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Abstract

Sampling complex illumination in the form of environment maps has received a lot of attention in computer graph-
ics. Recent work in this area has demonstrated that drawing samples from the product of light and BRDF produces
superior results to other sampling strategies. However, existing methods in this area consider only individual
frames, and do not take advantage of coherence in animations. In this paper, we introduce a sequential sampling
approach for dynamic environment map illumination. Our algorithm efficiently samples from the product of illu-
mination and BRDF, while exploiting temporal coherence. We demonstrate significant performance benefits over
existing methods.

Keywords: Methods and Applications – Monte Carlo Techniques; Rendering – Ray Tracing; Rendering – Global
Illumination.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [COMPUTER GRAPHICS]: Three-Dimensional
Graphics and Realism, Raytracing.

1. Introduction

The sampling of complex direct illumination in the form
of high dynamic range (HDR) environment maps has re-
ceived significant attention in recent years, with major ap-
plications in realistic relighting. The best known techniques
for direct illumination sample from the product of the in-
cident illumination and the surface reflectance [BGH05,
CJAMJ05, TCE05]. With advancements in HDR acquisition
technologies, HDR video environments are becoming in-
creasingly available. This availability has spawned recent
work on sampling dynamic illumination from such HDR
video sequences [HSK∗05, WWL05]. However, these tech-
niques only take the dynamic importance of the illumina-
tion into account while proposing samples for the video se-
quence. Such techniques are problematic in the presence of
high frequencies in both the illumination as well as the sur-
face BRDFs. While one can produce noise-free images by
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using one set of samples for all surface locations, doing so
eliminates the impact of dimmer light sources, which should
dominate the reflection for certain surface orientations.

In this work, we aim to efficiently sample from the prod-
uct distribution of the illumination and the BRDF in a
video sequence with dynamic illumination using a Sequen-
tial Monte Carlo (SMC) sampling strategy. The basic idea
is to generate samples according to the product distribu-
tion in the first frame of the sequence, and thereafter to fil-
ter these samples (particles) in the subsequent frames ac-
cording to the dynamic product distribution. This sequential
sampling mechanism is more efficient than independently
re-regenerating the samples for every time step (Figure 1),
especially for scenes with high frequencies in both the dy-
namic illumination and the BRDF. At the same time, our
method avoids systematic under-estimation of reflections at
certain angles, which is common to dynamic importance
methods generating point light approximations of the envi-
ronment.

Our solution to sampling from the dynamic product dis-
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Figure 1: Quality comparison of our SMC sampling algorithm with bidirectional importance sampling for a sky probe sequence.
Left: 1st frame rendered using bidirectional importance sampling in 8 seconds. Center: 5th frame of sequence rendered using
SMC sampling in 4 seconds. Right: Comparison image for 5th frame generated using bidirectional importance sampling in 4
seconds.

tribution is a two-step approach. We assume that we have
already obtained a sample set according to the product dis-
tribution of the previous frame. For the first frame of the
animation, we generate this sample set with bidirectional
importance sampling [BGH05]. In the first step of our al-
gorithm, samples distributed according to the product dis-
tribution of the previous time step are propagated in time
using sequential importance sampling. The product distribu-
tion at the new time step is incrementally estimated using
the weights of the sequential importance. The second step
extends the path of each of these samples using a Markov
Chain Monte Carlo (MCMC) kernel whose invariant dis-
tribution is the target distribution at the current time step.
The MCMC kernel is implemented using the Metropolis-
Hastings (MH) algorithm [MRR∗53]. No visibility tests are
performed during either of the two steps. Visibility is finally
tested at the end of the second step in order to obtain a Monte
Carlo estimate of the direct illumination. This approach has
the following benefits:

• We need to propagate only a small number of samples in
time to estimate the direct illumination as these samples
are distributed according to the target distribution at each
time step. This makes sample propagation very efficient.

• The normalization constant for the product distribution at
each time step can be incrementally computed using the
sequential importance weights. Thus, the normalization
constant, i.e. the un-occluded reflected radiance at each
time step can be estimated very efficiently without draw-
ing a large number of samples.

• Sample generation cost at each time step is independent of
the cost of sampling from the BRDF representation since
the algorithm only requires to evaluate the BRDF but does
not require to sample from it. Thus, any complex BRDF

representation can be used without impacting sample gen-
eration cost.

• The method creates samples on the fly and does not re-
quire any expensive precomputation.

2. Related Work

The computation of the direct illumination in a scene is a
costly task, especially in the presence of complex real-world
light sources such as environment maps and other image-
based representations. Much effort has been focused on the
development of efficient techniques for completing this task
in the presence of static as well as dynamic illumination.

