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Fig. 1. NeST Overview. Transparent objects, when subject to external forces (a), exhibit birefringence that manifests as fringes under polarized illumination.

We present NeST, an approach to leverage this 3D photoelasticity through a multi-axis polariscope setup (b). We develop an analysis-by-synthesis approach

using neural implicit fields to non-desctructively reconstruct the internal 3D stress distribution in the object from the captured measurements (c). NeST also

enables new ways of visualizing the underlying 3D stress by rendering the photoelastic fringes obtained by interactively slicing or rotating the object.

Photoelasticity enables full-field stress analysis in transparent objects through

stress-induced birefringence. Existing techniques are limited to 2D slices

and require destructively slicing the object. Recovering the internal 3D

stress distribution of the entire object is challenging as it involves solving

a tensor tomography problem and handling phase wrapping ambiguities.

We introduce NeST, an analysis-by-synthesis approach for reconstructing

3D stress tensor fields as neural implicit representations from polarization

measurements. Our key insight is to jointly handle phase unwrapping and

tensor tomography using a differentiable forward model based on Jones

calculus. Our non-linear model faithfully matches real captures, unlike prior

linear approximations. We develop an experimental multi-axis polariscope

setup to capture 3D photoelasticity and experimentally demonstrate that

NeST reconstructs the internal stress distribution for objects with varying

shape and force conditions. Additionally, we showcase novel applications in

stress analysis, such as visualizing photoelastic fringes by virtually slicing

the object and viewing photoelastic fringes from unseen viewpoints. NeST

paves the way for scalable non-destructive 3D photoelastic analysis.

Additional Key Words and Phrases: polarization, neural rendering, inverse

graphics, stress analysis, 3D reconstruction, computer vision

1 INTRODUCTION

Photoelasticity is an optical phenomenon that allows full-field ob-

servation and quantification of stress distributions in transparent

materials. When an object is subject to mechanical load, it exhibits

birefringence causing the orthogonal polarization states of transmit-

ted light to have a relative phase retardation. This phase retardation

∗
Equal Contribution

visually manifests as fringes when the object is placed between po-

larizers, with denser fringes indicating higher stress concentration.

Photoelasticity has broad applications ranging from stress analysis

of dental implants [Goiato et al. 2014; Ramesh et al. 2016] to quality

control of glass panels [Kasper et al. 2016].

Most existing photoelasticity techniques operate on 2D slices or

projections of a 3D object [Ramesh 2021]. In a planar slice, the distri-

bution of photoelastic fringes is related directly to the distribution

of principal stress difference. The most common approach for 3D

analysis involves stress freezing: locking in the stress distribution

in the object by temperature cycling. Thin slices are then manually

cut. 2D stress fields are then obtained for each of the slices, which

when put together create a 3D stress field. Unfortunately, the en-

tire process is expensive, time-consuming and most importantly

destructive.

3D photoelasticity [Aben 1979] aims to recover the underlying 3-

dimensional stress distribution of the entire object without the need
for physical 2D slicing thereby scaling photoelasticity to more un-

structured and non-destructive scenarios. The polarization state of

each light ray encodes the stress distribution along its path through

the object and is modeled as an equivalent Jones matrix. This Jones

matrix can be measured using controlled polarization illumination

and detection [Collett 2005].

Reconstructing the complete 3D stress tensor field from integrated

polarization measurements is challenging for two reasons. First, the

stress at each point is a 3 × 3 tensor, but each ray only encodes a

2 × 2 projection. Multiple object or camera rotations are required to
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reconstruct the tensor field, causing this tensor tomography problem

to require more measurement diversity than conventional scalar

tomography like X-ray CT [Szotten 2011]. Second, the relative phase

difference between the polarization states that encodes the stress

information is always wrapped between 0 and 2𝜋 . Thus the captured

polarization measurements require phase unwrapping to recover the
full stress information.

Existing approaches aim to tackle these challenges of phase un-

wrapping and tensor tomography in two separate steps [Abrego
2019]. First, the polarization measurements for each rotation are in-

dividually phase unwrapped using techniques extended from single-

view 2D photoelasticity [Tomlinson and Patterson 2002]. Then the

unwrappedmeasurements are approximated as a linear projection of

the underlying stress tensor field [Sharafutdinov 2012]. We demon-

strate through experimental captures that this two-step fails under

realistic stress distributions. Separately phase unwrapping measure-

ments for each rotation do not provide a way to enforce consis-

tency across iterations resulting in artifacts in the unwrapped phase

(Fig. 8). Furthermore, we observe that the linear tensor tomography

model does not match the captures under realistic scenarios (Fig. 8).

Our key insight is to jointly handle phase unwrapping and ten-

sor tomography. We develop a differentiable Jones calculus-based

forward model that maps the underlying 3D stress tensor distribu-

tion to the captured polarization measurements. The existing linear

tensor tomography model [Sharafutdinov 2012] is a first-order ap-

proximation of our general non-linear forward model and our model

can faithfully explain real measurements (Fig. 8). With this model,

we present NeST, an analysis-by-synthesis approach to reconstruct

full-field 3D stress tensor distribution directly from captured inten-

sity measurements. Inspired by the recent advancements in inverse

neural rendering, we employ neural implicit representations for

the unknown stress tensor field. Neural representations provide

computationally efficiency and adaptive sampling in representing

and reconstructing highly concentrated stress fields.

We develop amulti-axis polariscope hardware setup to experimen-

tally validate our approach (Fig. 12). This setup involves multiple

measurements of the object under yaw-pitch rotation (multi-axis)

and rotation of the polarizing elements (polariscope). NeST can

reconstuct internal stress distribution for objects with a variety of

3D shapes and loading conditions (Fig. 14). By neural rendering the

estimated internal stress, NeST enables novel approaches to visual-

ize the stress tensor distribution (Fig. 15,16). We also qualitatively

validate (Fig. 9) and analyze our approach (Fig. 11,10) through a

simulated dataset of common stress distributions.

Our Contributions. To summarize, we demonstrate the following:

• Differentiable non-linear forward model for 3D photoelas-

ticity that faithfully matches the captured polarization measure-

ments.

• Neural analysis-by-synthesis approach that reconstructs in-

ternal stress distribution as a neural implicit representation from

captured polarization measurements.

• Experimental validation of proposed stress tensor tomography

through a multi-axis polariscope setup.

• Simulated and real-world datasets of 3D photoelastic mea-

surements on a variety of object and load geometries.

• Novel stress visualizations from the learned neural stress fields

such as visualizing photo-elastic fringes obtained by virtually

slicing the object and viewing the object along unseen views.

The codebase and datasets will be made public upon acceptance.

Scope. Although our work presents a major advance in 3D stress

analysis, several limitations remain. First, we do not currently model

absorption, or reflection and refraction at object boundaries. The

latter could be handled by refractive index matching, or by pre-

scanning the geometry of the object, and ray-tracing the refracted

ray path at object boundaries (see Sec 8 for a more detailed discus-

sion). Since our method requires many images, static geometry and

loading conditions are required. Finally, our method shares all the

inherent limitations of photoelasticity methods, i.e. the object needs

to be made of a transparent medium, and the deformation needs to

be in the elastic regime.

2 RELATED WORK

2.1 Polarimetric Imaging

Applications in vision and graphics. Polarization characterizes

the direction of oscillation of light waves [Collett 2005] and en-

codes useful scene properties. There has been significant progress

in exploiting polarization cues for graphics and vision applications,

including reflectance separation [Li et al. 2020; Lyu et al. 2019], ma-

terial segmentation [Kalra et al. 2020; Mei et al. 2022], navigation

[Yang et al. 2018], dehazing [Schechner et al. 2001], shape estimation

[Chen et al. 2022; Cui et al. 2017; Kadambi et al. 2015; Lei et al. 2022;

Tozza et al. 2017; Zhao et al. 2022] and appearance capture [Baek

et al. 2018; Dave et al. 2022; Deschaintre et al. 2021; Ghosh et al.

2010, 2011; Hwang et al. 2022; Ngo Thanh et al. 2015; Riviere et al.

2017].

Birefringence. In this work, we leverage the polarization phenom-

enon of birefringence that is relatively underexplored by the vision

and graphics community. Birefringence is an optical property in

which the refractive index depends on the polarization and propa-

gation direction of light. It occurs in optically anisotropic materials

where the structure or stresses induce different indices along dif-

ferent axes. Birefringence has been widely studied and utilized for

mechanical stress analysis via photoelasticity techniques [Ramesh

2021]. Birefringence is also exploited for imaging fibrous tissues

[Huang and Knighton 2002], cancer pathology [Ushenko and Gorsky

2013], and liquid crystal displays [Yeh and Gu 2009]. Multi-layer

liquid crystal displays [Lanman et al. 2011] use a tomographic po-

larization model for generating 3D images that however neglects

birefringence. Our work focuses on leveraging birefringence for full

3D stress measurement via novel neural tomography approaches.

2.2 Photoelasticity

2D Photoelasticity. Photoelasticity is an optical phenomenon based

on stress-induced birefringence in transparent objects. It has been

extensively utilized for full-field stress analysis in various fields such

as structural engineering [Ju et al. 2018a; Scafidi et al. 2015], material

science [Ju et al. 2019, 2018b; Wang et al. 2017] and biomechanics

[Doyle et al. 2012; Falconer et al. 2019; Joseph Antony 2015; Sugita

et al. 2019; Tomlinson and Taylor 2015]. Coker, Filon and Frocht
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(a) 3D Stress Tensor Field (b) Our Multi-axis Polariscope Setup (c) Rendered measurements

Area 
Light 

Source

Linear 
Polarizer

(LP1)

Quarter 
Waveplate

(QWP1)

Transparent
specimen

under load
Quarter 

Waveplate
(QWP2)

Polarization 
Camera

(Contains LP2)

𝜎!" 𝜎"# 𝜎!#

𝜎!! 𝜎"" 𝜎!!

cos 𝛿!" 	 sin 𝛿!" cos 2𝜃!" 	 sin 𝛿!" sin 2𝜃!" 	

M
ul

ti
-a

xi
s 

O
bj

ec
t 

R
ot

at
io

ns

−1 1−0.05 0.05

Fig. 2. Overview of our formulation. We develop a formulation to render stress-induced birefringence from the stress tensor field distribution (a) in

a 3D transparent object. The stress field at each point changes the polarization state of a ray passing through that point (Sec. 4.1, Fig. 3). We integrate

these polarization changes for all points along the ray to obtain an equivalent Jones matrix (Sec. 4.2, Fig. 4). These Jones matrices and consequently the

underlying stress tensors are then measured through our multi-axis polariscope capture setup (b) (Sec. 4.3, Fig. 6). In (c), we visualize the multi-axis polariscope

measurements rendered from our formulation for the stress field in (a).

detailed the core principles and methodologies of photoelasticity

in their seminal books [Coker and Filon 1957; Frocht 1941], while

Dally et al. [1978] applied these techniques to engineering problems.

