Efficient Light Transport Using Precomputed Visibility

Katja Daubert!, Wolfgang Heidrich?, Jan Kautz!, Jean-Michel Dischler®, Hans-Peter Seidel!

1) Max-Planck-Institut fiir Informatik
2) The University of British Columbia
3) LSIIT, UPRES-A CNRS 7005, University Louis Pasteur, Strasbourg

May 10, 2002

Abstract

Visibility computations are the most time-
consuming part of global illumination algo-
rithms. The cost is amplified by the fact that
quite often identical or similar information is re-
computed multiple times. In particular this is
the case when multiple images of the same scene
are to be generated under varying lighting con-
ditions and /or viewpoints. But even for a single
image with static illumination, the computations
could be accelerated by reusing visibility infor-
mation for many different light paths.

In this paper we describe a general method
of precomputing, storing, and reusing visibil-
ity information for light transport in a num-
ber of different types of scenes. In particular,
we consider general parametric surfaces, trian-
gle meshes without a global parameterization,
and participating media.

We also reorder the light transport in such a
way that the visibility information is accessed in
structured memory access patterns. This yields
a method that is well suited for SIMD-style par-
allelization of the light transport, and can effi-
ciently be implemented both in software and us-

ing graphics hardware. We finally demonstrate
applications of the method to highly efficient
precomputation of BRDFSs, bidirectional texture
functions, light fields, as well as near-interactive
volume lighting.

Keywords: Illumination, Ray Trac-
ing, Monte Carlo Techniques, Frame
Buffer Algorithms, Texture Mapping, Re-
flectance & Shading Models, Volume Ren-
dering

1 Introduction

Global illumination algorithms usually spend the
majority of time on visibility computations. It
therefore seems natural to try and reuse visibility
information acquired at one point for different
computations. For example, once the visibility
between two points in the scene has been estab-
lished, this information can be used for multiple
light paths in which different amounts of energy
are transported between the points. This is par-
ticularly advantageous in cases where multiple
images with varying illumination or camera set-
tings are to be computed.

There have been several approaches in the
past where illumination information computed
for one point in the scene has been reused for
close by points. One example for diffuse scenes
is the Irradiance Gradients method [1], and for
scenes with specular objects there are techniques
like photon maps [2] and density estimation [3].
Because these methods store illumination infor-
mation (irradiance or incident radiance) at dis-
crete points, it is not possible to reuse the infor-
mation for changes of the light source. In ad-
dition, finding the desired information for one
point in space requires a search through the data
structure. This search can be performed in loga-
rithmic expected time, but the resulting memory
access patterns are irregular and can present a
significant performance bottleneck.

We go a different way. Instead of storing
and reusing illumination information, we directly
reuse visibility information stored in a regular
fashion that allows for constant time lookups.
Our method is a generalization of the method
by Heidrich et al. [4] for height fields to differ-
ent kinds of geometry like general parametric
surfaces, triangle meshes without a global pa-
rameterization, and volumes. For each case we
propose efficient algorithms for computing direct
and indirect illumination, which also account for
shadows. Using the Method of Dependent Tests,
a variant of Monte Carlo integration, we can ac-
cess the visibility in a structured fashion, that
allows for coherent, and therefore efficient mem-
ory access patterns in software implementations
as well as for the use of graphics hardware for
the light transport.

We demonstrate quality and performance of
our approach by applying it to the computa-
tion of BRDFs, bidirectional texture functions
(BTFs), light fields, as well as to near-interactive
volume lighting.

The remainder of this paper is organized as
follows. In Section 2 we review the literature re-
lated to our approach. After briefly summarizing
the work by Heidrich et al. for height fields in
Section 3 we discuss our method for parametric
surfaces, arbitrary triangle meshes, and volumes
in Sections 4, 5, and 6. We finally present appli-
cations and results of the method in Section 7,
and conclude with a discussion and conclusions
in Sections 8 and ?7?.

