problem of MLT. They apply energy redistribu-
tion over the image plane to reduce variance of path tracing
for global illumination. Our work is similar in spirit to theirs
in the sense of using initial Monte Carlo sampling followed
by Metropolis sampling, except that we apply this to direct
illumination with a specific focus on efficient exploration of
visibility in partially occluded regions.

3 Bidirectional Importance Sampling

As mentioned in the introduction, we create energy esti-
mates for each pixel in our first round of sampling using
bidirectional importance sampling [2]. This sampling ap-
proach takes both the energy distribution in the illumination
and the reflectance of the BRDF into account. The rationale
for using this technique for first round sampling is that it re-
quires very few visibility tests for achieving good quality in
unoccluded regions.

Consider the direct illumination at a point for a given
observer direction ωr:

Lr(ωr) =
∫

Ω
fr(ωi → ωr)cosθiLi(ωi)V (ωi)dωi, (1)

with Li denoting the incident illumination from an environ-
ment map, fr representing the BRDF, and V being the binary
visibility term.

The aim of bidirectional sampling is to perform impor-
tance sampling using the product of the incident light distri-
bution and the BRDF as the importance function:

p(ωi) :=
fr(ωi → ωr)cosθiLi(ωi)∫

Ω fr(ωi → ωr)cosθiLi(ωi)dωi
. (2)

Observe that the normalization term in the denomina-
tor is the direct illumination integral with the visibility term
V (ωi) omitted. In other words, this term is the exitant radi-
ance in the absence of shadows. Burke et al. refer to it as Lns
“radiance, no shadows” [2]:

Lns :=
∫

Ω
fr(ωi → ωr)cosθiLi(ωi)dωi. (3)

If sample directions ω ( j)
i ∼ p(ωi), j = 1, ...,N, are drawn

according to the product distribution in Equation 2, then
Equation 1 can be estimated as LN,p, where

LN,p(ωr) =
1
N

N

∑
j=1

fr(ω
( j)
i → ωr)cosθ ( j)

i Li(ω
( j)
i )V (ω( j)

i )

p(ω( j)
i )

;

=
Lns

N

N

∑
j=1

V (ω( j)
i ). (4)

LN,p is referred to as the bidirectional estimator for the
direct illumination integral.

Bidirectional sampling is implemented as a two-step ap-
proach: initially samples are created according to either the
BRDF alone or the environment map alone, and then these
samples are adjusted to be proportional to the product dis-
tribution. The adjusted samples are then used for visibility
testing. Two Monte Carlo algorithms are presented in [2]
to achieve bidirectional sampling – one based on rejection
sampling and the other based on sampling-importance re-
sampling (SIR) [27]. We employ the SIR algorithm in this
work for our first round of sampling due to the deterministic
nature of its execution time compared to rejection sampling.

Note that the variance of the bidirectional estimator for
the reflected radiance is proportional to the variance in the
visibility function. This is an improvement over sampling
techniques that only consider either the illumination or the
BRDF in the sampling process. This is because the variance
of these techniques depends in addition on the variance in
the function that they do not sample from, BRDF or illumi-
nation respectively. However in regions with complex visi-
bility, estimates with bidirectional sampling will still suffer
from considerable variance. That is the problem we attempt
to solve in this work using our correlated sampling algo-
rithm.
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Fig. 2 Visibility masks for the images presented in Figures 1 and 5.
The white pixels correspond to unoccluded pixels at the end of first
round of bidirectional sampling while the black pixels correspond to
the partially occluded pixels.

4 Correlated Visibility Sampling

In this work, we propose a correlated sampling approach that
takes visibility into account in addition to the incident illu-
mination and the surface reflectance. This is a two-step pro-
cess: we initially create energy estimates for each pixel us-
ing bidirectional importance sampling as discussed in Sec-
tion 3. We create a visibility mask and mark pixels for which
one or more of the visibility tests failed, i.e., pixels that are
partially occluded (Figure 2). In the second step, we em-
ploy the Metropolis-Hastings algorithm in order to locally
explore visibility in the shadowed regions more extensively.
Metropolis sampling is only started for the partially oc-
cluded pixels, thereby avoiding unnecessary visibility tests
in unoccluded regions.

Given a non-negative function f , the MH algorithm gen-
erates a series of samples X = {x1,x2, ...,xn} from a distribu-
tion proportional to f , which is also referred to as the target
distribution, without requiring to normalize f and invert the
resulting PDF. It is thus applicable to a wide variety of sam-
pling problems and was first applied in computer graphics
by Veach & Guibas [32] to the problem of image synthesis.
Given a current sample x, the next sample x′ in the sequence
is generated by randomly mutating x and then accepting or
rejecting the mutation. The mutations are accepted or re-
jected in such a way that the samples converge to the target
distribution. For a description of the MH algorithm, we refer
the reader to the chapter on Metropolis Sampling by Pharr
in the SIGGRAPH 2004 course notes [6].