The emergence of digital photography [Kulkarni and Rastogi 2016;

Ramesh et al. 2011] and RGB cameras [Ajovalasit et al. 2015] has

significantly advanced the field. Phase shifting technique [Patter-

son and Wang 1991] emerged as a practical approach to recover

stress distribution from photoelastic fringes by rotating polariscope

elements. Recently, there has been progress in applying machine

learning techniques for estimating stress distribution from photoe-

lastic fringes [Briñez-de León et al. 2024, 2022; Lin et al. 2024]. These

works aim to recover 2D stress distributions in planar objects, while

we focus on the more challenging scenario of 3D stress distributions

from 3D photoelastic measurements.

3D Photoelasticity. Extending photoelasticity to 3D objects tradi-

tionally involved freezing the stress distribution using temperature

cycling and then manually slicing the object into sections for anal-

ysis [Cernosek 1980], but this process is costly, time-consuming,

and destructive. 3D photoelasticity was conceptualized to overcome

these limitations and transition photoelastic stress analysis from

2D slices to reconstructing full 3D stress tensor fields within ob-

jects [O’Rourke 1951; Theocaris and Gdoutos 1979; Weller 1941].

Aben [1979] formalized the concept of integrated photoelasticity

that models continuous integration of stress variation along a ray

through the object. Bussler et al. [2015] developed a framework to

render photoelastic fringes from 3D stress distributions by solving

for integrated photoelasticity using Runge Kutta numerical integra-

tion They focus on rendering photoelastic fringes from known stress

distribution for visualization purposes. Their numerical integration-

based forward model is not differentiable and cannot be used for

analysis-by-synthesis techniques. We develop a differentiable for-

ward model for 3D photoelasticity that enables 3D stress reconstruc-

tion by neural analysis-by-synthesis techniques. In supplement, we

demonstrate how our framework faithfully approximates the in-

tegrated photoelasticity model under sufficiently low render step

size.

Photoelastic Tomography. There has been very limited work on

directly acquiring and reconstructing 3D photoelasticity. Our paper

presents a major advance in this direction. Most of existing works

approximate the photoelastic forward model to be linear and pose

the stress field reconstruction as a linear tensor tomography prob-

lem [Sharafutdinov 2012]. Sharafutdinov et al. [2012] and Aben et

al. [2005] formulate the reconstruction of a single tensor element,

while Hammer et al. [2005] propose a linear tomography approach

to reconstruct all the tensor elements that is developed to handle

incomplete data in Lionheart et al. [2009]. Szotten [2011] showed

simulated results with the Lionheart et al. [2009] technique and con-

dition the problem using Hilbert transform methods. Abrego [2019]

developed an experimental framework to test the algorithms devel-

oped by Szotten [2011] and concluded that their technique is unable

to scale to real experimental data. We demonstrate real experimen-

tal results that agree with these findings. We demonstrate in Fig. 8

that linear model is incapable of explaining experimental photoe-

lastic measurements especially when the stress variation is large.

We develop a differentiable non-linear forward model and analysis-

by-synthesis technique that faithfully explains the experimental

measurements and reconstructs the underlying stress variation.

2.3 Neural Fields and Neural Rendering

Implicit neural representations (INRs) have emerged as a powerful

technique to represent 3D objects using trainable models, such as

multi-layer perceptrons (MLPs) [Mildenhall et al. 2021]. These mod-

els learn the mapping from spatial coordinates to object properties,

like density or color. INRs offer several advantages: continuous rep-

resentation in spatial coordinates, decoupling of object complexity

from sampling resolution, memory efficiency, and a compact rep-

resentation that acts as a sparsity prior, aiding inverse problems.
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(a) Cartesian Stress Tensor (b) Projected Stress Tensor
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Fig. 3. Modeling stress induced birefringence. Each point in the specimen under stress corresponds to a 3 × 3 Cartesian stress tensor (a). A ray passing

through this point encodes information about the 2 × 2 projection of the stress tensor on a plane perpendicular to the ray (b). The projected stress tensor can

be represented by principle stress directions corresponding to solely normal stress (c). Difference in principle stress values results in a phase difference that

corresponds to a change in the polarization of the light ray (d).

Furthermore, INRs can be combined with differentiable forward

simulators to solve inverse problems via gradient backpropaga-

tion. While initially developed for multiview stereo reconstruction

[Mildenhall et al. 2021], INRs have found diverse applications in

representing and reconstructing field data [Xie et al. 2022]. These

include fitting 2D images [Sitzmann et al. 2020], representing 3D

geometric properties like occupancy fields and signed distance func-

tions (SDFs) [Sitzmann et al. 2020; Wang et al. 2021; Yariv et al. 2021],

and modeling various signal or field quantities in scientific andmedi-

cal fields, such as geodesy [Izzo andGómez 2021], black hole imaging

[Levis et al. 2024], audio signals [Gao et al. 2021], protein structures

[Zhong et al. 2019], computed tomography [Corona-Figueroa et al.

2022], MRI [Shen et al. 2022], ultrasound imaging [Wysocki et al.

2024], and synthetic aperture sonar [Reed et al. 2021, 2023]. NeST

paves the way for neural fields-based approaches in the field of

non-destructive stress analysis.

3 BACKGROUND

3.1 Jones Calculus

Jones calculus is a mathematical formalism used to describe the

polarization state of light. It represents the polarization state as a

2 × 1 Jones vector E containing complex components that denote

the amplitude and phase of two orthogonal polarization modes.

E =
(
𝐸𝑥 𝐸𝑦

)
(1)

where 𝐸𝑥 and 𝐸𝑦 are the x and y components of the electric field

vector. Under Jones calculus, the effect of an optical element on the

polarization can be represented as a 2 × 2 Jones matrix operating

on the input Jones vector,

Eout = JEin , (2)

where J is the Jones matrix of the optical element, Ein is the input

Jones vector, and Eout is the output Jones vector.

3.2 Stress Tensor Field

Consider an object of arbitrary shape subject to external mechanical

forces. These external forces would result in a three-dimensional dis-

tribution of body forces throughout the body of the object modeled

as mechanical stress.

The stress at a point p in the material is commonly represented

by the second-order Cartesian stress tensor [Dally et al. 1978]. Con-

sidering a small, axis-aligned cubic element at p, the stress tensor
characterizes the forces on each face of this cube projected along

the 𝑥 , 𝑦 and 𝑧 axis. The stress tensor, 𝑆 , can be expressed as a matrix

with rows as the 𝑥 , 𝑦, 𝑧 normal directions of the faces and columns

as the forces along 𝑥 , 𝑦, 𝑧 directions for each face.

S(p) =

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑦𝑥 𝜎𝑦𝑦 𝜎𝑦𝑧
𝜎𝑧𝑥 𝜎𝑧𝑦 𝜎𝑧𝑧

 (3)

Under the conditions of equilibrium, 𝜎𝑖 𝑗 = 𝜎 𝑗𝑖 . Thus at each point,

the stress tensor can be expressed as a symmetric matrix with six

unkowns:

S(p) =

𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑥𝑧
𝜎𝑥𝑦 𝜎𝑦𝑦 𝜎𝑦𝑧
𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑧𝑧

 (4)

The principal stresses at a point are defined as the normal stresses

calculated on planes where the shear stresses are zero. These princi-

pal stresses can be obtained by performing an eigendecomposition

of the Cartesian stress tensor in Eq. 4. The magnitudes of the major,

middle, and minor principal stresses are given by the eigenvalues of

the stress tensor, sorted from highest to lowest. The corresponding

eigenvector represents the directions of the principal stress.

4 PHOTOELASTIC IMAGE FORMATION MODEL

In this section, we derive how the polarimetric light transport

through a transparent object encodes its underlying three-dimensional

stress tensor distribution. We demonstrate how stress present at

a certain point within the object induces birefringence that we

model through Jones calculus. Then we present a volume rendering

approach to integrate the stress-birefringence effects into an equiva-

lent Jones matrix that we can measure with a multi-axis polariscope

setup.

4.1 Stress-induced Birefringence

Consider a ray with origin o and direction d propagating through

the transparent object under stress. The points p(𝑡) along the ray
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and within the object are parameterized as:

p(𝑡) = o + 𝑡d 𝑡 ∈ [𝑡𝑛, 𝑡𝑓 ] . (5)

The stress at the point p(𝑡) is modeled by the Cartesian stress tensor

S(𝑡) (Eq. 4). We demonstrate how, due to stress-induced birefrin-

gence, this stress tensor is encoded in the polarimetric light transport

using Jones calculus.

Projected stress tensor. Consider the plane orthogonal to the ray

(o, d) is spanned by two orthonormal basis vectors, u and v. The
projection of the 3 × 3 stress tensor S(𝑡) along the orthogonal plane
with u − v axes is denoted as the 2 × 2 symmetric matrix S′ (𝑡)

S′ (𝑡) =
[
u𝑇 S(𝑡)u u𝑇 S(𝑡)v
u𝑇 S(𝑡)v v𝑇 S(𝑡)v

]
≜

[
𝜎uu 𝜎uv
𝜎uv 𝜎vv

]
. (6)

Principal stresses. For general choices of the orthonormal basis

(u, v), S′ (𝑡) is a non-diagonal matrix, with the diagonal entries

corresponding to the normal stress and non-diagonal entries corre-

sponding to tangential stress. The major and minor principal stress

directions, (w1,w2), are defined as an orthonormal basis that results

in a diagonal projected stress S′, i.e.,[
w𝑇
1
S(𝑡)w1 w𝑇

1
S(𝑡)w2

w𝑇
1
S(𝑡)w2 w𝑇

2
S(𝑡)w2

]
≜

[
𝜎1 0

0 𝜎2

]
, (7)

with 𝜎1 > 𝜎2. Along w1 and w2 directions, there is only normal

stress: 𝜎1 and 𝜎2 respectively which are termed as the major and

minor principal stresses. In the supplement, we derive that for any

general u, v basis the difference of principle stresses depends on the

components of S′ as

𝜎2 − 𝜎1 =

√︃
(𝜎vv − 𝜎uu)2 + 𝜎uv2 . (8)

The angle 𝜃 made by the principle stress 𝜎1 with u is

𝜃 =
1

2

tan
−1

(
2𝜎uv

𝜎vv − 𝜎uu

)
. (9)

Stress-optic relation. Consider the segment of length Δ along the

ray around the point p(𝑡). The length Δ is small so that there is no

stress variation along the segment. Assuming weak birefringence,

stress-optic relation [Dally et al. 1978] states that the phase differ-

ence 𝛿 (𝑡) between the principal directions (v1,v2) is proportional
to principal stress difference 𝜎1 − 𝜎2 and is given as:

𝛿 (𝑡) = 2𝜋Δ𝐶

𝜆
(𝜎2 − 𝜎1) , (10)

where 𝐶 is the stress-optic coefficient that depends on the material

properties of the object and 𝜆 is the wavelength of light.