2 Related Work

There have been a number of publications that
describe the reuse of previously computed illu-
mination information in global illumination al-
gorithms. Irradiance Gradients [1] accelerate the
computation of indirect light in diffuse scenes by
reconstruction from irradiance samples that have
been generated for other locations in close prox-
imity of the desired surface point. The Irradi-
ance Volume [5] represents a coarse volumetric
representation of irradiance, from which the il-
lumination at arbitrary locations can be recon-
structed.

For scenes with specular objects, photons can
be traced from the light sources through the
scene, and stored on the objects. The incident
light at arbitrary surface locations can then be
reconstructed using techniques like density esti-
mation [3] and the photon map [2].

Both the methods for diffuse and for specu-
lar surfaces store illumination information (irra-
diance or incident radiance) rather than visibil-
ity, and can therefore not be used to accelerate
the computations in the case of changing light
sources. Also the reconstruction process for any
given point in the scene requires a search through
the illumination data structure, which is typi-

cally the most costly part of the computation.

Other algorithms, such as finite element meth-
ods for global illumination computations, store
visibility. In particular, the link structure in hi-
erarchical and Wavelet Radiosity [6, 7] can be
interpreted as a cache for visibility information.
However, since this structure only represents the
most relevant parts of the visibility for a given
illumination situation (BF-refinement), the in-
formation typically has to be recomputed if the
illumination changes.

Precomputed visibility that is completely sep-
arated from illumination and light source posi-
tions has been studied for special cases such as
height fields. Horizon maps [8] represent the vis-
ibility information required for computing shad-
ows and masking from direct light sources in
height fields and bump maps. There have also
been some solutions for shadows in more gen-
eral geometry like folded cloth [9]. These ap-
proaches are based on sampled representations
of the visibility. Other, analytic representations
for general scenes like the visibility skeleton [10]
suffer from a combinatorial explosion of the in-
formation with the scene complexity and from
numerical instabilities.

The use of precomputed visibility for the pur-
pose of computing the light transport between
different parts of the scene has so far been lim-
ited to the case of height field geometry [4]. We
expand this idea to more general geometry and
participating media. By using the Method of
Dependent Tests, a variant of Monte Carlo in-
tegration, we access the precomputed visibility
information in a structured form. This way we
achieve regular memory access patterns for effi-
cient software rendering, as well as the possibil-
ity to compute the light transport using graphics
hardware.

We demonstrate the quality and performance

of our method with a number of applications
ranging from near-interactive computation of in-
direct light in participating media over the sim-
ulation of BRDFs (similar to the methods de-
scribed by Cabral et al. [11] and Westin et
al. [12]) to the computation of light fields [13, 14]
and BTFs [15, 16].

3 Light Transport
Fields

in Height

Before we introduce our light transport algo-
rithm for computing indirect light in general
polygonal scenes and participating media, we
briefly review the approach presented by Hei-
drich et al. [4] for height fields.

The fundamental idea of this method is to cal-
culate the visibility in a precomputation step,
and to store it in a set of scattering textures S;.
In order to do this, a fixed set D = {d;} of sample
directions on the sphere is chosen. Then a ray
is shot from each grid point in the height field
into each of the directions d; and intersected with
the height field geometry. A scattering texture
S; holds the intersections for all rays starting
at any point in the height field in one particu-
lar direction d;. Each of these intersections is
uniquely characterized by a 2D texture coordi-
nate (see Figure 1).

for each d; € D {
for each grid point p on height field {
ray := Ray(orig = p, dir = d;);
q = intersect(ray, height field);
Silp] = a;
}
}

Figure 1: Pseudo code for precomputation.

During rendering, this information is chained

together to generate a multitude of different light
paths, enabling the implementation of many ex-
isting Monte Carlo algorithms. In particular,
Heidrich et al. [4] apply the Method of Depen-
dent Tests, a Monte Carlo variant in which the
same sampling pattern is used for all points in
the height field, to map the light transport op-
eration to graphics hardware.

Figure 2: When using the Method of Dependent
tests, the light paths for computing the illumination
at all points of the height field are identical.

As an example, consider Figure 2, which illus-
trates the light paths with two reflections. Light
arrives at the height field from direction l_: is re-
flected at each point in direction —J; € D and
finally leaves the surface in the direction of the
viewer ¥. Most of the vectors are either constant
across the height field, or vary only slowly (like I
and ¥ for the case of point lights and perspective
views). In fact, the only strongly varying pa-
rameters in the computation are the normal at
p, the point q := S;[p] visible from p in direction
ci; and the normal at q.

