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supplemental document

This document provides supplementary information to “Diffractive lensless imaging with op-
timized Voronoi-Fresnel phase”. Technical details of the Point Spread Function, Modulation
Transfer Function, Centroidal Voronoi Tesselation, Voronoi-Fresnel phase optimization, image for-
mation and reconstruction, prototype fabrication, and additional results are provided to support
the findings in the main paper.

1. POINT SPREAD FUNCTION

Here we derive the mathematical expressions for the point spread functions (PSFs) in the main
texts. First, we inspect a single Voronoi-Fresnel cell Vi. The complex optical field after propagating
from the phase element to the image sensor plane is
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where we have replaced the variables by ξ ′ = ξ − ξi and η′ = η − ηi in the second line. The
integral in the third line is exactly the Fourier transform of the aperture function Ai evaluated at
spatial frequencies [(x− ξi) /λz, (y− ηi) /λz]. The corresponding PSF is then

PSFi (x, y, λ) (x, y, λ) = |Pi (x, y, λ)|2
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where we denote PSF0
i (x, y, λ) as the centered PSF as if the aperture were located at the origin,
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This implies that the PSF for the i-th Voronoi-Fresnel cell is a shifted version of the centered PSF.
It is worth noting that the shape and distribution of the centered PSF depend on the geometry of
the aperture functions. These apertures are finite-edge polygons, so the centered PSFs are actually
compact yet highly directional filters. It is important to diversify such directional filtering of the
PSFs to achieve optimal performance.

The effective PSF of the Voronoi-Fresnel lensless camera is obtained in the same way by taking



the whole phase into account,
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Although the Voronoi cells share no intersections, Vi ∩Vj = ∅, ∀i 6= j, and the individual aperture
functions have no overlapped areas, the diffraction patterns Pi (x, y, λ) and Pj (x, y, λ) in general
would interfere with each other, so the cross terms in Eq. (S4) are not necessarily zero.

We investigate the cross terms in two situations. One is a random distribution of adjacent
Fresnel centers, and the other is where the centers are at the centroids. A simple example is a
rectangular space tessellated with two adjacent cells, as shown in Fig. S1. The optical parameters
are the same as in Fig. 3 in the main paper. When the centers of two adjacent cells are not located
in the centroids, and very close to each other near the boundary, the sum of individual PSFs are
different from the real PSF predicted by the Fresnel propagation. However, when the centers are
at the centroids of the cells, the sum of individual PSFs is approximately the same as the accurate
PSF predicted by the Fresnel diffraction. The maximum error is less than 1%.

a b

c d

1 21 2

Fig. S1. Cross terms in two adjacent PSFs. (a) Two cells with very close centers near the bound-
ary. (b) Two cells with centers at the centroids. (c) Cross-section of the individual PSFs, total
PSFs and the sum of individual PSFs in (a). (d) Cross-section of the individual PSFs, total PSFs
and the sum of individual PSFs in (b). Maximum error is less than 1% when the the centers are
at the centroids of the two cells.

Hence, for the Centroidal Voronoi case, the entire PSF can be approximated by omitting the
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cross terms, just for the purpose of analysis,
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Note that in the simulation and optimization, we do not simulate individual PSFs and superposi-
tion them, but use the entire constructed phase function to obtain the panchromatic PSF.

The above PSF is for monochromatic light. To get the panchromatic PSF, we simply integrate
all the spectral PSFs over the interested spectral range,

PSF (x, y) =
∫ λ2

λ1

PSF (x, y, λ)dλ. (S6)

2. MODULATION TRANSFER FUNCTION

Here we provide a detailed derivation and analysis for the Modulation Transfer Function (MTF).
MTF is defined as the magnitude of the Optical Transfer Function (OTF), which is the Fourier
transform of the PSF for incoherent imaging systems,

MTF = |OTF| = |F {PSF}| , (S7)

where 0 ≤ MTF ≤ 1. We can obtain the MTF by taking the Fourier transform of the above PSF,
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where fX and fY are the Fourier domain frequencies, and we have applied the translation property
of Fourier transform. The individual OTFs in the complex form are

OTF0
i ( fX , fY) =Mi ( fX , fY) exp (−jPi ( fX , fY)) . (S9)

The remaining phase delay terms are simplified as

exp (−jΨi ( fX , fY)) = exp (−j fXξi,−j fYηi) , (S10)

so the MTF can now be rewritten as
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This equation reveals three factors that affect the MTF, the diffraction by each similar apertures
that determines theM ( fX , fY) and Pi ( fX , fY) terms; the additional phase delay terms Ψi ( fX , fY)
that is introduced by the amount of spatial shifts from the centered PSFs; and the total number of
Voronoi-Fresnel cells K.