2.1. Sampling from Environment Maps and BRDFs

The easiest way of dealing with this situation is by sam-
pling from either the environment map or the BRDF,
but not both. To sample from the energy distribution
of the environment, researchers have used point relax-
ation schemes [CD01, KK03], hierarchical distribution
schemes [ODJ04, Deb05], or inversion of the cumula-
tive density function (CDF) [LRR05, SHS02]. Agarwal et
al. [ARBJ03] introduced a sampling method for environment
maps that takes into account both the energy distribution in
the environment map and the solid angle separating the sam-
ples to avoid oversampling of bright regions.

All these methods work best for high-frequency illumina-
tion, but low-frequency BRDFs. In cases where the BRDF
contains high frequencies, but the illumination does not,
sampling form the BRDF reduces the variance. Depending
on the BRDF representation, different strategies can be used,
for example for analytical BRDFs (e.g. [Shi00]), or tabulated
BRDFs [MH97, LRR04].
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When both the environment and the BRDF contain high
frequencies, neither of these methods works very well.
Veach and Guibas [VG95] were the first to consider this
problem. Their multiple importance sampling combined dif-
ferent sampling distributions such as illumination and BRDF
distributions using balance heuristics.

However, as shown recently, sampling directly from the
product of light and BRDF produces even better results.
Several strategies have recently been introduced to this end.
Burke et al. [BGH05] present two algorithms for sampling
according to the product distribution, one based on rejec-
tion sampling and the other based on sampling-importance-
resampling (SIR), the latter of which is also used by Talbot
et al. [TCE05]. Clarberg et al. [CJAMJ05] present a tech-
nique for efficiently sampling the product of the illumina-
tion and the BRDF using a hierarchical wavelet representa-
tion. Their method is very efficient for tabulated BRDFs but
requires significant precomputation for environment maps
making it unsuitable for dynamic illumination. Lawrence et
al. [LRR05] present an approach for compressing cumula-
tive density functions for efficient inversion and apply it to
sampling from many precomputed environment map PDFs
for different surface orientations. This can be seen as an ap-
proximation of the product distribution.

Our proposed SMC mechanism for sampling dynamic il-
lumination is very general and can be applied in combination
with any sampling scheme discussed above for proposing
samples in the first time step. In fact, sequential sampling
would also help overcome the precomputation requirements
of some of these techniques for a dynamic sequence. In our
work, we employ Burke et al.’s SIR algorithm for bidirec-
tional importance sampling [BGH05] in the first frame of
the sequence.

2.2. Sampling from Dynamic Illumination

Several researchers have considered the problem of sam-
pling from dynamic illumination. For example, Sbert et
al. [SSSK04] presented a method for reusing light paths
computed in one frame of a light animation sequence in all
other frames using multiple importance sampling. The indi-
rect illumination in each frame of the sequence is approx-
imated as weighted contributions from these precomputed
virtual point lights. This method works on moving point
lights, not complex environments.

Some researchers have looked at path re-usage in the con-
text of global illumination for a sequence of camera anima-
tion via reprojection of the primary ray hits on to the image
plane. Here, techniques that are possibly biased [HDMS03]
as well as unbiased techniques [MFSSK06] using multiple
importance sampling have been proposed for the path re-
usage. Our proposed SMC sampling mechanism can also be
applied to a camera animation sequence for sample propaga-
tion in an unbiased manner, while being more efficient than
multiple importance sampling.

Recent work on dynamic environment maps, including
Wan et al. [WWL05] and Havran et al [HDS03], approxi-
mates environments with a set of point lights that are drawn
according to the energy distribution in the environment map,
and evolve smoothly over time. However, this procedure in-
troduces a systematic error for specular materials if none of
the chosen point lights resides inside the specular lobe. In
this case, one would expect to see a specular reflection of a
dimmer part of the environment, but these methods cannot
produce this result.

2.3. Metropolis Sampling for Global Illumination

Our method includes a Metropolis sampling strategy. Veach
& Guibas [VG97] first applied Metropolis sampling to the
problem of image synthesis and developed a general, robust
and unbiased algorithm called Metropolis Light Transport
(MLT) that was well suited for hard cases for sampling be-
cause of its localized exploration and path re-usage proper-
ties. Fan et al. [FCL05] recently applied the Metropolis algo-
rithm for efficiently sampling coherent light paths for photon
mapping.

Cline et al. [CTE05] presented an efficient unbiased
method to solve correlated integral problems with a hy-
brid algorithm that uses Metropolis sampling-like mutation
strategies in a standard Monte Carlo integration setting,
overcoming the startup bias problem of MLT. They apply en-
ergy redistribution over the image plane to reduce variance
of path tracing for global illumination. Our work is similar in
spirit in the sense of using initial Monte Carlo sampling for
proposing samples for the subsequent time step, followed by
Metropolis sampling in order to explore the new direct illu-
mination target distribution.