The computation is split into two parts, cor-
responding to the reflections at q and later at
p- First the direct illumination of the height
field in viewing direction —J;- with light arriving
from [is computed by a bump mapping step!

'Bump mapping here means evaluating the BRDF on
the height field surface for the current light and viewing
direction. We use a model very similar to Phong and
evaluate it e.g. using register combiners.

and stored in a texture Ly. Afterwards the sec-
ond reflection is computed in a similar manner.
This time the light direction is d; and the view-
ing direction is ¥, however the incoming radiance
needs to be looked up in the direct illumination
texture Ly. For each surface point p the visi-
ble point q = S;[p] is looked up in the scattering
texture corresponding to J; q is then used as
an index into the direct light texture Lg4, yield-
ing the light arriving at p in direction —d;.

This way indirect illumination of height fields
is implemented as two steps of coherent light
transport along one direction for all points at
the same time. The mapping of this algorithm
to hardware is straightforward using hardware
bump mapping and dependent texture lookups
(as defined for example by DirectX version 8 as
well as several OpenGL extensions) for the indi-
rection.

4 General Parametric Surfaces

In the following, we will now extend the above
algorithm to compute the indirect illumination
in parametric surfaces. In order to precompute
the scattering textures we first need to discretize
the surface. We do this by using the parameter-
ization to texture the surface. Then, given a
texture of a certain resolution, each pixel in the
texture can be easily mapped to a point on the
surface. Similar to the height field precomputa-
tion step we now generate rays originating from
each of these points in each of the global sample
directions and intersect them with the surface.
The intersection points can again be character-
ized by their parameter values, which we store
as 2D floating point texture coordinates in sepa-
rate textures for each sample direction. To com-
pute indirect illumination, these scattering tex-

tures can now be used in the same way as for the
height fields.

That is, given the scattering textures S; and
a per-texel normal, we first have to generate a
texture-space representation of the direct illumi-
nation Lg. Then the indirect illumination can be
computed completely in texture space using a se-
quence of table lookups for the light transport as
depicted in Figure 3.

Direct | Illum. 1.l/,| Indirect Illum.
dy, -d>

[, -d;

Direct Illum. 14‘/_; i Indirect l/lum:
| T, -d, >, -d;
Direct Illum. Ly, i
T, -d;
. Indirect Hlum,|
d,, v

Direct_[/[g.m L I _t
i, |

Figure 3: Computation of multiple scattering for
one light path. Each box corresponds to a texture
generated by a bump mapping step. For a full illu-
mination solution, numerous paths like this one have
to be computed.

The question then arises how to compute the
direct illumination Lg, for which a shadow test
is required. For the height field case, Heidrich
et al. [4] propose a hardware-friendly represen-
tation of horizon maps [8] that allows for efficient
shadow tests for arbitrary light directions. Ob-
viously, a horizon approach, no matter in which
representation, will not work in the case of gen-
eral parametric surfaces, since the light direc-
tions can consist of several disjoint regions. Sim-
ilarly, representations like the shadow map [17]
will not work, because these are valid only for
specific light positions. Finally, analytic repre-
sentations like the visibility skeleton [10] will be
infeasible due to the combinatorial explosion in
the complexity.

We therefore propose the following shadow al-

0.0
0.3
0.5
BNo.7
1.0

Figure 4: Left: results of scattering precomputation
for p (only hits are drawn). Right: Projection of hits
(blue) and misses (yellow) to unit sphere. Color of
shadow regions (cones) corresponds to value of frac-
tion — dark: high number of hits, light: high number
of misses.

gorithm that is similar in spirit to the horizon
map in that it represents an approximation of
the shadowing information for all light direc-
tions and positions. In contrast to horizon maps,
however, it works for arbitrary geometries. In
a precomputation step we partition the sphere
of possible light directions into several regions
by choosing some uniformly distributed direc-
tions ¢; and defining the regions around them.
Then we compute the fraction of solid angle not
blocked by other parts of the surface for each
region. In order to do this we can reuse the vis-
ibility information already computed. For each
of the directions d; we determine to which of the
regions it belongs, and then compute the fraction
of these directions that do not hit other parts of
the surface. Pseudo code for precomputing the
fractions can be found in Figure 5. The results of
this step for one height field point are illustrated
in Figure 4.