The MH algorithm generally suffers from a startup bias
as the initial samples in the sequence are not drawn accord-
ing to the target distribution and thus need to be discarded.
Despite the startup bias, integral estimates according to the
MH algorithm are asymptotically unbiased as long as de-
tailed balance is maintained [32]. Detailed balance defines
an acceptance probability of a mutation strategy:

a(x → x′) = min{1,
f (x′) ·T (x′ → x)
f (x) ·T (x → x′)

}, (5)

Fig. 3 Lens perturbation within a 5×5 transition tile. Left: The source
(orange) pixel selects two other (yellow) pixels within the transition
tile for energy transfer. Right: Only one pixel is selected for energy
transfer based on visibility test in the same direction. Green arrows
refer to unoccluded light directions, red arrows to occluded ones.

where x is the current sample and x′ is the mutated sample,
f (x) is the function being integrated and T (x → x′) is the
cumulative transition probability of mutating from x to x′.
Note that the acceptance probability accounts for changes
in surface orientation and surface BRDF from one pixel to
another, for example between the diffuse ground plane and
the specular Buddha model in Figure 1.

Since we begin our Metropolis sampling from an unbi-
ased Monte Carlo estimate, our method does not suffer from
startup bias. However, in general, a small amount of bias
may originate from using samples in unoccluded regions for
both estimating the direct illumination, and for making a de-
cision about entering the correlated sampling stage. This is-
sue is discussed in more detail in Section 4.1

We employ lens perturbation as the mutation strategy for
our algorithm. Since there is correlation in the visibility of
points in neighboring pixels, using this strategy to transfer
energy of samples ωi,x to neighboring pixels x′ can be an
effective means of reducing variance. We partition the im-
age plane into 5×5 tiles (Figure 3) for lens perturbation and
carry out mutations only between the partially occluded pix-
els within each tile. First a mutation of a valid unoccluded
sample (obtained from first round of bidirectional sampling)
is proposed. Visibility is then sampled in the same direc-
tion (for environment map illumination) for the pixel that
the sample gets mutated to. If the visibility test passes, the
mutation is accepted with a probability a, else it is rejected.
If the mutation is accepted, energy is transfered from pixel
coordinate x to x′.

In our case, the cumulative transition probability T (x →
x′) needs to account for both the probability of choosing a
neighboring pixel x′ for transition from pixel x, which we
will call t(x → x′), and for the probability of choosing the
same sample direction ωi to sample illumination at the two
pixels according to bidirectional importance p:

T (x → x′) = t(x → x′) · p(ωi,x′)

By restricting mutations to happen only within 5 × 5
tiles, we ensure that every partially occluded pixel has the
same number of neighbors for energy transfer. This ensures
that t(x → x′) = t(x′ → x).
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However, imposing fixed transition tiles could poten-
tially lead to block artifacts at the tile boundaries. Hence, in
practice we employ a moving tile mechanism for transition
centered around the current pixel x. For example, instead of
performing C = 16 path mutations on a single tile, we chose
16 different partitions of the image plane into 5×5 tiles with
different offsets, and perform one mutation each. Following
the argument from above, this yields an estimate for every
pixel and each of the C tile offsets. The total estimate for one
pixel is then computed as an average of N ·C transitions from
the individual tile offsets, which does not introduce bias.

The acceptance probability of the above mutation strat-
egy then reduces to:

a(x → x′) = min{1,
f (x′) · p(ωi,x)

f (x) · p(ωi,x′)
}, (6)

where

f (x) = fr(ωi,x → ωr,x)cosθi,xLi(ωi,x),

since the visibility term V (ωi,x) = 1, and

p(ωi,x) = fr(ωi,x → ωr,x)cosθi,xLi(ωi,x)/Lns,x,

where Lns,x is the unoccluded radiance in the viewing direc-
tion given in Equation 3. The numerator of p(ωi,x) cancels
out with f (x) in Equation 6, further reducing the equation to

a(x → x′) = min{1,
Lns,x′

Lns,x
}. (7)

Lns,x can be estimated from the first phase of bidirec-
tional sampling for each pixel and hence does not need to be
recomputed during the correlated sampling phase.

The reflected radiance at each partially occluded pixel is
then estimated as

Lvis(ωr) =
1

N ·C

N

∑
j=1

C

∑
k=1

V (ω( j)
i,x )Lns,x′a(ω( j)

i,x′ → ω( j)
i,x ), (8)

where Lvis is the visibility estimator in the viewing direction
ωr, Lns,x′a(ω( j)

i,x′ → ω( j)
i,x ) is the fraction of energy received at

pixel x from a neighboring pixel x′ during each transition,
N is the number of bidirectional samples chosen from first
round sampling, and C is the number of energy transitions
(Markov chains of length 1) employed in the second round
to spread the energy of unoccluded samples, i.e., the valid
samples of the target distribution.