3. Sequential Monte Carlo Sampling

As mentioned in the introduction, we propose a sequential
Monte Carlo (SMC) sampling algorithm for sampling ac-
cording to the dynamic product distribution of the illumi-
nation and the surface reflectance during an animation se-
quence. Traditional SMC algorithms in the literature deal
with the case where the target distribution of interest at time
n, defined on Ωn, is of a higher dimension than the target
distribution at time n−1 [DdFG01]. A classical example of
this is an SMC algorithm applied to sequential Bayesian in-
ference. In our case, the target distribution at every time step,
i.e. the direct illumination integral, is defined on a common
space of the hemisphere of directions Ω. Hence, we employ a
class of SMC samplers recently developed for a common do-
main [dMDJ06] to the problem of sampling from the product
distribution of incident illumination and BRDF in the pres-
ence of dynamic illumination.

Our SMC sampling algorithm is a two-step approach: we
start with samples created according to the product distribu-
tion in the previous time step, and propagate them in time
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using sequential importance sampling followed by a possi-
ble resampling step. We then employ an appropriate MCMC
transition kernel to redistribute the samples according to the
product distribution at the new time step. Thereafter these
samples, now distributed according to the new target distri-
bution, are used for visibility testing.

Consider the direct illumination at a point for a given ob-
server direction ωr:

Lr(ωr) =
Z

Ω
fr(ωi → ωr)cosθiLi(ωi)V (ωi)dωi, (1)

with Li denoting the incident illumination from an environ-
ment map, fr representing the BRDF, and V being the binary
visibility term. Note that we treat Li and fr as scalar-valued
functions here and throughout the text. In practice, Li and fr
are color-valued functions, from which we derive the scalar-
valued ones by averaging the color channels.

The target distribution of interest for direct illumination
is the product distribution p of incident illumination and the
BRDF:

p(ωi) :=
fr(ωi → ωr)cosθiLi(ωi)

R

Ω fr(ωi → ωr)cosθiLi(ωi)dωi
=

p̃(ωi)

Lns
. (2)

Here, p̃(ωi) = fr(ωi → ωr)cosθiLi(ωi) is the un-
normalized importance function, and Lns =

R

Ω fr(ωi →
ωr)cosθiLi(ωi)dωi is the un-occluded reflected radiance in
the viewing direction and is the normalization constant of
the target distribution. Burke et al. [BGH05] refer to Lns as
"radiance, no-shadows".

Our SMC algorithm works as follows: we start with sam-
ples ω( j)

i,n−1 and weights W ( j)
n−1, j = 1, ...,N, such that the

weighted samples are proportional to the product distribu-
tion of BRDF and illumination in frame n−1. These samples
represent the incident light directions for one surface point,
that is, the point visible at a specific pixel. For the first frame,
these samples are obtained by bidirectional importance sam-
pling, and all weights are 1/N. The two steps of our method
are then sample propagation followed by MCMC transition
to adjust the samples to the product distribution in the next
frame.

Step 1: Sample Propagation: We propogate the samples
ω( j)

i,n−1 in time using sequential importance sampling. The
un-normalized incremental weight w̃n of every sample for
sequential importance at time n is given by the following
ratio:

w̃( j)
n =

p̃n(ω( j)
i,n−1)

p̃n−1(ω
( j)
i,n−1)

, (3)

This weight is just the ratio of the target function eval-
uated at the sample point at time n to that evaluated at

time n− 1 for the same point, and represents the change in
weighting of a sample due to changes in the target distribu-
tion. The normalized weights for the N samples at time n are
then given by:

W ( j)
n =

W ( j)
n−1 · w̃

( j)
n

∑N
k=1 W (k)

n−1 · w̃
(k)
n

. (4)

This tracking of weights to represent evolving target dis-
tributions is called Sequential Monte Carlo Sampling, or
SMC for short [dMDJ06]. Note that we can use the SMC
mechanism for sampling from a dynamic sequence even if
we use a different proposal distribution q instead of p for
the first frame. The only difference here would be that we
would have to appropriately weight the samples of the first
frame for sequential importance. The un-normalized weights
w̃( j)

1 would then need to be computed as:

w̃( j)
1 =

p̃1(ω
( j)
i,1 )

q1(ω
( j)
i,1 )

,

and then normalized to obtained W ( j)
1 .

Step 1a: Resampling. As the variance between the proposal
distribution qn and the target distribution pn tends to in-
crease with n, the variance of the un-normalized importance
weights tends to increase resulting in a potential degener-
acy of the particle approximation. This degeneracy can be
measured using the criterion of effective sample size (ESS)
(∑N

j=1(W
( j)
n )2)−1 [LC98]. The ESS takes values between 1

and N. If the ESS is below a pre-specified threshold, say
N/2, we resample the N samples according to the weights
W ( j)

n and set the weights of the resampled samples equal
to 1/N. This resampling step discards samples with low
weights while copying the samples with high weights mul-
tiple times, thus keeping the samples according to the target
distribution. Note that the mutations in the next step make
sure we do not keep multiple identical samples.