After having computed the fractions for all
points and all shadow regions, we can store the
results in a texture with one channel per region.
During rendering, the shadow test for a given
light direction can be performed by computing
a weighted sum of the fractions for all directions
to avoid quantization artifacts. For the weights

for each d; € D
nearest[d;] = find ¢; nearest to d;;

for each grid point p on height field {
for each d;
increment total[nearest([d;]];
if S;[p] is valid point
increment light[nearest[d;]];
for each ¢;
fraction[p,¢;] = light[c;] / totalle;];
}

Figure 5: Computing the fractions. d; are the direc-
tions used for the visibility precomputation, c; are the
directions of the shadow region 1.

we use cosine powers of the angle between the
true light direction and the various ¢;.

These weights are chosen to be easily imple-
mentable using graphics hardware such as the
register combiner feature on new PC boards. For
hardware rendering, we code the shadow infor-
mation into RGBA textures, in such a way that
we have one texture for four directional regions.
Depending on how many simultaneous textures
and combiner stages a given graphics hardware
supports, we can check a number of directions
at once. For every shadow texture we also need
one vector of weights, and by loading two of
these textures and weight vectors into a single
combiner stage, we can compute the weighted
sum for eight directions in one stage using two
textures. Usually several passes are needed to
compute the whole sum, the results of which are
added using the blending operation. In our im-
plementation we used 32 shadow directions on
hardware that supports two simultaneous tex-
tures, and can therefore compute self shadowing
for a given direction in four passes. The result is
a texture with values ranging from zero (totally
shadowed) to one (fully lit) for each point on the
surface. This value can then be used to attenu-
ate the result of a direct light computation.

Figure 6 shows a piecewise parametric surface

without (left) and with shadows (right), com-
puted by our algorithm. In both images the light
source is located above and to the left of the ob-
ject.

Figure 6: Piecewise parametric surface without
shadows (left) and with shadows computed by our

shadow algorithm (right). Top corners show closeups
of marked regions.

5 Arbitrary Triangle Meshes

One advantage of this shadow algorithm is that
once we have the scattering information, the
shadow computation takes place in some texture
space. It is therefore well suited also for applica-
tion to arbitrary triangles meshes, provided we
find a way to efficiently index surface locations
on these meshes.

One possibility is to reduce the problem to
parametric surfaces by finding a parameteriza-
tion for the triangle mesh. For example, we can
use the MAPS algorithm [18] and first reduce
the fine mesh to a coarse triangle mesh. These
coarse triangles have an inherent parameteriza-
tion of their own. Then the vertices are rein-
serted, thereby assigning them parameter values
dependent on their position on the coarse tri-
angles. After completion the mesh consists of
as many global parameterizations as there were
coarse triangles.

We can then merge these parameterizations
into a single large parameter space to hold the

scattering information. At this point it is possi-
ble to apply the same shadowing algorithm as for
parametric surfaces to generate the direct illumi-
nation map Ly for the whole mesh. From there
on, we again use only texture space computa-
tions to calculate the indirect illumination using
scattering textures S; that are parameterized in
the given global texture space for the mesh.

On the other hand, if we have a very fine, uni-
form mesh to start with, it may be sufficient to
compute the illumination only at the vertices. In
this case it is not necessary to generate a global
parameterization and resample the surface into
texture space. Instead of using a true texture
for representing the samples, we use a simple
lookup table, in which each vertex in the mesh
is mapped to one table entry as depicted in Fig-
ure 7.

Figure 7: Each vertex is mapped to an entry of a
lookup table.

The shadow data structure will then contain
the same information as described in Section 4,
but now for every vertex in the mesh, that is, for
every entry in the table.