Jonesmatrix. Nextwe canmodel this stress-induced birefringence

at the small segment around p(𝑡) as a Jones matrix denoted as J(𝑡).
The definition of Jones matrix depends on the orthonal basis for

Jones vectors. If we consider the Jones vectors are defined based

on principal stress directions (v1, v2), then the Jones matrix Ĵ(𝑡)
corresponds to that of a retarder with retardance 𝛿 and slow axis

along v1 which is given as [Collett 2005],

Ĵ(𝑡) =
[
𝑒𝑖

𝛿/2
0

0 𝑒−𝑖𝛿/2

]
. (11)

≡

(a) Sampled points 
through ray marching

(b) Stack of retarders
between sampled points

(𝛿
! , 𝜃! )

t!

(𝛿"# , 𝜃"# )
𝛾"#

(c) Equivalence configuration
: a retarder and a rotator

t!$%	

Poincaré
Equivalence

Fig. 4. Modeling integrated photoelasticity. By ray marching, we sample

points along the queried ray (a). We model each segment between the

sampled points, 𝑡𝑖 and 𝑡𝑖+1 as a retarder with retardance 𝛿𝑖 and slow-axis

orientation 𝜃𝑖 (b). From the Poincaré equivalence theorem, stack of any

number of retarders is equivalent to a single retarder with parameters

(𝛿eq, 𝜃eq ) followed by a rotator with rotation 𝛾eq (c).

The principal directions are not known a priori. The general or-

thonormal basis (u, v) is rotated 𝜃 from the principal directions

(v1, v2) as given by Eq. 77. For the Jones vectors with orthonormal

basis along (u, v), the Jones matrix corresponds to that of a retarder

with phase 𝛿 and orientation 𝜃 from the slow axis (u) which is given

as [Collett 2005]:

J(𝑡) = cos (𝛿/2)
[
1 0

0 1

]
+ 𝑖 sin (𝛿/2)

[
cos 2𝜃 sin 2𝜃

sin 2𝜃 − cos 2𝜃

]
, (12)

4.2 3D Photoelasticity

Integrated photoelasticity using ray marching. Consider 𝑁 sam-

ples along the ray parameterized as 𝑡𝑖 , 𝑖 = 1, 2, . . . , 𝑁 . Considering

sufficiently large number of samples, we approximate the stress

between the samples 𝑡𝑖 and 𝑡𝑖+1 to be constant., From Eq. 12, the

segment between 𝑡𝑖 and 𝑡𝑖+1 can then be approximated as a retarder

with retardance 𝛿𝑖 and slow axis orientation 𝜃𝑖 .

We can express the Jones matrix in terms of these parameters as

J (𝑡𝑖 ) = cos (𝛿𝑖/2)
[
1 0

0 1

]
+ 𝑖 sin (𝛿𝑖/2)

[
cos 2𝜃𝑖 sin 2𝜃𝑖
sin 2𝜃𝑖 − cos 2𝜃𝑖

]
. (13)

Aggregating along the entire ray, we can express the equivalent

Jones vector Jeq as the series of complex matrix multiplications

Jeq =

𝑁∏
𝑖=1

J(𝑡𝑖 ) . (14)

Employing equivalence theorem. The net Jones matrix can be un-

derstood as a combination of 𝑁 retarders along the ray each with a

different retardance 𝛿𝑖 and orientation 𝜃𝑖 . Poincare’s equivalence

theorem states that the polarization properties of a combination of

retarders are equivalent to that of a retarder followed by a rotator.

Thus, the aggregate Jones matrix Jeq can be represented by the prod-

uct of Jones matrix of retarder with retardance 𝛿eq and orientation

𝜃eq and a rotator with 𝛾eq. The angles 𝛿eq, 𝜃eq , and 𝛾eq are denoted

as the characteristic parameters [Aben 1979]. In the supplement,

we derive the equivalence theorem for Eq. 14 and show that equiva-

lent Jones matrix Jeq can be expressed based on the characteristic
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Fig. 5. General vs linear 3Dphotoelasticitymodel. The proposed general
3D photoelasticity formulation involves converting projected stress tensors

at each point on the ray to Jones matrices (first phase wrap) that are then
integrated using matrix multiplications (then aggregate). We also derive a

first-order approximation of this model that involves first summing the

projected stress tensors (first aggregate) and then converting the aggregated

stress tensor to Jones matrix (then phase wrap)

parameters as

Jeq = cos (𝛿eq/2)
[
cos 2𝛾eq sin 2𝛾eq
sin 2𝛾eq − cos 2𝛾eq

]
+ 𝑖 sin (𝛿eq/2)

[
cos 2𝜃 ′

eq
sin 2𝜃 ′

eq

sin 2𝜃 ′
eq

− cos 2𝜃 ′
eq

]
, (15)

where 𝜃 ′
eq

= 𝜃eq − 𝛾eq.

Linear approximation. In the supplement, we show that under

first-order approximations, our formulation simplifies to a linear

combination of projected stress followed by phase wrapping. Prior

works leverage this approximation to formulate photoelastic tomog-

raphy as linear tensor tomography [Sharafutdinov 2012; Szotten

2011]. Consider the projected stress components 𝜎
lin

and 𝜏
lin

defined

as

𝜎
lin

=

𝑁∑︁
𝑖=1

(𝜎uu (𝑡𝑖 ) − 𝜎vv (𝑡𝑖 ))Δ𝑡𝑖 𝜏
lin

=

𝑁∑︁
𝑖=1

𝜏vv (𝑡𝑖 )Δ𝑡𝑖 (16)

In the supplement, we also show that the aggregated Jones matrix

under first-order approximation J
lin

can be written as

J
lin

= cos (𝛿lin/2) I + 𝑗 sin (𝛿lin/2)
[
cos 2𝜃

lin
sin 2𝜃

lin

sin 2𝜃
lin

− cos 2𝜃
lin

]
, (17)

where

𝛿
lin

= −4𝜋𝐶

𝜆

√︃
𝜎2
lin

+ 𝜏2
lin

𝜃
lin

=
1

2

tan
−1

(
𝜎
lin

𝜏
lin

)
(18)

Our general non-linear model vs linear approximation. In the most

general case, the projected stress tensor at each point is encoded as

Jones matrices (Eq. 15) where the stress values are phase wrapped

due to the periodic nature of polarization. Then all Jones matrices

are aggregated using Jones matrix multiplication. The linear approxi-

mation employed by prior works [Sharafutdinov 2012; Szotten 2011]

first aggregates the projected stress values using Eq. 16 and then

performs phase wrapping (Eq. 17). We summarize the differences

between these models in Fig. 5. Moreover, the aggregated Jones

matrix in the general case (Eq. 15) is parameterized by three charac-

teristic parameters 𝛿𝑛𝑒𝑡 , 𝜃𝑛𝑒𝑡 and 𝛾𝑛𝑒𝑡 . In the linear approximation,

the aggregated Jones matrix (Eq. 17) is modeled as an equivalent

retarder with parameters 𝛿𝑙𝑖𝑛 and 𝜃𝑛𝑒𝑡 and no rotator. Thus the

linear approximation is not sufficient to model the rotation of polar-

ization due to integrated photoelasticity. In Fig. 8, we demonstrate

how the linear model fails to explain the photoelastic fringes for a

complicated stress field distribution.

4.3 Multi-axis Polariscopy

(𝛽! , 𝛼!)

𝛼! 𝛽! 𝜌!

𝜌"

𝛽" 𝛼"

(a) Notations for multi-axis polariscopy

(b) Example rendered polariscope images for a disk under diametral compression

𝜌" = 0°
𝜌! = 0°

𝜌" = 60°
𝜌! = 0°

More fringes 
around stress 

points. 

More fringes 
for oblique 

view.

cos 𝛿#$sin 𝛿#$ cos 2𝜃#$sin 𝛿#$ sin 2𝜃#$𝐼%&'
-1 1

(0°, 90°) (45°, 45°) (45°, 0°)𝛼" = 90°
𝛽" = 45°

Fig. 6. Multi-axis polariscope capture setup By varying yaw-pitch ro-

tations of the specimen and varying rotations of quarter waveplates and

polarizers (a), we capture the intensity measurements (b). These measure-

ments exhibit fringes which encode the projections of the underlying stress

tensor field.

In Sec. 4.2, we showed that the equivalent Jones matrix (Eq. 15)

for each ray encodes a projection of the stress distribution. Here

we describe how to measure this Jones matrix through a multi-axis

polariscope capture setup comprising a linear polarizer and quarter

waveplate before and after the target. We then describe how rotating

the object and capturing polariscope measurement for each rotation

enables photoelastic tomography.

Circular polariscope. We consider a circular polariscope-based

setup (Fig. 6) to capture components of the Jones matrix in Eq. 15.

Light emitted by an area light source passes through a linear polar-

izer (LP1) with the polarization axis oriented at an angle 𝛼1 with

respect to the horizontal axis. The linearly polarized light then

passes through a quarter wave plate (QWP1) with the fast axis

oriented at an angle 𝛽1 with relative to the horizontal axis. The

resulting circularly polarized light passes the specimen under stress.

The light ray coming out of the specimen passes through another

quarter wave plate (QWP2) with fast axis oriented at an angle 𝛽2
and then reaches the polarization camera. The polarization camera

comprises of a grid of linear polarizers at different orientations. Con-

sider this light ray hits a sensor pixel which has a linear polarizer

(LP2) oriented at an angle 𝛼2.
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Captured intensity. Consider E(𝛼1) as the Jones vector of light
emitted from the LP1 and Q(𝛽1),Q(𝛽2) and L(𝛼2) as the Jones ma-

trices of QWP1, QWP2 and LP2 respectively. The effective Jones

matrix as derived in Eq. 15 depends on the characteristic parameters

𝛿𝑛𝑒𝑡 , 𝜃𝑛𝑒𝑡 and 𝛾𝑛𝑒𝑡 . The refraction into and outside the object also

alters the polarization state based on the surface normals at those

points. At the entry and exit points of the ray, 𝑡𝑛 and 𝑡𝑓 , consider

the Jones matrix depending on the surface normals R(𝑡𝑛) and R(𝑡𝑓 ).
Using Jones Calculus, the Jones vector of light reaching the sensor

E
pol

is given by the complex matrix multiplication:

E
pol

= L(𝛼1)Q(𝛽1)R(𝑡𝑛)JeqR(𝑡𝑓 )Q(𝛽2)E(𝛼2) (19)

The intensity measurement captured by the polariscope 𝐼
pol

can be

obtained from the Jones vector E by combining net intensity along

orthogonal dimensions u and v.