In addition, we show how MTFv is related to the Strehl ratio. Strehl ratio is defined as the peak
intensity ratio between the aberrated PSF and the diffraction limited PSF [1],

SR =
Iab(0, 0)
Idl(0, 0)

, (S12)

where Iab(0, 0) is the peak intensity of the aberrated PSF in the origin, and Idl(0, 0) is the corre-
sponding intensity of the diffraction limited PSF. In practice, it is difficult to use Strehl ratio in
this form as an optimization metric, as it is challenging to optimize the peak intensity of the PSF,
and there may be multiple peaks in a composite system like ours. According to the definition of
Fourier transform, we can rewrite the above equation in the Frequency domain,

SR =

∫∫
OTFab ( fX , fY) d fXd fY∫∫
OTFdl ( fX , fY) d fXd fY

. (S13)
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Now it becomes a quantity that can be calculated more easily with OTFs. We also note that, since
the diffraction limited OTF is in the denominator, and is often a fixed value for a given system.
We only need the term in the numerator. In addition, OTF consists of complex values. For stable
numerical computation, we can replace OTF with MTF in the above equation. Since MTF is
positive definite, the integral of MTF is always no less than the integral of OTF [2],∫∫

OTFab ( fX , fY) d fXd fY ≤
∫∫

MTFab ( fX , fY) d fXd fY . (S14)

So finally we have

MTFv =
∫∫

MTFab ( fX , fY) d fXd fY . (S15)

We note that, strictly speaking, although MTFv is related to the Strehl ratio, they are not identical.
MTFv is a more generalized term that can be calculated easily from the MTF. It is also a tractable
quantity that measures the information collected in an optical system. Therefore, we choose MTFv
as a figure-of-merit for the optimization of our lensless imaging system.

3. CENTROIDAL VORONOI TESSELLATION

Finding the optimal tessellation of the 2D design space is basically a sampling problem. Among
various sampling methods, blue noise sampling [3, 4] offers minimal low-frequency components
and no concentrated spikes of energy, which is the required properties for our application. An
effective way to achieve blue noise sampling is by Centroidal Voronoi Tessellation (CVT) [5].
The CVT is a special Voronoi diagram where the sites coincide with the mass centroids of the
corresponding Voronoi regions. The mass centroid of a Voronoi region Vi is defined as

ci =

∫
Vi

pτ (p)dp∫
Vi

τ (p)dp
, (S16)

where p is a point in the Cartesian coordinates, and τ is a given density function. We can assume
a constant density across the 2D plane for simplicity, i.e., τ ≡ 1. CVT is a critical point of the
energy function defined by

ECVT (P) =
K

∑
i=1

∫
Vi

τ (p) ‖p− pi‖2 dp. (S17)

There are various algorithms to optimize the above energy function and generate optimal
CVT [5, 6]. A classic method is to use Lloyd iterations [7] to update the Voronoi sites by their
centroids until convergence. In each iteration, the mass centroids are computed for the current
Voronoi regions. Then these generated sites are replaced by the calculated centroids, and a new
Voronoi tessellation is constructed. The process is repeated until a convergence criterion is met.

4. SCALABILITY

We find that the optimal number of Voronoi-Fresnel cells is linearly proportional to the design
area. Here we analyze and validate this assumption for different design areas with various aspect
ratios. For all the experimental designs below, we assume the substrate is fused silica, and design
the phase at 550 nm. The distance between the phase and sensor is 2 mm. Phase pixel size is 1 µm.
In Fig. S2a-e we show the optimization curves for these experimental designs of aspect ratios of
1:1, 4:3, 3:2, 16:9, and 21:9, respectively. These aspect ratios allow us to account for common sensor
shapes. For each aspect ratio, we start from a small area to optimize the Voronoi-Fresnel phase
for various number of cells. Then we double the size in both dimensions (scaling to a quadruple
area). We repeat this procedure 4 times for each aspect ratio. The best number of Voronoi-Fresnel
cells in each design is obtained by fitting the data into a 5th order polynomial, and evaluate the
cell number when the MTFv reaches the peak. These data are used in Fig. 5 in the main paper.