Step 2: MCMC Transitions. After sample propagation and
potential resampling, we apply an MCMC kernel Kn(ωi,ω′

i)

of invariant distribution pn to every sample ω( j)
i,n−1 in or-

der to obtain new samples ω( j)
i,n . The new samples ωi,n are

marginally distributed according to

pn(ω′

i) =
Z

Ω
pn−1(ωi)Kn(ωi,ω′

i)dωi. (5)

We employ the Metropolis-Hastings algorithm (MH) for
these transitions, with a mix of local random walk moves
and independent proposal moves. For a detailed description
of the MH algorithm, we refer the reader to the chapter
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Symbol Description

ω( j)
i jth sample (incident direction)

W ( j)
n Weight for jth sample in frame n

w̃( j)
n Unnormalized weight for jth sample in frame n

N Number of samples per pixel
pn Target PDF for frame n
p̃n Unnormalized importance (product of illumination and BRDF)
qn Proposal distribution at time n
pk/P

n−1:n The kth of P intermediate distributions between frame n−1 and frame n

Table 1: Summary of notation used in this paper.

on Metropolis Sampling by Pharr in the SIGGRAPH 2004
course notes [DJA∗04]. When using the MH algorithm, the
MCMC kernel Kn of invariant distribution pn is described in
terms of an acceptance probability of a proposed transition:

a(ω( j)
i → ω′( j)

i ) = min{1,
p̃n(ω′( j)

i )q(ω′( j)
i → ω( j)

i )

p̃n(ω( j)
i )q(ω( j)

i → ω′( j)
i )

}, (6)

where ω( j)
i is the current sample, ω′( j)

i is the proposed sam-
ple using the transition kernel q, and a is the acceptance
probability of the proposed transition.

We mix local walk moves with independent proposal
moves as these independent moves are required to prevent
the SMC samples from getting stuck in local possibly nar-
row modes of the target distribution. For high frequency dy-
namic lighting, we choose local walk moves with uniform
random directional perturbations of up to a few degrees of
the samples, while choosing samples from the environment
map (EM) for the independent proposal moves. When us-
ing local random walk moves, there is an equal probability
of transition between ω( j)

i and ω′( j)
i , i.e. q(ω( j)

i → ω′( j)
i ) =

q(ω′( j)
i → ω( j)

i ). Thus, the acceptance probability alocal of
the local walk moves is given by:

alocal(ω
( j)
i → ω′( j)

i ) = min{1,
p̃n(ω′( j)

i )

p̃n(ω( j)
i )

}. (7)

When using independent proposal moves from the EM,
the transition probability of the proposed sample is given by
q(ω( j)

i → ω′( j)
i ) = Li,n(ω

′( j)
i )/

R

Ω Li,ndωi. Hence the accep-
tance probability of the independent move is given by:

aEM(ω( j)
i → ω′( j)

i ) = min{1,
p̃n(ω

′( j)
i )Li,n(ω

( j)
i )/

R

Ω Li,ndωi

p̃n(ω
( j)
i )Li,n(ω

′( j)
i )/

R

Ω Li,ndωi
}

= min{1,
fr(ω

′( j)
i →ωr)cos θ′( j)

i

fr(ω
( j)
i →ωr)cos θ( j)

i

}.

(8)

In practice, we propose several MCMC moves per sample
for good exploration of the target distribution.

Note the SMC algorithm as described above is unbiased:
Step 1 corresponds to an importance sampling step, which
produces the correct distribution at time n using the distribu-
tion at time n− 1 as importance. The variance of this dis-
tribution is reduced by applying the MCMC algorithm in
Step 2. Since MCMC algorithm works on an unbiased dis-
tribution, startup-bias is avoided. A formal argument can be
found in [dMDJ06].

3.1. Direct Illumination Estimate

With the sample sets and weights derived above, we can now
estimate the reflected radiance at a surface location as

LN,n,smc(ωr) = Lns,n

N

∑
j=1

W ( j)
n ·V (ω( j)

i,n ). (9)

Equation 9 can be interpreted as the scaling of the un-
occluded reflected radiance Lns,n by the weighted average of
N visibility tests performed along the directions contribut-
ing most significantly to the radiance at time n. Here, the
normalization constant Lns,n at time n can be incrementally
estimated as

Lns,n

Lns,n−1
=

R

Ω p̃n(ωi,n−1)dωi,n−1
R

Ω p̃n−1(ωi,n−1)dωi,n−1
≈

N

∑
j=1

W ( j)
n−1 · w̃

( j)
n .