𝐼
pol

= 𝐸u𝐸
∗
u + 𝐸v𝐸

∗
v (20)

By varying the polariscope element angles 𝛼1, 𝛽1, 𝛽2 and 𝛼2, we can

obtain multiple intensity measurements that encode the character-

istic parameters 𝛿eq, 𝜃eq and 𝛾eq.

Multi-axis rotations. The polariscope measurements encode the

equivalent Jones matrix Jeq (Eq 15) for each camera ray. This Jones

matrix in turn depends on the projection of the stress tensors of

the points along the ray (Eq 6). Every ray measures only a 2 × 2

projection of the 3 × 3 stress tensors on a plane perpendicular to

that ray (Eq. 6). Therefore, to obtain the full 3 × 3 stress tensor at

each point, we need to probe every point with multiple rays, each

providing a different 2 × 2 projection of the 3 × 3 tensor. To obtain

all possible 2 × 2 projections, the probing rays should be uniformly

sampled from a unit hemisphere.

To obtain multiple projections of the stress tensor field, we could

either rotate the viewing camera rays by moving the camera and

the screen around the object or we could rotate the object. In Fig. 6,

we visualize the later case. Yaw rotation 𝜌1 and pitch rotation 𝜌2
of the object are equivalent to fixing the object and rotating the

elevation and azimuth direction of the camera ray respectively.

Thus by multiple yaw-pitch rotations of the object, we capture

multiple projections of the stress tensor field enabling photoelastic

tomography.

Summarizing multi-axis polariscopy. Putting it all together, our
capture scheme (Fig. 6) has two components: 1) yaw-pitch rotations

of the object 𝜌1, 𝜌2 and 2) polariscope images involving rotations

of LP1(𝛼1), QWP1 (𝛽1), QWP2 (𝛽2) and LP2 (𝛼2) for each yaw-pitch

rotation. Each captured intensity is a non-linear function F of the

characteristic parameters 𝛿eq, 𝜃eq, 𝛾eq (Eq. 19-20). These character-

istic parameters in turn depend on the underlying stress tensor

distribution S (Eq. 6-15). We can express the captured polariscope

measurements as :

𝐼
pol

(
𝜶 , 𝜷, 𝝆

)
= F

(
Jeq

(
𝛿eq (S), 𝜃eq (S), 𝛾eq (S)

) )
, (21)

where we have folded the polariscope parameters into vectors,

𝜶 = [𝛼1, 𝛼2] 𝜷 = [𝛽1, 𝛽2] 𝝆 = [𝜌1, 𝜌2] . (22)

The characteristic parameters Fig. 6(b) shows example rendered po-

lariscope images from our capture scheme for a disk under diametral

compression.

Differentiable
Photoelastic 

Model (Sec. 4)

Neural 
Stress Field

𝒔!

𝑝"
𝑝#
𝑝$

𝜎""
𝜎##
𝜎"#
𝜎#$
𝜎"$

Position 
Vector

Stress Tensor 
Elements

Multi-axis polariscope 
measurements
$𝐼%&'(𝝆, 𝜶, 𝜷)

𝐼%&'(𝝆, 𝜶, 𝜷)

Render 
Loss

Fig. 7. NeST Pipeline. For every sampled point, the 3D position vector is

passed through a coordinate-based neural network, called the neural stress

field, to obtain the stress tensor elements at that point. Our differentiable

forward model converts the queried stress to multi-axis polariscope mea-

surements that we compare with the captured measurements and use the

render losss to end-to-end train the underlying neural stress field.

5 NEURAL STRESS TENSOR TOMOGRAPHY

Here we describe our approach to reconstruct the 3 dimensional

stress tensor field from multi-axis polariscope measurements. We

first model the stress tensor field 𝑆 (p) as a neural implicit representa-

tion and describe how we can use the developed 3D photoelasticity

model to render the projected Jones matrix Jnet of the sample from

these representations and then show howwe can solve for unknown

neural stress fields with gradient-based optimization.

5.1 Neural stress fields

The stress field can vary dramatically throughout the object. For

example, when an external load is applied on the object’s boundary

stress is often concentrated close to the boundary and then becomes

sparse towards the bulk of the object (Fig. 2). Representing this stress

distribution requires adaptive sampling points in the object. For the

stress tomography problem, as the stress is completely unknown

at the start, this adaptive sampling cannot be fixed and known. We

leverage the recent advancements in implicit neural representations

to model complex visual distributions with high expressive power

and computational efficiency.

Stress at each point p within the object is modeled as a second-

order symmetric tensor (Eq. 4). We express this distribution with

a coordinate-based MLP network 𝑆 with weights Θ that takes the

position p as input and outputs five components of the Stress tensor

matrix :

𝑆Θ : p → (𝜎𝑥𝑥 , 𝜎𝑦𝑦, 𝜎𝑥𝑦, 𝜎𝑦𝑧 , 𝜎𝑧𝑥 ) . (23)

Handling trace ambiguity. The stress tensor estimated by pho-

toelasticity has an unknown offset to the trace of the stress tensor

matrix [Lionheart and Sharafutdinov 2009]. This is evident from the

stress optic equation (Eq. 10) where the phase difference depends on

the difference between principal stresses. The addition of a constant

offset to the principal stress would still result in the same phase

difference. This ambiguity could result in many plausible stress

tensors to fit the measurements. We account for this ambiguity by

explicitly setting the trace of the reconstructed stress tensor as zero.

As a result, we estimate the sixth component of the stress tensor

𝜎𝑧𝑧 so that the trace, 𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧 , is zero.

𝜎𝑧𝑧 = −𝜎𝑥𝑥 − 𝜎𝑦𝑦 . (24)
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(b) Two-step phase unwrapping artifacts (c) Rendered vs captured polariscope measurement 𝒄𝒐𝒔	𝜹𝒆𝒒	

(a) Comparison of techniques for photoelastic tomography

Fig. 8. Comparison of approaches for photoelastic tomography. The existing approaches to photoelastic tomography [Abrego 2019] (a(i)) involve a

separate per-view phase unwrapping estimation that suffers from artefacts (b). We propose a joint phase unwrapping and tomography approach. Leveraging

our linear forward model (a(ii)) results in more approximate renders while being computationally efficient. Our general forward model (a(ii)) results in renders

that closely match the captures (c) at a higher computational cost. Moreover the estimated stress field with the general model is smoother compared to the

other approaches (d).

Occupancy function. We consider that the 3D geometry of the

loaded specimen is known and represented as a known occupancy

function 𝑂 that is 0 for any point outside the object and 1 for any

point on and within the object. The queried stress at a point is then

masked with this occupancy function. The occupancy function aids

the reconstruction of neural stress field by explicitly setting the

stress at empty regions to zero. We denote the masked stress field

as 𝑆mΘ :

𝑆mΘ (p) = 𝑂 (p)𝑆Θ (p) (25)

5.2 Differentiable rendering of polariscope measurements

from neural stress fields

Our differentiable formulation for 3D photoelasticity (Sec. 4.2) is

well-suited for rendering from continuous implicit stress distribu-

tions. Here we describe how we utilize the differentiable forward

model in our optimization framework.

Monte-Carlo ray sampling. We require to obtain the polariscope

measurements for each multi-axis rotation 𝝆 of the object. As de-

scribed in Sec. 4.3, the measurements can equivalently be modeled

by fixing the object and rotating the polariscope assembly by −𝝆.

Fixing the object allows us to query the neural stress field 𝑆mΘ in the

same coordinate system for all the rotations. For each rotation 𝝆,
we obtain a set of rays corresponding to each pixel on the camera

and we parameterize the ray as 𝒐, 𝒅, 𝝆.
For each ray (o, d, 𝝆) we sample 𝑁 points using stratified sam-

pling between the object boundaries (𝑡𝑛, 𝑡𝑓 ). For every point 𝑡 , we

query the stress tensor 𝑆mΘ (𝑡) and obtain the Jones matrix J(𝑡) from
Eq. 67. From Eq. 14, the projected Jones matrix can be obtained by

complex matrix multiplications of Jones matrices along the ray

Jeq =

𝑁∏
𝑖=1

J(𝑡𝑖 ) . (26)

Efficient Jones matrix multiplications. Multiplying complex 2 × 2

Jones matrices in Eq. 26 along the ray can be computationally expen-

sive. Multiplying two Jones matrices itself requires 56 multiply-add

operations. We show that these computations can be simplified by

using the Poincaré theorem and exploiting the structure of these

Jones matrices. The projected Jones matrix Jnet (Eq. 15) has only 4
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Fig. 9. NeST evaluation on simulated dataset. We evaluate NeST on multi-axis polariscope measurements rendered from stress fields in common objects

with varying loading conditions (a). The measurements rendered from the stress field estimated by NeST qualitatively match the input measurements (b).

In (c), we visualize the major principal component of the stress tensor field estimated by NeST by showing a slice of the principal stress magnitude and

streamline visualization [Wang et al. 2022] of the principal stress direction. (b) and (c) demonstrate that the stress field estimated by NeST qualitatively and

quantitatively matches the underlying ground truth stress field. Please refer to the supplementary video for a 3D animation of this result.

unique scalar elements, jeq = (𝑎eq, 𝑏eq, 𝑐eq, 𝑑eq), defined as

𝑎eq = cos (𝛿eq/2) cos 2𝛾eq 𝑏eq = sin (𝛿eq/2) sin 2𝜃 ′
eq

𝑐eq = sin (𝛿eq/2) cos 2𝜃 ′
eq

𝑑eq = cos (𝛿eq/2) sin 2𝛾eq (27)

Similarly, for each intermediate Jones matrix J(𝑡𝑖 ) from Eq. 67 can

be defined with unique elements j𝑖 = (𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 ).

𝑎𝑖 = cos (𝛿𝑖/2) 𝑏𝑖 = sin (𝛿𝑖/2) sin 2𝜃𝑖
𝑐𝑖 = sin (𝛿𝑖/2) cos 2𝜃𝑖 (28)

Consider the first 𝑖 points along the ray. From the Poincaré the-

orem, the Jones matrices for these points are equivalent to a sin-

gle equivalent Jones matrix that we denote with unique elements

j𝑖+1
eq

= (𝑎𝑖
eq
, 𝑏𝑖

eq
, 𝑐𝑖
eq
, 𝑑𝑖

eq
). The equivalent Jones matrix for 𝑖+1 points

can be obtained by matrix multiplication of equivalent Jones matrix

upto 𝑖 points with Jones matrix J(𝑡𝑖 ). As before, the equivalent ma-

trix for 𝑖 + 1 points is represented its by unique elements j𝑖+1
eq

and

the matrix multiplication can be efficiently expressed as a function

the unique elements upto 𝑖 points and the unique elements of the

𝑖th point:

𝑎𝑖+1
eq

= 𝑎𝑖𝑎
𝑖
eq

− 𝑏𝑖𝑏
𝑖
eq

− 𝑐𝑖𝑐
𝑖
eq

(29)

𝑏𝑖+1
eq

= 𝑎𝑖𝑏
𝑖
eq

+ 𝑏𝑖𝑎𝑖eq + 𝑐𝑖𝑑𝑖eq (30)

𝑐𝑖+1
eq

= 𝑎𝑖𝑐
𝑖
eq

+ 𝑐𝑖𝑎𝑖eq − 𝑏𝑖𝑑
𝑖
eq

(31)

𝑑𝑖+1
eq

= 𝑎𝑖𝑑
𝑖
eq

− 𝑐𝑖𝑏
𝑖
eq

+ 𝑏𝑖𝑐𝑖eq (32)

Accumulating these unique elements up to 𝑁 points, we obtain

the unique elements of the overall equivalent Jones matrix,jeq =

j𝑁
eq
. This approach results in 3× reduction of the total number of

computations compared to naive complex matrix multiplications.