5. IMAGE RECONSTRUCTION

A color image recorded on the image sensor is an integral of spectrally-blurred images weighted
by the color response of the sensor. This process can be expressed as

gc (x, y) =
∫ λ2

λ1

qc (λ) ( f (x, y, λ) ∗ h (x, y, λ))dλ, (S18)
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Fig. S2. Linear scalability analysis for various aspect ratios. (a) Aspect ratio 1:1. (b) Aspect
ratio 4:3. (c) Aspect ratio 3:2. (d) Aspect ratio 16:9. (e) Aspect ratio 21:9. For each aspect ratio,
we quadruple the previous design area from left to right, as indicated in the figure titles (unit:
µm2).

where f (x, y, λ) is the latent spectral image at wavelength λ, h (x, y, λ) is the spectral PSF, and ∗
denotes spatial convolution. qc (λ) is the color response function of the sensor, and gc (x, y) is the
captured color image in color channel c (for sensors with Bayer filters, c = r, g, b).

If the imaging system is perfect, we assume the spectral PSFs are all identically Dirac delta
functions, i.e., h (x, y, λ) = δ (x, y, λ) = δ (x, y). The ground-truth sharp image would be

fc (x, y) =
∫ λ2

λ1

qc (λ) f (x, y, λ)dλ. (S19)

On the other hand, if the image is a spectrally-uniform ideal point source, f (x, y, λ) = δ (x, y, λ) =
δ (x, y), the captured image would be a color PSF

hc (x, y) =
∫ λ2

λ1

qc (λ) h (x, y, λ)dλ. (S20)

Note that if the imaging system is approximately achromatic, h (x, y, λ) ≈ h (x, y), Eq. (S18) can
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PSNR = 26.8 dB

SSIM = 0.784

PSNR = 26.3 dB

SSIM = 0.765

PSNR = 29.1 dB

SSIM = 0.837

GT diffuser Perlin Voronoi-Fresnel (ours)

PSNR = 32.3 dB

SSIM = 0.763

PSNR = 32.3 dB

SSIM = 0.787

PSNR = 34.8 dB

SSIM = 0.814

PSNR = 30.5 dB

SSIM = 0.788

PSNR = 30.1 dB

SSIM = 0.772

PSNR = 32.0 dB

SSIM = 0.813

PSNR = 28.1 dB

SSIM = 0.817

PSNR = 27.6 dB

SSIM = 0.805

PSNR = 29.9 dB

SSIM = 0.849

Fig. S3. Additional comparison results. (a) Reference ground truth image. (b) Reconstructed
image by the diffuser PSF. (c) Reconstructed image by the Perlin PSF. (d) Reconstructed image
by the Voronoi-Fresnel PSF.

be simplified by

gc (x, y) ≈
(∫ λ2

λ1

qc (λ) f (x, y, λ)dλ

)
∗ h (x, y)

= fc (x, y) ∗
∫ λ2

λ1

qc (λ) h (x, y)dλ

= fc (x, y) ∗ hc (x, y) ,

(S21)

where the sensor response is normalized such that
∫ λ2

λ1
qc (λ)dλ = 1. To solve a minimiza-

tion problem in the ADMM framework, we introduce a slack variable z = Dx, and apply the
augmented Lagrangian multiplier,

arg min
x

1
2
‖Ax− y‖2

2 + µ ‖z‖1 +
ρ

2
‖Dx− z‖2

2 , (S22)

where ρ is the weight for the slack variable. The ADMM iterations consist of three steps,
xk+1 = arg min

x

1
2
‖Ax− y‖2

2 +
ρ

2
‖Dx− z + u‖2

2

zk+1 = arg min
z

µ ‖Dx− z‖1 +
ρ

2
‖Dx− z + u‖2

2

uk+1 = uk + Dxk+1 − zk+1,

(S23)
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where u is the scaled dual variable. The x-problem can be efficiently solved in the Fourier domain.
The analytical solution is

xk+1 =
(

ATA + ρDTD
)−1 (

ATA + ρDTD
)

. (S24)

The z-problem has a closed-form solution,

zk+1 = Sµ/ρ

(
Dxk+1 + uk

)
, (S25)

where Sκ (v) = (1− κ/ |v|)+ v is an element-wise soft thresholding operator. Finally u is updated
with the new x and z.