(10)

The derivation of this result is given in Appendix A. It is
worth pointing out that this incremental estimate of the nor-
malization constant Lns,n at time n according to Equation 10
provides the crucial advantage for the SMC algorithm in
terms of computational expense over a pure MC approach
such as bidirectional sampling where the proper estimate of
Lns requires drawing large number of samples. To estimate
Lns,n/Lns,1, one can use the product of estimates given by
Equation 10 from time t = 2 to n. Lns,1 is estimated in our
case during bidirectional sampling for the first time step.
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A summary of the method can be found in Algorithm 1.
The complexity of this algorithm is in O(N).

Algorithm 1 SMC Sampling for Dynamic Illumination
1: INITIALIZATION
• Set n = 1.
• For j = 1, ...,N draw ω( j)

i,1 ∼ p1 using bidirectional

sampling and set W ( j)
1 = 1/N.

Iterate steps 2 and 3:
2: WEIGHTING AND RESAMPLING
• Set n = n+1.
• Compute new weights W ( j)

n according to Equations 3
and 4.

• If ESS < T hreshold, resample and set W ( j)
n = 1/N.

3: SAMPLING
• For j = 1, ...,N draw ω( j)

i,n ∼ Kn(ωi,n−1,ωi,n).
• Estimate Lns,n according to Equation 10.
• Estimate reflected radiance according to Equation 9.

4. Variance Reduction with Intermediate Distributions

The aim of the SMC sampling algorithm as discussed in Sec-
tion 3 is to "smoothly" move samples from the target distri-
bution at time n−1 to the target distribution at time n. More
formally, we have samples

ω( j)
i,n−1 ∼ pn−1(ωi) =

p̃n−1(ωi)

Lns,n−1
,

and we want to move towards samples

ω( j)
i,n ∼ pn(ωi) =

p̃n(ωi)

Lns,n
.

This transition is smooth under the assumption that
pn−1 ≈ pn. However, this may not be true in practice, es-
pecially in the case where the dynamic illumination is in the
form of a high frequency HDR video environment. If the
discrepancy between the two successive distributions is too
high, this will result in high variance in the un-normalized
incremental weights w̃( j)

n , and thus indirectly result in high
variance in the normalized weights W ( j)

n . The variance in
W ( j)

n can be countered with the resampling step after sequen-
tial importance sampling, resulting in good estimates of the
posterior p̃n. However, the resampling step does not affect
the variance in the un-normalized weights w̃( j)

n , which can
lead to high variance in the incremental estimate of the nor-
malization constant Lns,n according to Equation 10.

In this scenario, we introduce a sequence of intermediate
distributions [GM98] between the original distribution pn−1
and the new one pn in order to select a smooth transition that

the sample can follow. These intermediate distributions are
blends of the original distributions:

pγ
n−1:n(ωi) ∝ p̃γ

n−1:n(ωi) = [ p̃n−1(ωi)]
1−γ[ p̃n(ωi)]

γ, (11)

such that

p0
n−1:n(ωi) = pn−1(ωi), p1

n−1:n(ωi) = pn(ωi).

In practice, we introduce P discrete intermediate distri-
butions: pk/P

n−1:n(ωi), where k = 1, ...,P. We can use these
new distributions to reduce variance with little additional
cost. The idea is to reduce the variance in the incremental
weights w̃n by computing them as a product of P incremental
weights w̃k of these intermediate distributions. The consecu-
tive intermediate distributions pk/P

n−1:n(ωi) and p(k−1)/P
n−1:n (ωi)

are closer to each other by construction than pn−1(ωi) is to
pn(ωi), resulting in flatter weights w̃k, as compared to w̃n.

The SMC algorithm with P intermediate distributions re-
quires slight modifications to the algorithm discussed in Sec-
tion 3. Instead of first computing the un-normalized weights
w̃( j)

n and the normalized weights W ( j) and then doing the
MCMC transitions, the algorithm for P intermediate distri-
butions computes the un-normalized weights w̃( j)

n as a prod-
uct of P intermediate un-normalized weights w̃k,( j) that each
involve an MCMC kernel of invariant distribution pk/P

n−1:n.

Here, the intermediate un-normalized weights w̃k,( j) are
computed as:

w̃k,( j) =
p̃k/P

n−1:n(ω
k−1,( j)
i )

p̃(k−1)/P
n−1:n (ωk−1,( j)

i )
. (12)

Assuming we have samples {W ( j)
n−1, ω( j)

i,n−1} approximat-
ing pn−1. The algorithm then proceeds as follows:

Algorithm 2 SMC with Intermediate Distributions
1: INITIALIZATION:
• We write ω0,( j)

i = ω( j)
i,n−1 and set w̃( j)

n = 1.
2: ITERATION: for k = 1, ...,P
• Compute w̃k,( j) according to Equation 12.
• Set w̃( j)

n = w̃( j)
n · w̃k,( j).