4.1 Bias

As we have introduced the method this far, it produces re-
sults consistent with the true illumination, but it may exhibit
a small amount of bias for finite sample sizes. We use sam-
ples for both estimating the direct illumination, and for de-
ciding whether to start Metropolis mutations in partially oc-
cluded regions. Such dual use results in a bias, as pointed out

by Kirk and Arvo [12], although the bias is typically small
– it is less than the standard deviation of the Monte Carlo
estimate in the first stage.

In practice, we find this bias to be small enough to be
accepted, but if deemed necessary, we can derive a unbi-
ased variant of our method by splitting the MC sample set
form the first phase into two partitions: one for deciding
whether to apply the Metropolis algorithm, and one used for
estimating the illumination in case Metropolis is not neces-
sary. Since we are now using a smaller set of samples to
estimate visibility in partially occluded regions, we have to
use slightly larger sample chains to achieve the same qual-
ity of results. Since the number of visibility tests remains the
same, this can be done at low additional cost. Figure 4 shows
a comparison of the biased and the unbiased version of the
algorithm.

Fig. 4 Visual comparison of the biased (left) and the unbiased version
(right) of our method. Note that the highlights are crisper in the unbi-
ased solution.

5 Results

In this section we compare the results of our correlated vis-
ibility sampling with bidirectional importance sampling for
rendering from HDR environment maps. Images were gen-
erated with a reasonably well-optimized ray tracer using a
voxel grid as the acceleration data structure for intersection
queries. Our comparisons examine the output quality of the
two discussed rendering algorithms for a fixed amount of
computing time. We performed these tests on a 3.0 GHz
Xeon running Linux SuSE 9.0.

Figure 2 presents the visibility masks obtained from first
round bidirectional sampling for the images in Figures 1
and 5. The white pixels represent unoccluded pixels which
would not be processed in our second round of sampling.
The gray pixels correspond to the background environment
map. Finally, the black pixels correspond to those where one
or more visibility samples were occluded during first round
of bidirectional sampling. These pixels are deemed partially
occluded and are processed during our second round of cor-
related visibility sampling.
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Fig. 5 Buddha model (Phong BRDF s = 50, ks = kd = 0.5) in an indoor HDR EM. Left: Importance sampling from EM, 200 samples/pixel.
Center Left: Multiple importance sampling from EM (140 samples/pixel) and BRDF (40 samples/pixel). Center Right: Bidirectional importance
sampling, 20 samples/pixel. Right: Correlated visibility sampling, 16 bidirectional samples (1st pass) and 16 Metropolis samples per unoccluded
sample (2nd pass). Rendering times are identical (16 seconds).

Figure 1 presents a complex visibility scenario with the
Buddha model in the Grace Cathedral Environment. The
Buddha model has 300K triangles, while the Grace Cathe-
dral environment is a 1024×512 HDR map with a contrast
ratio of 107 : 1. In this test, both the bidirectional sampling
and the correlated sampling algorithms were given 24 sec-
onds to render one 176× 248 image each. The time budget
was chosen so as to allow good quality in unoccluded re-
gions. For bidirectional sampling, this time budget allowed
for visibility to be tested with N = 20 samples, and these
N samples were chosen after resampling from a larger set
of M = 800 samples. Note how the shadows between Bud-
dha’s feet as well on the ground-plane are noisy with bidi-
rectional sampling. For the same compute time, the partially
occluded regions are very smooth with our correlated sam-
pling approach. Here, we used N = 16 first round bidirec-
tional samples for the unoccluded regions, and then C = 16
Metropolis samples to spread the energy of the unoccluded
samples in our second round of sampling. The un-occluded
reflected radiance Lns was estimated using fewer samples
(M=725) with our correlated sampling approach. Hence,
our algorithm produces slightly noisier results in these un-
occluded regions. However, the overall tradeoff is better with
this approach. The RMS error compared to a converged im-
age reduced from 0.066 when using bidirectional sampling
to 0.058 when using the correlated sampling approach for
Figure 1. And visually, the images rendered with correlated
sampling are much more pleasing due to lower noise in the
shadowed regions (please refer the video).

Figure 5 presents a scene with visibility not as com-
plex as that of Figure 1 and with lower frequency illumi-
nation. Here we compare the performance of our correlated
sampling approach with standard importance sampling from
EM, multiple importance sampling from EM and BRDF, as
well as bidirectional sampling. Due to high frequencies in
both the EM and the BRDF, multiple importance sampling
has better performance than sampling only according to the
EM. Bidirectional sampling does better than both these ap-
proaches in reducing image noise as it samples according to

the product distribution. Even then, our correlated sampling
approach is more effective than bidirectional sampling in re-
ducing noise in partially occluded regions such as the inside
of Buddha’s arms and regions around the face and chest.