Multi-axis polariscope measurements. For the ray (𝒐, 𝒅, 𝝆), we
then compute rendered polariscope measurements 𝐼

pol
(𝜶 , 𝜷, 𝝆)

from the computed equivalent Jones matrix parameterized with

the vector jeq using Eq. 21 as

𝐼
pol

(𝜶 , 𝜷, 𝝆) = F
(
𝒋eq (𝑺Θ)

)
. (33)

5.3 Optimization objective

From our capture setup, we obtain the captured multi-axis polar-

iscope 𝐼
pol

for every rotation 𝝆 and polariscope parameter 𝜶 , 𝜷 . We

define the loss between the rendered polariscope measurements

𝐼
pol

from Sec. 5.2 and the captured 𝐼
pol

as the L1 loss and optimize

for the parameters of the neural stress field Θ using gradient-based

optimization. The estimated parameters Θ∗
can be expressed as:

Θ∗ = min

Θ

∑︁
𝜶 ,𝜷,𝝆

∥𝐼
pol

(Θ) − 𝐼
pol

∥1 . (34)

5.4 Comparison of photoelastic tomography approaches

Here we compare and contrast three different approaches to photoe-

lastic tomography enabled by our optimization framework (Fig. 8(a)).

We use the example of experimental data that consists of two planar
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Fig. 10. The effect of varying rotation angles. We vary the the range of multi-axis rotation angles for two scenes in our simulated dataset and show slices

of the 𝜎𝑥𝑥 component. A smaller range results in lower reconstruction accuracy. Bearing has more complex stress variation than Femur and thus detoriates

higher upon reducing the rotation angle range.

disks that are under diametral compression and are stacked on top

of each other. When slicing along the thickness of the object under-

lying stress distribution should rotate from 135
◦
to 45

◦
as we go

from one planar disk to the other. We compare the following three

techniques:

• Two-step: Similar to the prior linear tensor tomography tech-

nique by Abrego et al. [2019], we separately phase unwrap po-

lariscope measurements for each rotation 𝝆 and obtain the ag-

gregated stress. These aggregated stresses are then used to solve

a linear tensor tomography problem using our linear forward

model and neural stress fields.

• NeST-approx: We use our differentiable linear forward model

and perform joint phase unwrapping and linear tomography.

• NeST-general: We use the general nonlinear forward model and

perform joint phase unwrapping and nonlinear tomography.

Two-step has artifacts in the aggregated stress obtained after

phase unwrapping (Fig. 8(b)). While NeST-approx is more computa-

tionally efficient by using the linear model instead of the nonlinear

one, it cannot explain the captured measurements as well as the

nonlinear model Fig. 8(c)). NeST-general can accurately explain

the captured measurements and reconstruct stress fields that are

smoother and qualitatively closer to the expected variation (Fig. 8(d))

than other two techniques.

5.5 NeST Implementation Details

Optimization framework. We implement the NeST framework in

PyTorch. We use NerfAcc [Li et al. 2023] as the backbone of our

implementation. NerfAcc accelerates NeRF-based reconstruction

using CUDA kernels. Our forward model involves unique cascaded

complex multiplications that we perform efficiently using the pro-

cedure defined in Sec. 5.2. We implement the forward and gradient

operators for our image formation model using custom CUDA ker-

nels.

Neural field architecture. We consider the neural stress fields as

coordinate-based MLP with sinusoidal encodings [Mildenhall et al.

2021] and sigmoid linear unit (SiLU) activation function [Hendrycks

and Gimpel 2016]. For simulated experiments, we consider an 8-

layer MLP with 64 neurons in each layer and 5 frequencies in the

sinusoidal encoding. For the real experiments, we consider a 6-layer

MLP with 64 neurons and 4 sinusoidal encoding frequencies.

Occupancy grid. Similar to InstantNGP [Müller et al. 2022], we de-

fine a binary occupancy grid that ensures that the points on rays that

are empty are not queried. InstantNGP learns the occupancy grid

jointly with the neural field. In our case, as the geometry is known,

we define this occupancy grid from on the occupancy function 𝑂 .

Reconstruction details. For optimization we use an Adam opti-

mizer, with a learning rate of 3e-4. We optimize for about 100K

iterations per scene. Optimizing each scene takes around 2 hours

on an NVIDIA A100 GPU.

6 SIMULATION RESULTS AND ANALYSIS

In this section, we discuss the evaluation of NeST on synthetic

datasets. We describe the generation of our 3D photoelasticity
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Fig. 11. The effect of increasing phasewrapping.More fringes can be observed in the rendered image as the wraping coefficient increases. The reconstruction

quality detoriates when the fringes become too dense for the a given spatial resolution.

dataset from stress fields of complex objects, evaluate the perfor-

mance of NeST on this dataset, and analyze the reconstruction

accuracy under key factors.

6.1 Simulated 3D Photoelasticity Dataset

3D-TSV stress fields. We utilize the 3D-TSV dataset [Wang et al.

2022] that includes 3D stress fields of several common objects and

mechanical parts generated under practical loading conditions using

finite element method (FEM) simulations. The stress field within

each object is represented by an adaptively sampled hexahedral

mesh or a Cartesian grid. The six-element symmetric stress tensor

elements are provided at the vertices of the adaptively sampledmesh.

The dataset also contains the 3D surface mesh and the details of the

loading conditions for each object. We use six objects from the 3D-

TSV dataset to construct our 3D TSV dataset: Femur, Bearing, Can-

tilever, Kitten, Bracket and Rod. The first three datasets are

depicted in Fig. 9 while the others are depicted in the supplement.

KNN interpolation. The stress field in 3D TSV datasets is defined

only on 3D coordinates corresponding to the vertices of an adap-

tively sampled mesh. Our rendering procedure described in Sec. 4

requires us to query the stress field at 3D arbitrary points within

the mesh. We use k-Nearest Neighbors (KNN) interpolation [Qi

et al. 2017] to compute the stress tensor elements at any arbitrary

interior point by distance-based interpolation of the stress values at

k nearest vertices.

SIREN occupancy function. The KNN interpolation assigns non-

zero stress values to 3D points outside the object. We require an

occupancy function to set the stress values outside the object to 0

explicitly. First, we train a SIREN network [Sitzmann et al. 2020] to

model the signed distance function (SDF) from the provided surface

mesh. Then we obtain the occupancy function by thresholding the

SDF function such that the non-negative values correspond to 1

and the positive values correspond to 0. We use a SIREN network

with three hidden layers and 256 neurons for all the objects. This

occupancy function is used in both (1) the rendering stage to mask

stress field values directly and (2) the reconstruction stage to exclude

low occupancy regions and accelerate sampling.

Rendering 3D photoelasticity. We query the stress field at arbitrary

points with the procedure described above. We use the nonlinear

forward model described in Sec 5.2 to render multi-axis polariscopy

measurements. We can vary the stress-optic coefficient𝐶 (Eq. 10) to

vary the frequency of photoelastic fringes. Fig 2(c) shows rendered

measurements for Femur, with the underlying stress field depicted

in Fig 2(a). As expected, the photoelastic fringes in the rendered

measurements have a higher density around the load application

points. The multi-axis polariscope measurements for each object

are rendered for the complete 180-degree range for the azimuth and

elevation rotation axis with 32 angles sampled along each rotation

axis. Rendering each object takes 2-4 hours on an Nvidia A100 GPU.

6.2 Evaluation of reconstruction

We use the 32×32 renderings with the full 180-degree range on each

axis for qualitative comparison. The reconstructions are performed

using our NeST-general approach. In Fig. 9(a), we show the object

geometry and loading conditions for three objects: Femur, Bracket

and Cantilever. Blue arrows represent compressive forces and

red arrows depict tensile and shear forces. The object points touch-

ing the gray surfaces are kept fixed during the load application.

Fig. 9(b) shows that the polariscope measurements rendered from

the reconstructed stress field by NeST qualitatively match those

rendered directly from the ground truth field. In Fig. 9(c), we visual-

ize the reconstructed stress plotting the magnitude and directions

of the principal stress corresponding to the largest eigenvalue of

the stress tensor and its eigenvector respectively. We can see that

our reconstruction closely approximates the ground truth. From the

principal stress magnitude, we can observe the increase in stress

near the contact points on Femur, around the holes in Bracket, and

at the top and bottom edges in Cantilever. The principal stress

direction is visualized as stress lines using the 3D-TSV visualization

framework [Wang et al. 2022] and demonstrates how the stress

propagates within the object.

6.3 Effect of rotation angles

In tomography, the rotation angle or the scanning angle is important.

Here, we start with the hemisphere (180×180), and gradually reduce
to a cone where the center aligns with the object. We reduce the

angle of the cone (scanning range in each direction) from 180 down

to 90 degrees on each direction (2× subsampling), and 45 degrees

(4× subsampling). The effects are shown in Fig. 10 below. As the
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Fig. 12. Proposed multi-axis polariscope setup. The system is composed

of a linearly polarized light panel for illumination and polarization camera

for detection. Both illumination and detection side additionally include

rotatable quarter wave plates. The entire assembly is colinearly mounted.

Two-axis object rotation is achieved via a motorized azimuth stage (𝜌2) and

by rotating the entire polariscope assembly for elevation (𝜌1).

angle reduces, the quality of reconstruction reduces significantly.

With 90 degrees, reasonable reconstruction can be obtained for most

of the object. However, artifacts start to occur. When subsampling

is 4×, the quality degrades significantly and distortions can be seen

in the reconstructed stress field. The distortions in Bearing are

much more severe as it has a more complex stress field. The results

match the observations in conventional scalar tomography, where

the missing cone problem can significantly degrade the performance

as unobserved angles increase.

6.4 Effect of phase wrapping

We analyze the effect of increasing phase wrapping using Bearing.

We vary the stress-optic coefficient for Bearing in the rendering

stage from 0.1 to 0.25 to 0.5. To emulate sensor read noise in real

captures, we add a Gaussian noise with mean 0 and standard devia-

tion 0.01. Example ground truth rendered measurements and slices

of the underlying stress field are shown in the first row of Fig. 11.