• Sample ωk,( j)
i ∼ Kk(ω

k−1,( j)
i ,ω′k−1,( j)

i ) of invariant

distribution pk/P
n−1:n(ωi).

At the end of the P iterations of intermediate distributions,
the normalized weights W ( j)

n are still computed according
to Equation 4, and resampled if the ESS is below the pre-
specified threshold. Finally, the normalization constant Lns,n
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and the direct illumination estimate are computed according
to Equations 10 and 9 respectively.

In general, there is greater benefit in terms of variance
reduction in the estimate of the target distribution with the
introduction of a sequence of P intermediate distributions
involving one MCMC move each than with a single distribu-
tion involving P MCMC moves, while being only a slightly
more expensive in terms of computation time (Figure 3 in
the results section). This benefit is because a sequence of in-
termediate distributions simultaneously reduces the variance
in the un-normalized weights w̃( j)

n while exploring the target
distribution at time n.

5. Unoccluded Illumination Estimate with Path
Sampling

In this section, we explore an alternative estimate for the un-
occluded radiance Lns, which can be used in place of the
method described in section 3.1. We obtain this alternate so-
lution by path sampling [GM98]. In the statistics literature,
the path of a sample is defined as the continuous trajectory of
a sample over time. It should not be confused with light paths
in classical global illumination literature. With this definition
of path, path sampling refers to smoothly moving samples
from one distribution to the next.

Considering a continuous path of distributions

pγ
n−1:n(ωi) =

p̃γ
n−1:n(ωi)

Lγ
ns,n−1:n

,

the following path sampling identity holds [GM98]:

log(
Lns,n

Lns,n−1
) =

Z 1

0

Z d log( p̃γ
n−1:n(ωi))

dγ
pγ

n−1:n(ωi)dωidγ.

(13)

In our case, the logarithm of the target function p̃ is given
by

log( p̃γ
n−1:n(ωi)) = (1− γ) log( p̃n−1(ωi))+ γ log( p̃n(ωi))

according to Equation 11.

Thus, the derivative of the logarithm of the function is

d log( p̃γ
n−1:n(ωi))

dγ
= log(

p̃n(ωi)

p̃n−1(ωi)
). (14)

When considering a discrete path of P intermediate distri-
bution, we can approximate Equation 13 with

log(
Lns,n

Lns,n−1
) = 1

P ∑P
k=1

R

log(
p̃n(ωi)

p̃n−1(ωi)
)pk/P

n−1:n(ωi)dωi

≈ 1
P ∑P

k=1 ∑N
j=1 W k,( j) log(

p̃n(ω
k,( j)
i )

p̃n−1(ω
k,( j)
i )

).

(15)

Note that Equation 15 involves computing the normalized
weights W k,( j) for every intermediate distribution pk/P

n−1:n,
which is not required when using the standard form of the
intermediate distributions. The un-normalized intermediate
weights w̃k,( j) are still computed according to Equation 12.

When using path sampling, we can also obtain an estimate
of log(Lns/Lns,1) as follows

log(
Lns,n

Lns,1
) =

n

∑
t=2

log(
Lns,t

Lns,t−1
). (16)

Computing the normalization constant using path sam-
pling is a bit more expensive than the standard introduction
of the P intermediate distributions as discussed in Section 4.
However, the estimate of Lns according to Equation 15 gen-
erally has lower variance than using P intermediate distribu-
tions with the standard ratio according to Equation 10.

6. Implementation

We have implemented the algorithm described above in a
system that offers two rendering modes: a relighting mode,
and a mode that allows for free camera movement.

Relighting. In relighting mode, the camera and object are in
fixed locations, and only the environment can change. The
initial frame is rendered using bidirectional importance sam-
pling. For all subsequent frames, the samples for each pixel
are propagated and mutated as described above, and form the
sample set for the same pixel in the next frame (Figures 4
and 5).

Free camera movement. Once the camera is allowed to
move freely, a surface point will project to different pixels
in different frames. We take this into account by tracking
the motion of the surface points at which the samples were
generated. When we ray-trace a sample for one frame, we
also store the corresponding information into the next frame.
To this end, we compute which pixel the surface point will
project to at the next time step, and store all samples from
the current frame into that pixel. The memory requirement
for this procedure is about 300 Bytes/pixel. When we want
to compute the illumination for the next frame, most pix-
els will therefore have a sample set from the previous frame
associated with them. We propagate and mutate those as dis-
cussed. Other pixels might not have a sample set due to dis-
occlusion, or differences in sampling rate. We start bidirec-
tional importance sampling for these pixels only (Figure 6).