We show more comparison results in Fig. S3 for the three candidate designs, the diffuser PSF [8],
the Perlin PSF [9], and our Voronoi-Fresnel PSF. The top two rows are from dataset [10] with lab
setup scenes, and the bottom two rows are from the dataset [11] with natural indoor scenes. Our
design outperforms the other two in both PSNR and SSIM.

6. COMPARISON WITH AUTO-CORRELATION

The auto-correlation of the PSF is a concept related to MTF, and could in principle be used for
optimization of optical phase elements, such as in Miniscope3D [12]. Since auto-correlation is
not a single-number, it cannot be used directly as an optimization metric. A diffraction limited
MTF must be taken as the reference. A major difference in the proposed MTFv concept is that,
spatial and spectral information in the PSF are distilled into a single number that can be used for
numerical optimization. Our MTFv metric requires no reference value, and evaluates the amount
of useful information by itself.

In addition, we present an example to show that, auto-correlation may not be consistent in
certain cases from the perspective of image quality, whereas our MTFv metric is more directly
related to the final performance. Here we use four PSFs that show different auto-correlation
properties. The first three are those we use in Fig. 4 in the main paper. Their auto-correlation
functions are shown in Fig. S4a-c. The fourth one is a white Gaussian noise pattern, which
has an extremely sharp Dirac-like auto-correlation function (Fig. S4d). As a comparison, the
rectangular-grid and hexagonal-grid PSFs exhibit very large support, whereas the optimized
Voronoi-Fresnel PSF has a moderate shape. We also compute their corresponding MTFv values,
1.14 (rectangular), 1.19 (hexagonal), 2.29 (Voronoi-Fresnel), and 0.83 (Gaussian). To evaluate the
final image quality for these PSFs, we reconstruct the sharp images using the same parameters.
The reconstructed images are shown in Fig. S4e-h, with the PSNR and SSIM values shown below.
Our Voronoi-Fresnel PSF yields the best PSNR (32.4 dB) and SSIM (0.765), significantly better
than the other three.

This example indicates that, although the white Gaussian noise pattern has a strong peak in the
auto-correlation, it fails in reconstructing a reasonable image. The rectangular and hexagonal PSFs
show very large support in the auto-correlation, but not as good as the optimized Voronoi-Fresnel
PSF. The result also emphasizes the importance of a proper reference quantity for the success of
the auto-correlation metric. As a comparison, the proposed MTFv metric is consistently related
with the image quality, and naturally rules out the white Gaussian noise PSF, so MTFv is a more
robust metric for this design problem.

7. FABRICATION

The experimental samples are fabricated by a combination of photolithography and reactive-
ion etching (RIE) techniques. The substrate is a 4 inch fused silica wafer with a thickness of
0.5 mm. We binarize the optimized Voronoi-Fresnel phase profile into 24 = 16 levels, and repeat 4
iterations of the basic photolithography with different masks and then RIE with doubled etching
time. The masks are fabricated on soda lime substrates by laser direct writing on a Heidelberg
µPG 501 mask maker. In each iteration, the wafer is first cleaned in Piranha solution at 115◦C for
10 min, and dried with N2. A 150-nm-thick Chromium (Cr) layer is deposited by sputtering on
one side of the wafer. A 0.6-µm-thick layer of photoresist AZ1505 is then spin-coated on top of Cr
after HMDS (Hexamethyldisilazane) vapor priming. To transfer the mask patterns to the wafer,
we align the wafer with the mask on a contact aligner EVG6200 ∞ in the hard+vacuum mode,
and then apply UV exposure with a dose of 9 mJ/cm2. The photoresist is developed in AZ726MIF
developer (2.38% TMAH in H2O) for 20 sec before De-Ionized water clean and N2 drying. To
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e f g h

rectangular

MTFv = 1.14

hexagonal

MTFv = 1.19

Voronoi-Fresnel

MTFv = 2.29

white Gaussian noise

MTFv = 0.83

PSNR = 28.0 dB

SSIM = 0.765

PSNR = 29.1 dB

SSIM = 0.793

PSNR = 32.4 dB

SSIM = 0.847

PSNR = 16.8 dB

SSIM = 0.273

Fig. S4. Image performance comparison with the auto-correlation metric. From (a) to (d) are
the auto-correlation functions of the rectangular-grid PSF, hexagonal-grid PSF, optimized
Voronoi-Fresnel PSF, and a white Gaussian noise PSF. From (e) to (h) are the reconstructed
images for the PSFs shown above. The image quality is evaluated by PSNR and SSIM. The re-
spective PSFs are shown in the bottom right corner insets.