Figure 7 presents another visibility situation with the
Dragon model (870K triangles) in the Grace Cathedral en-
vironment. Here, the regions on the Dragon’s neck under-
neath the head as well as on the body are partially occluded
by other parts of the Dragon’s body. Again, our correlated
sampling approach nicely cleans up the shadowed regions
that remain noisy with the bidirectional sampling approach.
Figure 6 presents the visibility masks for the images in Fig-
ure 7. The mask on the top shows many pixels in generally
unoccluded areas on the Dragon’s body as well as its head
are marked as partially occluded after first round of sam-
pling. The mask on the bottom is obtained after applying a
simple dilation operation with a 3× 3 kernel to the original
mask and is better representative of the visibility situation.
The dilation operation reduces the variance in the penum-
bra region, and reproduces sharper shadow boundaries in re-
gions that are generally unoccluded such as the Dragon’s
head (Figure 7, right).

Fig. 6 Visibility mask for the images in Figure 7. Left: Undilated
mask. Right: Dilated mask.

Figure 8 presents the David model (700K triangles) with
a relatively low frequency BRDF (s = 10, ks = 0.5, kd = 0.5)
rendered in direct sunlight from an HDR sky probe [28]. No-
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Fig. 7 Dragon model (Phong BRDF s = 50, ks = kd = 0.5) in the Grace Cathedral HDR EM. Left: Bidirectional importance sampling, 20
samples/pixel. Middle and Right: Correlated visibility sampling, 16 bidirectional samples (1st pass) and 16 Metropolis samples per unoccluded
sample (2nd pass). Middle: Undilated visibility mask. Right: Dilated visibility mask. Rendering times are identical (16 seconds).

tice how the noise in the shadow on David’s chest (Figure 8,
left) is efficiently reduced using the correlated sampling ap-
proach (Figure 8, right).

Our correlated sampling approach could also be used
with traditional importance sampling as the first stage of
Monte Carlo sampling instead of bidirectional sampling.
However, this would only be efficient when only either the
BRDF or the illumination is high frequency but not both, as
is the case in Figure 8.

The implementation of our correlated sampling approach
involves the usual time vs. memory tradeoff. Compared
to the bidirectional sampling approach that processes each
pixel independently, the correlated sampling approach needs
to store information about neighboring pixels and the visi-
bility mask at the end of the first stage of sampling. For ef-
ficiency, we store the N bidirectional samples for each pixel
obtained from first stage sampling as well as the estimate
of Lns for each pixel. In addition, in order to prevent hav-
ing to trace primary rays for every transition during corre-
lated sampling, we also store the information corresponding
to primary rays such as vertex position, vertex normal and
view vector for every pixel. Thus our implementation incurs
an additional memory overhead of ∼W ×H ×N ×Sample,
where W ×H is the resolution of the image plane and Sample
is a triple of floats used for storing a sample/position/normal.

With these memory overheads, our correlated sampling
stage only required an additional 5−10% computation time
after the first stage bidirectional sampling. This additional
time was mostly spent in areas with high occlusion such as
ground planes occluded by geometry in Figure 1.

6 Conclusions

We have presented a correlated sampling approach for di-
rect illumination that also takes visibility into account in the
sampling process apart from the incident illumination and
the surface reflectance. By providing a means of sampling
from the triple product of the illumination, BRDF and vis-
ibility, our method achieves lower variance in partially oc-
cluded regions with complex visibility compared to bidirec-
tional sampling for direct illumination. Our method effec-

Fig. 8 David model (Phong BRDF s = 10, ks = 0.5,kd = 0.5) in a
sky probe HDR EM. Left: Bidirectional importance sampling, 20 sam-
ples/pixel. Right: Correlated visibility sampling, 16 bidirectional sam-
ples (1st pass) and 16 Metropolis samples per unoccluded sample (2nd

pass). Rendering times are identical (12 seconds).

tively exploits correlation in the integral estimates of neigh-
boring pixels to reduce noise in these regions.

Our proposed correlated sampling method incurs ad-
ditional memory overheads for storing samples generated
from first round of bidirectional sampling. However, this
overhead is linear in the number of pixels in the image,
and hence is not that significant. Given this small mem-
ory overhead, the correlated sampling stage reduces noise
in shadowed regions with complex visibility with a small
(5− 10%) additional computation time. For this extra com-
putation time, our method of employing Metropolis sam-
pling after an initial phase of Monte Carlo sampling provides
much greater benefit in terms of image quality in shadowed
regions compared to pure Monte Carlo sampling.
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