Increasing the stress-optic coefficient increases the amount of phase

wrapping in the reconstructions. For a given spatial resolution, at a

certain coefficient value, the fringes become too dense to be resolved

resulting in detoriation of the reconstruction quality.

7 REAL EXPERIMENTS AND RESULTS

7.1 Acquisition setup

Our multi-axis polariscope acquisition setup is shown in Fig. 12. On

the illumination side, our polariscope assembly has an LED light

panel with a diffuser, a linear polarizer (LP1), and a quarter-wave

plate (QWP1). On the camera side, our setup has another quarter-

wave plate (QWP2), a bandpass filter, DSLR lens, and a snapshot

polarization sensor (containing a grid of LP2). The LP1 and QWP1

can be manually rotated while QWP2 is rotated with a motorized

stage. The entire polariscope assembly is mounted colinearly on a

single rod.

As explained in Sec. 4.3, we require polariscope measurements

by rotating the object along two axes: azimuth (𝜌2) and elevation

(𝜌1). We rotate the object along the azimuth axis with a motorized

rotation stage. For the elevation axis, we rotate the entire polariscope

Category A Single plane

Category D 3D Primitives Category E Complex 3D Shapes

(a) Proposed 3D Photoelasticity Dataset 

(b) Examples of transparent photoelastic samples used

Category B Stacked Planes Category C Separated Planes

Fig. 13. Proposed 3D Photoelasticity experimental dataset.We acquire

multi-axis polariscope measurements for a variety of 3D shapes and force

application conditions. (a) depicts examples from the dataset with the mea-

surement cos𝛿eq. The photoelastic test specimen are created from epoxy

resin and shown in (b).

assembly with second motorized rotation stage. We rotate the whole

assembly instead of just the object to minimize the spatial footprint

of the setup and avoid occluding the object with the stage.

We capture four raw measurements for each elevation and az-

imuth rotation with varying QWP1 and QWP2 orientations. Each

of the four raw measurements comprises four different LP2 orien-

tations. These 16 measurements 𝐼
pol

are non-linear expressions of

the underlying characteristic parameters 𝛿eq, 𝜃eq and 𝛾eq (Eq. 21).

Please refer to the supplement document for the analytical forms of

all 16 measurements. As we describe in the supplement, these mea-

surements can be expressed as constant scale and offset applied to

one of the following six expressions of the characteristic parameters,

𝐼𝑖 :

𝐼1 = cos𝛿eq 𝐼2 = sin𝛿eq cos 2𝜃eq (35)

𝐼3 = sin𝛿eq sin 2𝜃eq 𝐼4 = sin𝛿eq sin 2𝛾
′
eq

(36)

𝐼5 = cos 2𝜃eq sin 2𝛾
′
eq

+ cos𝛿eq sin 2𝜃eq sin 2𝛾
′
eq

(37)

𝐼6 = sin 2𝜃eq cos 2𝛾
′
eq

− cos𝛿eq cos 2𝜃eq sin 2𝛾
′
eq

, (38)

where 𝛾 ′
eq

= 2𝛾eq − 𝜃eq.
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Fig. 14. NeST evaluation on real experiments.We demonstrate that NeST can recover the internal stress field distribution for 3D objects with varying

shapes and loading conditions (a). Polariscope measurement cos𝛿eq rendered from the stress field estimated by NeST matches the input measurements (c).

Slices of the principal stress distribution qualitatively match the intuition for the applied loading conditions. Please refer to the supplementary video for a 3D

animation of this result.

7.2 Test samples

The custom test samples were made from a two-part epoxy resin

and molded in various shapes using silicon molds. For simple shapes,

off-the-shelf molds were utilized. For more complex shapes, includ-

ing samples with letters or with strict dimensions, liquid silicon

molds were cast around 3D printed parts, and the samples were

then created in the same way as before.

Samples with Residual Stresses. Two types of samples with residual

stresses were used: household transparent plastics and resin. The

household objects were simply objects that are commonly found

around the house, such as a tape dispenser, and transparent plastic

box. Due to the injection molded process used to manufacture these

parts, residual stresses are common and the samples with the most

birefringence were selected. The second type was resin samples.

These were cast resin samples that had a compressive force applied

for in excess of 24 hours. Due to the nature of the resin we used,

the samples would set and exhibit residual stresses even after the

force was removed. These samples simplified the mounting setup

and allowed for extended azimuth and elevation ranges.

Samples with Applied Stresses. To apply an adequate force, custom

3D-printed mounts were made which applied a compressive force

on the samples. The mount was modeled such that it allows varying

angles of applied stress on the XY-plane. Furthermore, the mount

was created such that two samples could be mounted sequentially

along Z, as shown in Fig 12. Each force applicator can be removed

independent of the other to facilitate the capture of individual sam-

ples for validation: the front sample was captured, both samples

were then captured together, and then the back sample was cap-

tured. To restrict the force applied to the sample to compression, a

ball-and-socket nut was mounted to each screw such that no torsion

was applied as the screw was tightened.

7.3 Acquisition Details

For the samples with residual stress, we capture the 16 polariscope

measurements for each of the 400 multi-axis rotations: 25 azimuth

and 16 elevation rotations with a range of 180 and 90 degrees respec-

tively. 320 rotations are used for training and 80 rotations for testing.

For the samples with applied stress, the force application mount

occludes the sample at oblique views and thus limits the azimuth

range. These samples are captured with 320 multi-axis rotations:

20 azimuth and 16 elevation rotations with a range of 140 and 90

degrees respectively. The entire acquisition requires around 3 hours

for each object.

7.4 Qualitative Results

In Fig. 14, we evaluate the performance of NeST in recovering un-

derlying 3D stress distributions in real specimens under load. We

analyze three loaded specimens (a): 1) a cylinder with two compres-

sive loads along the thickness close to each face and 2) a triangular

prism with loads partially along z (i.e. a shear load in addition to a

compressive load is applied). 3) a cylinder with a square hole and

with a single obliquely applied compressive load. All these speci-

mens correspond to a 3D stress variation as the load application

points are varying along the thickness. We reconstruct the under-

lying stress tensor field using nest. The polariscope measurement
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Fig. 15. NeST Application: Virtual slicing. NeST enables visualizing the internal stress distribution as photoelastic fringes obtained by virtually slicing

the object. For objects consisting of two stacked compressed planar elements, NeST can decompose the stress field for each planar element and recover the

photoelastic fringes for each element. These decomposed photoelastic fringes match the ones captured by scanning each element separately.

from the reconstructed stress field matches the input capture (b). We

compute the principal stress field from the recovered stress tensor

and plot its slices along the thickness of the specimen (c). From

these slices, is it evident that NeST can resolve the stress fields cor-

responding to different load points with recovered principal stress

being higher close to the respective load points, depicted as arrows

in (c).

7.5 NeST Applications

Virtual Slicing. NeST enables virtually slicing 3D objects to visu-

alize the internal stress within the object as photoelastic fringes. An

example of virtual slicing using NeST is shown in Fig. 15. With two

objects stacked in line with one on top of another, the photoelastic

fringes are superimposed on one another and interfere. NeST is

able to successfully decompose the fringes of each specimen, and

their individual components can be extracted. This is shown with a

simple scenario with compressed square and hexagonal prisms. A

more complex example was tested where individual letter cutouts

were extracted from specimens, which is challenging given the

non-uniformity of the profiles around the sharp edges of the letters.

Novel View Stress Visualization. NeST enables new ways to visu-

alize the 3D stress tensor field distribution within common objects.

Objects such as a clear plastic tape dispenser (Fig. 16(a)) exhibit

fringes when placed in a polariscope due to the residual stress distri-

bution within these objects. The density of fringes is related to the

amount of residual fringes and these fringes are a way to visualize

the underlying stress tensor distribution [Bußler et al. 2015]. From

a set of multi-axis polariscope measurements, we can estimate the

underlying neural stress tensor field (b). The estimated stress reveals

regions with high stress concentration, depicted as arrows in (b).

Using our forward model, we can then render the measurements for

new rotations of the object not seen during training. In Fig. 16(c), we

demonstrate that these rendered measurements qualitatively match

the captures using a held-out test set not used in the training. Thus

NeST can enable visualizing the stress distribution in objects in an

interactive manner by rendering photoelastic fringes as the object

is viewed from novel views or rotations.

8 DISCUSSION AND CONCLUSIONS

In this paper, we have introduced a differentiable non-linear forward

model for 3D photoelasticity, and integrated it into a neural stress

tensor tomography approach we call NeST. A novel multi-axis po-

lariscope setup is developed to capture the required measurements.

We have demonstrated the efficacy of the NeST on complex shapes

in simulation, and on simpler geometries in real experiments.

To bridge the complexity gap between simulation and experiment,

the primary challenge is to handle refraction and reflection at the

object surface. We see two fundamental approaches to tackle this

issue, both with their individual challenges:

Refractive index matching. A hardware solution to surface reflec-

tion and refraction would be to immerse the object in a liquid of the

same refractive index [Trifonov et al. 2006]. The primary challenge

of this approach is that adding a liquid filled container would sig-

nificantly increase the complexity of the multi-axis polariscope. It

should also be noted that due to the birefringence of the object, the

refractive index matching would be approximate. Still, this approach

could likely reduce reflections and refraction to a negligible amount.
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Fig. 16. NeST Application: Novel View Stress Visualization NeST enables visualizing the 3D stress tensor field distribution within objects by rendering

photoelastic fringes for novel views. From multi-axis polariscope measurements of a transparent tape dispenser (a), NeST estimates the underlying stress field

(b) and can render fringes matching held-out test rotations (c), allowing interactive visualization of stress distributions.

Explicitly modeling boundary surfaces as Fresnel reflectors and re-
fractors. An alternative approach would be to 3D scan the object

before stress analysis, and then explicitly compute ray intersections

with these boundary surfaces, applying Fresnel laws. It might even

be possible to attempt a joint estimation of the shape and the stress

field. This approach would not require any hardware changes, how-

ever it significantly complicates the forward model, since the ray

paths in this model split into reflected and refracted parts at every

interface. Total internal reflectance would further complicate the

forward model.

Both of these approaches require significant new research and

expansions of the proposed approach, and are thus left for future

work. Nonetheless, we believe that our model and approach present

a significant advance in the 3D analysis of complex stress fields

using photoelasticity.
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A ADDITIONAL DERIVATIONS FOR THE 3D

PHOTOELASTICITY IMAGE FORMATION MODEL

A.1 Derivation of principal stress

We are given the 2 × 2 projection S′ of a Cartesian stress tensor S
along the plane spanned by the orthonormal basis vectors u, v.