General object movements can be dealt with the same way
as camera movements: by knowing where object points will
be located in the next time step, we can store sample in-
formation at the appropriate pixel locations. Currently, our
implementation does not support this kind of object motion.
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Figure 2: Quality comparison of single distribution vs sequence of intermediate distributions with David model (Phong BRDF
s = 50, ks = kd = 0.5) in Grace Cathedral HDR EM. Left: Single distribution with 10 MCMC moves. Center: 10 intermediate
distributions with Lns computed with standard ratio. Right: 10 intermediate distributions with Lns computed with path sampling.
Rendering times are identical (5 seconds).

7. Results

In this section we compare the results of our unbiased SMC
sampling algorithm with bidirectional importance sampling
for rendering from HDR video environments. Images were
generated with a reasonably well-optimized ray tracer using
a voxel grid as the acceleration data structure for intersection
queries. Our comparisons examine the output quality of the
two rendering algorithms for a fixed amount of computing
time. We performed these tests on a 3.6 GHz Xeon running
Linux SuSE 9.0.

Figure 1 presents a comparison of our SMC algorithm
with bidirectional importance sampling for a sequence of
the sky probe gallery [SJW∗04]. The image on the left is
the first frame of the sequence rendered at a high quality
using bidirectional sampling (N = 16, M = 800) in 8 sec-
onds. The image in the center is the 5th frame of the se-
quence rendered using our SMC algorithm (N = 16, P = 5)
with path sampling in 4 seconds. The BRDF of the David
model in these images has a high specular exponent (Phong
s = 50) and no diffuse component. Under these conditions
of high frequency lighting and highly specular BRDF, our
SMC algorithm does much better than bidirectional impor-
tance sampling for the same computation time of 4 seconds.
In this case, bidirectional sampling could only use a smaller
number of samples (M = 200) to estimate Lns for the same
compute time (right).

Figure 2 presents the quality comparison of renderings
produced with our SMC algorithm when using a single dis-
tribution (left) versus when using a sequence of intermediate
distributions with standard ratio (center) and path sampling
(right). These images correspond to the first frame rendered
by our SMC algorithm after rotating the EM by 1.5◦ along
the radial direction simulating a small change in the HDR

illumination of the Grace Cathedral. The sequence of inter-
mediate distributions greatly help in reducing the variance
in the incremental computation of Lns compared to a single
distribution, while path sampling improves the quality of the
estimate a bit more. Here, the BRDF of the David model has
a significant diffuse component. Hence, the incremental esti-
mate of the Lns has higher variance compared to Figure 1 as
the SMC algorithm uses only a very small number of sam-
ples to approximate the Lns.
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Figure 3: Convergence plots of RMS errors for single dis-
tribution with multiple MCMC moves and sequence of inter-
mediate distributions with one MCMC move each. Note how
the RMS error reduces fast when using a sequence of inter-
mediate distributions while the error does not really reduce
much with just one distribution.

In Figure 3, we present a comparison of the convergence
in terms of RMS errors for a single distribution with multiple
MCMC moves and a sequence of intermediate distributions
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with path sampling. The RMS error plot was computed for
same frame rendered in Figure 2 with our SMC algorithm. It
is clear from the plot that multiple MCMC moves for a sin-
gle distribution do not help much in reducing the variance in
the incremental computation of Lns, though they may help
in exploring the target function p̃. A sequence of interme-
diate distributions with 1 MCMC move per distribution, on
the other hand, is effective in reducing the variance in the
computation of Lns.

The introduction of a sequence of intermediate distribu-
tions also helps in reducing the degeneracy of the samples.
We tracked the sample degeneracy, in terms of ESS, for
sequence of 100 frames while rendering the David model
(Phong BRDF s = 50, ks = kd = 0.5) in the Grace Cathedral
HDR EM with rotations to the EM by 1.5◦ per frame. We
observed that, on an average, the samples corresponding to
36% of the pixels required resampling when using a single
distribution with 5 MCMC moves per sample. This fraction
reduced to 18% when using a sequence of 5 intermediate
distributions and 1 MCMC move per sample with path sam-
pling. Hence, the additional cost of computing a sequence
of intermediate distributions is offset to an extent by having
to resample fewer samples. In practice, we used only up to
5−7 intermediate distributions as this was enough to reduce
the variance of most pixels. However, in order to maintain
the quality of the renderings over time, we tracked the incre-
mental estimate of Lns and explicitly computed Lns,n using
a large number of samples whenever the ratio Lns,n/Lns,1 al-
tered significantly.