transfer the patterns from the photoresist to the Cr layer, we wet-etch the wafer with Cr etchant
(mixtures of HClO4 and (NH4)2[Ce(NO3)6]) for 1 min and remove the residual photoresist with
Acetone. In the RIE step, SiO2 in the wafer is etched by plasma of 15 sccm CHF3 and 5 sccm O2
at 10 ◦C. The etching depths are 75 nm, 150 nm, 300 nm and 600 nm respectively for a design
wavelength at 550 nm. An additional Cr layer is deposited and etched to serve as the aperture to
preserve the shift-invariance of PSFs.

8. PROTOTYPE RESULTS

a b c

Fig. S5. Design of the prototype Voronoi-Fresnel lensless camera. (a) Optimized full-area phase
profile. (b) An aperture to maintain the PSF shift-invariance within ±20◦ field-of-view. (c) Best
number of Voronoi-Fresnel cells in the parameter sweep step. The optimal number of cells is
594 without the aperture. Effective cells after applying the aperture is 424.

The prototype Voronoi-Fresnel phase is designed at 550 nm for 2π modulation. Considering
the fabrication resolution and sensor pixel size, we fix the upsampling ratio of 3× for the optical
element, i.e., 1.15 µm, which is well controlled by our fabrication method. The sensor has 1440 ×
1080 pixels, and the Voronoi-Fresnel phase has 4320 × 3240 pixels. The optimized full-area phase
profile is shown in Fig. S5a. Our sensor has a field-of-view of±20◦ in the horizontal direction, and
±15◦ in the vertical direction, so we design an aperture (Fig. S5b) that excludes the cells outside
of the field-of-view. The optimal number of Voronoi-Fresnel cells from the optimization is 594, as
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shown in Fig. S5c after the parameter sweep step. The effective cells within the field-of-view is
424, which is about 71.4% of the total number.

The final presentation of the image requires some necessary pre-processing and post-processing
for better image presentation. We first demosaic the raw sensor data into color image data
according to the sensor Bayer layout. Before image reconstruction, we normalize the blurred
data by its norm in each color channel. For all the experimental results, the weights are all set
to µ = 1e−7, and ρ = 1e−5. In the post-processing, we use a simple gray world algorithm in
MATLAB (chromadapt) for automatic white balancing in the linear color space. The illuminant is
estimated by excluding 10 percentile of pixels. Finally gamma correction (γ = 1.25) is applied.

We present additional characteristic test results for the prototype in Fig. S6. First, we evaluate
the geometry distortion using a checkerboard target. As shown in Fig. S6a, the geometry is
restored very well across the ±20◦ ×±15◦ field-of-view. On the border regions, there are residual
chromatic artifacts, however. This may arise from two factors. One is the off-axis aberrations of
the base Fresnel phase, and the other is the difference in PSFs from on-axis to off-axis leading to
the drop in reconstruction quality. Second, we evaluate the color fidelity using a color checker
target in Fig. S6b. Despite the residual color artifacts in the border regions, the overall color
fidelity is retrieved from the raw data. Potential improvement could be a more advanced white
balancing algorithm other than the simple gray world algorithm used here. Last, we evaluate the
spatial resolution variation using a Siemens star target in Fig. S6c. A uniform spatial resolution
change is observed from the reconstructed image, demonstrating again that the MTF optimization
is effective with uniform response.

a b c

Fig. S6. Prototype characteristic test results. The reconstruction of a checkerboard image in
(a) shows little geometry distortion. The color checker in (b) indicates good color recovery,
although residual color artifacts exist in the image border. (c) A Siemens star image shows
uniform resolution preservation in all directions.