S′ =
[
u𝑇 Su u𝑇 Sv
u𝑇 Sv v𝑇 Sv

]
≜

[
𝜎uv 𝜎uv
𝜎uv 𝜎vv

]
. (39)

We aim to find basis vectors w1,w2 in the same space spanned by

u, v such that the projected stress tensor corresponding to this new

basis S′′ is diagonal (i.e. only normal stress and no tangential stress):[
w𝑇
1
Sw1 w𝑇

1
Sw2

w𝑇
1
Sw2 w𝑇

2
Sw2

]
≜ S′′ ≜

[
𝜎1 0

0 𝜎2

]
. (40)

We denote the two sets of basis vectors with matrices as,

U =


| |
u v
| |

 P =


| |

w1 w2

| |

 . (41)

We can then rewrite Eq 39 and 40 as :

S′ = U𝑇 SU (42)

S′′ = P𝑇 SP . (43)

Asw1,w2 lie in the same space spanned by u,vwe can relatew1,w2

to u, v by an orthogonal transformation matrix T as :

P = UT . (44)

Substituting this equation to Eq. 43,

S′′ = T𝑇 S′T =

[
𝜎1 0

0 𝜎2

]
. (45)

To diagonalize S′, T should correspond to the eigenvectors of S′.
As T is orthogonal, we can parametrize it with 𝜃 as :

T =

[
cos𝜃 sin𝜃

sin𝜃 cos𝜃

]
. (46)

Substituting above equation into Eq 45 and comparing the elements

of the left and right hand side matrices, we get the following set of

equations:

𝜎uu cos
2 𝜃 − 2𝜎uv cos𝜃 sin𝜃 + 𝜎vv sin

2 𝜃 = 𝜎1 (47)

(𝜎uu − 𝜎vv) sin𝜃 cos𝜃 + 𝜎uv (cos2 𝜃 − sin
2 𝜃 ) = 0 (48)

𝜎uu sin
2 𝜃 + 2𝜎uv cos𝜃 sin𝜃 + 𝜎vv cos

2 𝜃 = 𝜎2 (49)

(50)

From Eq 48 and using trigonometric relations,

tan 2𝜃 =
2𝜎uv

𝜎vv − 𝜎uu
(51)

𝜃 =
1

2

tan
−1

(
2𝜎uv

𝜎vv − 𝜎uu

)
. (52)

From Eq 44 and Eq 41,

w1 = u cos𝜃 + v sin𝜃 w2 = u sin𝜃 + v cos𝜃 . (53)

Thus, 𝜃 is the angle made by w1 and matches the definition in the

main paper. Subtracting Eq. 47 from Eq 47 and using trigonometric

relations, we have:

(𝜎vv − 𝜎uu) cos 2𝜃 + 2𝜎uv sin 2𝜃 = 𝜎2 − 𝜎1 (54)

Susbtituting value of theta from Eq. 52 and simplifying we get,

𝜎2 − 𝜎1 =

√︃
(𝜎vv − 𝜎uu)2 + 𝜎uv2 . (55)

A.2 Derivation of our 3D photoelasticity formulation from

integrated photoelasticity equation

In Sec 4, we used the principal stress directions and values to de-

rive our approximate 3D photoelasticity forward model. Here we

derive our formulation from the more general stress optic relation

as demonstrated in prior works in integrated photoelasticity [Aben

1979; Bußler et al. 2015] and show how our forward model is an

approximation. We will later use this model for deriving the first-

order/linear approximation model. This projected stress tensor S′ (𝑡)
induces a weak birefringence along the ray at p(𝑡) [Aben 1979]. This
birefringence effect can be modeled as the change in the Jones vector

at that point through the stress-optic relation

𝑑E(𝑡)
𝑑𝑡

= G(𝑡)E(𝑡) , (56)

where G(𝑡) depends on the projected stress as

G(𝑡) = − 𝑖2𝜋𝐶
𝜆

[
1

2

(
𝑠′
11
(𝑡) − 𝑠′

22
(𝑡)

)
𝑠′
12
(𝑡)

𝑠′
12
(𝑡) − 1

2

(
𝑠′
11
(𝑡) − 𝑠′

22
(𝑡)

) ] . (57)

Here 𝐶 is the stress-optic coefficient that depends on the material

properties of the object and 𝜆 is the wavelength of light.
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By defining 𝜎 (𝑡) = 1

2

(
𝑠′
11
(𝑡) − 𝑠′

22
(𝑡)

)
and 𝜏 (𝑡) = 𝑠′

12
(𝑡) we can

denote G(𝑡) as

G(𝑡) = −𝑖 2𝜋𝐶
𝜆

[
𝜎 (𝑡) 𝜏 (𝑡)
𝜏 (𝑡) −𝜎 (𝑡) .

]
(58)

and the stress optic relation from Eq. 56 can be written as

𝑑𝐸 (𝑡)
𝑑𝑡

= −𝑖 2𝜋𝐶
𝜆

[
𝜎 (𝑡) 𝜏 (𝑡)
𝜏 (𝑡) −𝜎 (𝑡) .

]
𝐸 (𝑡) (59)

Integrated photoelasticity [Aben 1979] aggregates the change in

Jones vector at each point along the ray from Eq. 59 aggregated to

obtain the net change of Jones vector along the ray as∫ 𝑡𝑓

𝑡𝑛

𝑑E(𝑡)
𝑑𝑡

=

∫ 𝑡𝑓

𝑡𝑛

G(𝑡)E(𝑡) , (60)

Bußler et al. [Bußler et al. 2015] compute this integral as Euler inte-

gration using the 4th order Runge Kutta (RK-4) algorithm. However,

this approach is not well suited for solving the inverse optimiza-

tion. Here we derive the Monte-Carlo integration formulation for

integrated photoelasticity and show how Poincaré’s equivalence

theorem [Hammer 2004] simplifies the integral computation.

Monte-Carlo Integration. Consider samples 𝑡𝑖 along the ray 𝑗 =

1, 2, . . . , 𝑁 . Assuming𝐺 is constant between the samples 𝑡𝑖 and 𝑡𝑖+1,
integrated photoelasticity equation Eq. 61 between 𝑡𝑖 and 𝑡𝑖+1 can
be approximated as∫ 𝑡𝑖+1

𝑡𝑖

𝑑E(t) = G(𝑡𝑖 )
∫ 𝑡𝑖+1

𝑡𝑖

E(t)𝑑𝑡 (61)

E(𝑡𝑖+1) = Exp (G(𝑡𝑖 )Δ𝑡𝑖 ) E(𝑡𝑖 ) (62)

where Exp is the complex matrix exponential function and Δ𝑡𝑖 =
𝑡𝑖+1 − 𝑡𝑖 . We denote the transformation from E(𝑡𝑖 ) to E(𝑡𝑖+1) as the
Jones matrix J(𝑡𝑖 ):

J(𝑡𝑖 ) = Exp (G(𝑡𝑖 )Δ𝑡𝑖 ) (63)

We can then express this Jones matrix as a function of projected

stress at 𝑡𝑖 by substituting G(𝑡) from Eq. 58:

J(𝑡𝑖 ) = Exp

(
−𝑖 2𝜋𝐶

𝜆

[
𝜎 (𝑡) 𝜏 (𝑡)
𝜏 (𝑡) −𝜎 (𝑡)

]
Δ𝑡𝑖

)
. (64)

In App. A.2.1, we show that Eq. 64 can be simplified as,

J(𝑡𝑖 ) = cos

(
−2𝜋𝐶

𝜆

√︃
𝜎2
𝑖
+ 𝜏2

𝑖

)
I + 𝐼

sin

(
− 2𝜋𝐶

𝜆

√︃
𝜎2
𝑖
+ 𝜏2

𝑖

)
√︃
𝜎2
𝑖
+ 𝜏2

𝑖

𝐺𝑖 (65)

where we denote 𝜎 (𝑡𝑖 ) and 𝜏 (𝑡𝑖 ) as 𝜎𝑖 and 𝑡𝑖 respectively. We define

the parameters 𝛿𝑖 and𝜃𝑖 that are termed in the photoelastic literature

as isochromatic and isoclinic parameters [Ramesh 2021].

𝛿𝑖 = −4𝜋𝐶

𝜆

√︃
𝜎2
𝑖
+ 𝜏2

𝑖
𝜃𝑖 =

1

2

tan
−1

(
𝜎𝑖

𝜏𝑖

)
(66)

We can express the Jones matrix in terms of these parameters as,

J (𝑡𝑖 ) = cos𝛿𝑖/2
[
1 0

0 1

]
+ 𝑖 sin𝛿𝑖/2

[
cos 2𝜃𝑖 sin 2𝜃𝑖
sin 2𝜃𝑖 − cos 2𝜃𝑖

]
, (67)

This Jones matrix can also be understood as that of a retarder ele-

ment with retardation 𝛿 oriented with slow axis making an angle 𝜃

with the ‘horizontal‘ basis vector u [Collett 2005].

A.2.1 Derivation of exp( 𝑗𝐴) for a Symmetric, Trace-Free 2x2 Matrix.
Consider a symmetric, trace-free 2x2 matrix 𝐴 defined as

𝐴 =

(
𝜎 𝜏

𝜏 −𝜎

)
.

We aim to find the matrix exponential exp( 𝑗𝐴) using the Taylor

series expansion for the matrix exponential, given by

exp(𝑋 ) = 𝐼 + 𝑋 + 𝑋 2

2!

+ 𝑋 3

3!

+ · · · ,

where 𝐼 is the identity matrix.

First, we find 𝐴2
as follows:

𝐴2 =

(
𝜎 𝜏

𝜏 −𝜎

) (
𝜎 𝜏

𝜏 −𝜎

)
=

(
𝜎2 + 𝜏2 0

0 𝜎2 + 𝜏2
)
.

The Taylor series for exp( 𝑗𝐴) can be separated into real and

imaginary parts as follows:

Real Part:

𝐼 − 𝐴2

2!

+ 𝐴4

4!

− · · ·

Imaginary Part:

𝑗𝐴 − 𝑗
𝐴3

3!

+ 𝑗
𝐴5

5!

− · · ·

Notice that higher powers of 𝐴 cycle through combinations of 𝐼 ,

𝐴, and 𝐴2
. For example, 𝐴3 = 𝐴(𝐴2) = 𝐴(𝜎2 + 𝜏2) and so on. This

pattern allows us to simplify the series into sums involving 𝐼 ,𝐴, and

𝐴2
.

Applying Euler’s formula exp( 𝑗𝑥) = cos(𝑥) + 𝑗 sin(𝑥), the real
and imaginary parts can be simplified as:

Real Part:

cos(
√︁
𝜎2 + 𝜏2)𝐼

Imaginary Part:

𝑗
sin(

√
𝜎2 + 𝜏2)

√
𝜎2 + 𝜏2

𝐴

Combining the real and imaginary parts, the final expression for

exp( 𝑗𝐴) is:

exp( 𝑗𝐴) = cos(
√︁
𝜎2 + 𝜏2)𝐼 + 𝑗

sin(
√
𝜎2 + 𝜏2)

√
𝜎2 + 𝜏2

𝐴.