Figure 4 presents the quality comparison between bidi-
rectional sampling and our SMC sampling algorithm for a
dynamic environment sequence from dawn to dusk from the
sky probe gallery [SJW∗04]. We used the sample HDR sky
probe images from the gallery that have been captured at 10
minute intervals as key frames of our sequence and interpo-
lated to create 3 additional frames between each key frame.
The David model in these images has the same highly spec-
ular BRDF as in Figure 1, and in this situation, our SMC
algorithm performs much better than bidirectional impor-
tance sampling for the same computation time of 4 seconds.
The SMC samples also have a lot more temporal coherence,
greatly reducing flickering in the animation (please refer the
video).

Figure 5 presents the quality comparison between bidi-
rectional sampling and our SMC sampling algorithm for the
same sky probe sequence from sunrise to sunset, except that
the BRDF of the David model now has a significant diffuse
component (Phong BRDF s = 50, ks = kd = 0.5). In this
case, the difference in the quality of renderings produced
by the two algorithms is not much as the SMC algorithm
needs to estimate the reflected radiance due to a wider lobe
with a small number of samples. However, the images cor-
responding to the SMC algorithm still have lower variance

than bidirectional sampling wherever the specular contribu-
tion is high.

In Figure 6, we present example renderings with our SMC
sampling algorithm adapted for changing viewpoint as dis-
cussed in Section 6. We rendered a sequence with the camera
moving from right to left of the David model with 2◦ rota-
tion of the camera between every frame. The images in the
bottom row are false color visualizations of the pixels cor-
responding to re-projected points that used SMC sampling
(green) and new exposed pixels that used bidirectional sam-
pling (red) for the two viewpoints. As shown here, in a se-
quence involving a slowly moving camera, most pixels can
effectively use samples propagated from neighboring pixels
in subsequent frames.

Figure 6: SMC sampling for a camera animation sequence
with the David model in the Grace Cathedral EM. Top row:
Images rendered with SMC sampling for dynamic view-
points. Bottom row: False color visualization of bidirec-
tional samples (red) and SMC samples (green).

The speedup that we get in the case of moving cameras is
lower than the speedup for relighting, since we cannot use
SMC for all pixels due to occlusion, and since the reprojec-
tion of samples into the next frame consumes time. While
we find a speedup of about a factor of 2 for relighting, the
speedup for moving cameras is only 1.6. Note that a moving
camera is in some sense the worst case scenario, since all
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Figure 4: Quality comparison between bidirectional sampling and our SMC sampling algorithm for a specular BRDF in the
sky probe gallery sequence. Top row: Bidirectional sampling (N = 16, M = 200). Bottom row: SMC sampling (N = 16, P = 5,
path sampling). All images took the same compute time of 4 seconds.

points in the scene move. In general scenes with only few
objects moving, one would expect a speedup somewhere be-
tween the extremes of relighting and the camera movement.

8. Conclusions

In this paper we have introduced the use of Sequential Monte
Carlo methods for efficiently computing direct illumina-
tion in the presence of both high frequency Illumination
and BRDF. By propagating samples over time, the method
makes efficient use of coherence across frames. We demon-
strate that this approach results in significantly reduced vari-
ance for the same compute time compared to other state-of-
the-art methods.

Sequential Monte Carlo samplers have been the focus of
recent research activities in statistics and machine learning.
The sampling strategies used in this paper are at the lead-
ing edge of methods developed in those areas. We believe
that these methods are promising for solving other sampling
problems in computer graphics, for example for global illu-
mination with photon maps.
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Appendix A: Normalization Constant

The normalization constant Lns,n at time n can be in-
crementally estimated according to Equation 10 in Sec-
tion 3.1. This result can be explained as follows: the
weighted empirical distribution {W ( j)

n−1,ω
( j)
i,n−1:n} obtained

after the MCMC sampling step is an approximation of
pn−1(ωi,n−1)Kn(ωi,n−1,ωi,n) according to Equation 5. The
expectation E(w̃n) of the incremental weights w̃n with re-
spect to this joint distribution pn−1 ·Kn is

E(w̃n)

=
Z

Ω

Z

Ω
w̃n pn−1(ωi,n−1)Kn(ωi,n−1,ωi,n) dωi,n dωi,n−1

=
Z

Ω

Z

Ω

p̃n(ωi,n−1)

p̃n−1(ωi,n−1)
pn−1(ωi,n−1)Kn(ωi,n−1,ωi,n)

dωi,n dωi,n−1

=
1

Lns,n−1

Z

Ω

Z

Ω
p̃n(ωi,n−1)Kn(ωi,n−1,ωi,n) dωi,n dωi,n−1

=
1

Lns,n−1

Z

Ω
p̃n(ωi,n−1) dωi,n−1

=
Lns,n

Lns,n−1
.

The Monte Carlo estimate of this expectation is given by

E(w̃n) ≈
N

∑
j=1

W ( j)
n−1 · w̃

( j)
n . (17)
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