Color reproduction remains a challenge in the current prototype. To analyze the color fidelity,
we extract the color patches from the reconstructed image of the color checker (Fig. S6a), and
tile them side by side according to their original orders in the color checker to synthesize an
image in Fig. S7a. Each extracted patch has 50 × 50 pixels. As a reference, we create a reference
color patch image from the corresponding true RGB values with the same size, as shown in
Fig. S7b, with their indices labeled. The color fidelity is measured as the color difference dE
using the CIEDE2000 standard [13]. We can visualize the pixel-wise color difference with the dE
map in Fig. S7c. Since the dE map varies within each color patch due to the noisy reconstruction
results, we take the average value in each color patch as the reconstructed color values. The color
difference dE values are then calculated and plotted in Fig. S7d. The maximum dE (largest color
difference) is 31.6 at index 19, which is the “White” patch, and the the minimum dE (smallest
color difference) is 3.7 at index 10, which is the “Purple” patch. This also agrees with the visual
perception.

We attribute the quality of color fidelity in our prototype mainly to the residual chromatic
aberrations, and the simple white balancing algorithm we currently use. Since the base Fresnel
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Fig. S7. Color difference analysis. (a) Extracted color patches from the reconstructed color
checker image. (b) Reference color patches with true RGB values. Indices are labeled for each
patch. (c) Color different dE map calculated from (a) and (b) using the CIEDE2000 standard. (d)
Color difference dE values calculated with averaged RGB values in each color patch. (e) MTFv
varies with wavelength in the visible band for the Voronoi-Fresnel phase used in the prototype.

phase is static at one single wavelength (550 nm in our prototype), the PSF geometry changes if
the illumination wavelength is different, and hence the MTFv is also a function of wavelength. We
optimize for the spectral integral of the MTF, but not the cross differences between wavelengths.
We evaluate this chromatic effect by plotting the MTFv with respect to wavelength across the
visible band from 400 nm to 700 nm, as shown in Fig. S7e. The MTFv drops around 71% for
both the short and long ends of the wavelength range, compared with the design wavelength at
550 nm. This could be mitigated by using a base phase function that is optimized achromatic,
instead of the static Fresnel phase we currently use. Further improvement can be made to use
more advanced white balance algorithms to improve the color fidelity.

Although we use the panchromatic PSF in the visible band in our design, there are still residual
chromatic aberrations in the current result. We attribute mainly two important factors for the
residual chromatic aberrations. First, the fixed base Fresnel phase in each cell is inherently
dispersive, which is a fundamental property of all the diffractive optical elements. It could be
possible to use an optimized achromatic base phase in each cell, which would require additional
efforts. Second, the simple image reconstruction algorithm we adopt here does not account
for chromatic aberration correction. The total variation regularization only takes care of spatial
structures in the image. It would then be more advantageous to employ neural networks for the
reconstruction to alleviate chromatic aberrations.

To evaluate the resolution of the prototype, we capture a cross-hair target, and reconstruct the
final image. The raw data is shown in Fig. S8a, and the reconstructed image is shown in Fig. S8b.
We can plot the cross-sections in the horizontal and vertical directions. The spot diameter is
measured around the lines as the intensity first reaches zero. Since we know the pixel size, we
can calculate the physical diameters. In the horizontal direction, the diameters are measured
as 17.25 µm, 17.25 µm, 20.7 µm for the red, green and blue channels respectively. The average
diameter is 18.4 µm. In the vertical direction, the diameters are 20.7 µm, 17.25 µm, 24.15 µm for
the red, green and blue channels respectively. The average diameter is 20.7 µm. To compare with
the theoretical value, we calculate the effective diameter of all the Voronoi-Fresnel cells. The ideal
spot diameter is 15.7 µm, so the resolution of the prototype is indeed close to the theoretical value.

Additionally, we present more example results in Fig. S9. Again, the results in Fig. S9a and S9b
are captured from self-illuminating images displayed on a monitor, and Fig. S9c-d are real objects
with ambient illumination. Details in the objects are well preserved in both cases.
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Fig. S8. Resolution measurement. (a) Raw capture of the cross-hair target. (b) Reconstructed
image of the cross-hair target. The yellow dotted line indicates where the horizontal cross-
section is taken, and the red dash line indicates where the vertical cross-section is taken. (c)
Horizontal cross-section of (b). (d) Vertical cross-section of (b). The spot diameter is measured
around the lines as the intensity first reaches zero.

a b c d

Fig. S9. Additional prototype results. (a) and (b) show results for self-illuminating images
displayed on a computer monitor. (c) and (d) show results for real objects with ambient illumi-
nation. Top row are the captured raw data; middle row are reconstructed images; and bottom
row are zoom-in details.
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