A.3 First order Approximation of Integrated

Photoelasticity

In Sec. 4, we derive that the effective Jones matrix along the ray can

be approximated as the product of Jones matrices. Here, we show

how the first-order approximation of this formulation leads to the

linear tensor tomography formulation [Sharafutdinov 2012] utilized

by prior works [Lionheart and Sharafutdinov 2009; Szotten 2011].

The effective Jones matrix is the matrix product of complex matrix

exponentials, expressed as,

𝐽net =

𝑁∏
𝑖=1

Exp

[
−𝑖 2𝜋𝐶

𝜆
𝐺 (𝑡𝑖 )Δ𝑡𝑖

]
𝐸 (𝑡0) (68)
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Using Baker-Campbell-Hausdorff (BCH) formula [Hall 2000], we

can express the logarithm of the product of two exponentials of

operators (or matrices) as a single exponential. For non-commuting

matrices 𝐴 and 𝐵, it’s given by:

log(Exp(𝐴)Exp(𝐵)) = 𝐴 + 𝐵 + 1

2

[𝐴, 𝐵] + 1

12

( [𝐴, [𝐴, 𝐵]] + [𝐵, [𝐵,𝐴]])

− 1

24

[𝐵, [𝐴, [𝐴, 𝐵]]] + · · · (69)

where [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴 is the commutator of 𝐴 and 𝐵.

Thus under first-order approximation, we can approximate the

product of complex exponentials in Eq as the exponential of the

sum of matrices

𝐽net = Exp

[
−𝑖 2𝜋𝐶

𝜆

𝑁∑︁
𝑖=1

𝐺 (𝑡𝑖 )Δ𝑡𝑖

]
(70)

We denote the combined matrix 𝐺net as:

𝐺net =

𝑁∑︁
𝑖=1

𝐺 (𝑡𝑖 )Δ𝑡𝑖 =
[
𝜎net 𝜏net
𝜏net −𝜎net

]
(71)

Where

𝜎net =

𝑁∑︁
𝑖=1

𝜎𝑖Δ𝑡𝑖 (72)

𝜏net =

𝑁∑︁
𝑖=1

𝜏𝑖Δ𝑡𝑖 (73)

𝐽net = Exp

[
−𝑖 2𝜋𝐶

𝜆
𝐺net

]
(74)

Using derivation in App. A.2.1, this can be simplified as

𝐽net = cos

(
−2𝜋𝐶

𝜆

√︃
𝜎2
net

+ 𝜏2
net

)
I + 𝑗

sin

(
− 2𝜋𝐶

𝜆

√︃
𝜎2
net

+ 𝜏2
net

)
√︃
𝜎2
net

+ 𝜏2
net

𝐺net

(75)

We define the parameters 𝛿 and 𝜃 that are termed in the photoe-

lastic literature as isochromatic and isoclinic parameters [Ramesh

2021].

𝛿 = −4𝜋𝐶

𝜆

√︃
𝜎2
net

+ 𝜏2
net

(76)

2𝜃 = tan
−1

(
𝜎net

𝜏net

)
(77)

𝐽net = cos𝛿I + 𝑗 sin𝛿

[
cos𝜃 sin𝜃

sin𝜃 − cos𝜃

]
(78)

A.4 Expressions for all the captured polariscope

measurements

In Table 1, we provide expressions for all the 16 measurements

we capture with our acquisition setup for each object rotation. As

described in Sec. 7.1, we capture raw measurements with the polar-

ization camera by varying QWP1 (𝛽1) and QWP2(𝛽2) rotations with

LP1 (𝛼1) set to 90 degrees. We derive the expressions for the cap-

tured intensity 𝐼cap as a function of both the unique elements in the

Jones matrix

(
𝑎eq, 𝑏eq, 𝑐eq, 𝑑eq

)
and the characteristic parameters(

𝛿eq, 𝜃eq, 𝛾eq
)
. We drop the subscript,eq, in the table for simplicity.

𝛾 ′ = 2𝛾 − 𝜃 . From Tab. 1, it is evident that all the measurements are

a function of 6 unique expressions 𝐼1 to 𝐼6 as described in Sec. 7.1.

𝐼𝑖 𝜌 𝜂 𝛽 2𝐼cap (𝛿, 𝜃,𝛾 ) 𝐼cap (𝑎,𝑏, 𝑐,𝑑 )

𝐼0 45
◦
0
◦

0
◦

1 − sin𝛿 sin 2𝜃 1 − 2𝑎𝑐 + 2𝑏𝑑

𝐼1 45
◦
0
◦

45
◦

1 − cos𝛿 2𝑏2 + 2𝑐2

𝐼2 45
◦
0
◦

90
◦

1 + sin𝛿 sin 2𝜃 1 + 2𝑎𝑐 − 2𝑏𝑑

𝐼3 45
◦
0
◦
135

◦
1 + cos𝛿 2𝑎2 + 2𝑑2

𝐼4 45
◦
45

◦
0 1 + cos𝛿 2𝑎2 + 2𝑑2

𝐼5 45
◦
45

◦
45

◦
1 + sin𝛿 cos 2𝜃 1 + 2𝑎𝑏 + 2𝑐𝑑

𝐼6 45
◦
45

◦
90

◦
1 − cos𝛿 2𝑏2 + 2𝑐2

𝐼7 45
◦
45

◦
135

◦
1 − sin𝛿 cos 2𝜃 1 − 2𝑎𝑏 − 2𝑐𝑑

𝐼8 90
◦
0
◦

0
◦

1 − cos 2𝛾 ′ cos 2𝜃 − sin 2𝛾 ′ sin 2𝜃 cos𝛿 2𝑐2 + 2𝑑2

𝐼9 90
◦
0
◦

45
◦

1 + sin𝛿 sin 2𝛾 ′ 1 + 2𝑎𝑐 + 2𝑏𝑑

𝐼10 90
◦
0
◦

90
◦

1 + cos 2𝛾 ′ cos 2𝜃 + sin 2𝛾 ′ sin 2𝜃 cos𝛿 2𝑎2 + 2𝑏2

𝐼11 90
◦
0
◦
135

◦
1 − sin𝛿 sin 2𝛾 ′ 1 − 2𝑎𝑐 − 2𝑏𝑑

𝐼12 90
◦
45

◦
0
◦

1 − sin𝛿 sin 2𝛾 ′ 1 − 2𝑎𝑐 − 2𝑏𝑑

𝐼13 90
◦
45

◦
45

◦
1 − cos 2𝛾 ′ sin 2𝜃 + cos 2𝜃 sin 2𝛾 ′ cos𝛿 1 + 2𝑎𝑑 − 2𝑏𝑐

𝐼14 90
◦
45

◦
90

◦
1 + sin𝛿 sin 2𝛾 ′ 1 + 2𝑎𝑐 + 2𝑏𝑑

𝐼15 90
◦
45

◦
135

◦
1 + cos 2𝛾 ′ sin 2𝜃 − cos 2𝜃 sin 2𝛾 ′ cos𝛿 1 − 2𝑎𝑑 + 2𝑏𝑐

Table 1. Expressions for captured intensity measurements as a function of

both unique elements of the equivalent Jones matrix and the characteristic

parameters of the equivalent Jones matrix. The subscript, eq, is dropped for

simplicity.

B CAPTURE SETUP DETAILS

B.1 Calibration of polariscope angles

Our polariscope setup involves mechanical rotations of the illu-

mination linear polarizer LP1 and quarter-wave plate QWP1 and

motorized rotation of the camera quarter-wave plate QWP2. The

camera linear polarizer LP2 has fixed rotations at four angles: 0,

45, 90 and 135 degrees because LP2 corresponds to a polarizer grid

within the linear polarizer camera that is placed directly on top of

the sensor. In our setup, we need to ensure that the rotations for all

the polariscope elements are defined based on the same reference

coordinate system. We consider the coordinate system of LP1 as the

fixed coordinate system and sequentially calibrate the rotations for

LP2, QWP1, and QWP2 based on this coordinate system. By con-

sidering no specimen and only free space between the illumination

and the camera, we utilize analytical expressions of the obtained

intensity as a function of the polariscope element angles to perform

this sequential calibration.

B.2 Calibration of multi-axis rotation

In order to calculate the pose of the camera relative to the object, a

calibration process is required. Both the lens intrinsics and extrinsics

are unknown, so we must calibrate both. We rely on COLMAP

[Schönberger and Frahm 2016] to calculate these. The procedure is

performed in three steps:

(1) Complete a capture of a high-contrast object with the full

azimuth and elevation ranges, respectively.

(2) Run COLMAP [Schönberger and Frahm 2016] on the ac-

quired images.

(3) Fit a regularly-spaced grid to the pose estimates.
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Fig. 17. Evaluation on additional simulated datasets.We evaluate the

accuracy of NeST on estimating stress tensor fields and on rendering po-

lariscope measurement 𝑐𝑜𝑠𝛿eq on additional datasets created using the

3D-TSV stress field dataset [Wang et al. 2017].
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Fig. 18. NeST-linear vs NeST-general on simulated dataset. By utiliz-

ing the more general non-linear forward model, NeST-general fits better
to the complex photoelastic fringes for the Bearing dataset and the esti-

mated stress field is closer to the ground truth compared to using the more

approximate linear forward model.
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Fig. 19. Evaluation of polariscope measurements rendered by NeST
for additional real object.We estimate the underlying residual stress field

in a plastic box using NeST and show that the polariscope measurements

rendered on held out rotations match the ground truth.

The regularly-spaced grid assumes the relative pose between the

camera and object remains fixed, and so the pose offset from this

grid is the calibrated pose.

B.3 Component List

Table 2 contains a list of components used to build our multi-axis

polariscope experimental setup (Sec. 7.1 ).

Component Vendor Part number
LED Panel NEEWER PT-1765

QWP1 Izgut Raw3D

Rotation Stage (x2) Thorlabs HDR50

Bandpass Filter Thorlabs FLH532-10

QWP2 Newport 10RP44-1

QWP2 Rotation Mount Thorlabs ELL14

DSLR Lens Nikon NIKKOR 50mm f1.4

Polarization Camera LUCID PHX050S-OC

Table 2. Various components used to build the prototype.

B.4 Object Masking

We mask out the background from the captured measurements

for computing rendering loss and for visualization purposes. The

background pixels corresponds to either the light rays that pass from

illumination to the detection without encountering the object or

the light rays that get occluded due to the object’s mount. Occluded

pixels have intensity close to zero and are thresholded out. We

observe that the light rays that do not pass through the object

have degree of linear polarization (DOLP) close to 1. We compute

the degree of polarization (DOLP) from all the raw measurements

captured at the polarization camera per object rotation and use the

minimum DoLP to mask out the background pixels passing from

free space.
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