For the scattering information, the visibility is
computed in a similar fashion as for the paramet-
ric surfaces, with one important difference. Since
we no longer have a parameterization for the sur-
face, we cannot store exact intersections of rays
with the surface, but rather have to quantize the
intersections to entries represented in the table.
This corresponds to storing the vertex closest to
the ray intersection rather than the true inter-

section point. This will also slightly alter the
direction d;, a fact we can ignore if the mesh
is fine enough. As the error depends heavily on
the density of the tessellation, we can apply local
refinements like subdivision or simple vertex in-
sertion on the triangle to compensate for under-
tessellated regions in the original mesh.

To use graphics hardware, we code the one-
dimensional tables representing the shadow in-
formation and the scattering information into
two-dimensional texture maps. Since we do not
have the connectivity information that we get
from a parameterization of the surface, we can-
not interpolate in the illumination textures Ly
during the light transport phase. However, once
we have computed the indirect illumination by
using table lookups as before, we have obtained
per-vertex illumination that can be interpolated
across the triangle mesh using Gouraud shading.

6 Volumes and Participating
Media

As a final scenario for our approach to light
transport we would like to consider an algo-
rithm for computing the scattering of light in
participating media. To this end, we generalize
the texture based volume rendering for emission-
absorption volumes described by Cabral et
al. [19].

The original texture-based volume rendering
algorithm works as follows. The volume is sliced
with planes parallel to the image plane, yielding
a stack of polygons. Each vertex receives tex-
ture coordinates corresponding to the 3D loca-
tion of the vertex within the volume. Using 3D
texture mapping hardware, each polygon is thus
textured with the corresponding volume slice.
These slices are rendered back-to-front using al-

pha blending to simulate the emission and ab-
sorption in the volume (see [19] for details).

We extend this basic algorithm to direct and
indirect illumination in participating media. In
analogy to the surface case we use the term “di-
rect illumination” for light emitted from a point
or directional light source that is scattered ex-
actly once before it hits the eye. “Indirect il-
lumination” is therefore light that is reflected
more than once inside the medium. For this pa-
per, we restrict ourselves to isotropic media [20],
that is, to media whose phase function is given
as p(cosa), where « is the angle between the
incident and the exitant light directions.

6.1 Direct Illumination in Participat-

ing Media

We begin the discussion by describing an effi-
cient, hardware-accelerated algorithm for ren-
dering direct illumination at every point of a
volume. Note that this step is analogous to the
shadowing step in the surface algorithms.

In other words, we need to compute, for ev-
ery voxel in the volume, the direct light arriving
from the light source, that is, the radiance leav-
ing the light source into the direction of the voxel
minus the absorbed and outscattered parts. A
texture mapping approach to achieve this is to
render the volume from the light source by in-
tersecting it with planes as before, but here the
planes are rendered front-to-back. Every newly
rendered slice is weighted by the accumulated
transparency of the previously rendered slices,
which represent the portions of the volume closer
to the light source. The result of the rendering
of every individual slice is a sampled represen-
tation of the direct illumination arriving at this
slice of the volume.

To avoid resampling and representing regions

that are not covered by the actual volume, we
align the volumetric representation of the direct
illumination with the voxel grid of the original
volume. This is achieved by aligning the slices
in parallel to one of the axes of the coordinate
system rather than to the image plane while ren-
dering from the light source.

Figure 8: The volume slices representing the direct
illumination in the volume result from a front-to-back
rendering from the light source.

Using 3D texture mapping hardware, the di-
rect illumination volume can therefore be gener-
ated as follows. First, we find the largest compo-
nent of the light direction . Then, we slice the
volume into planes perpendicular to the corre-
sponding coordinate axis. We render these slices
front-to-back, thereby multiplying them with the
transparencies of the previous slices that have
been accumulated in the framebuffer. After ren-
dering every individual slice, copy the region of
the framebuffer covered by it as a new slice into
the 3D texture representing the direct illumina-
tion. This copying between framebuffer and tex-
ture memory is quite efficient on modern graph-
ics hardware and does not result in the serious
performance penalties of framebuffer readbacks
to main memory.

The result of the algorithm just described is
a 3D texture containing the direct illumination
Ld(x,l;) resulting from a point light source in
direction Iy at every voxel x. Using this tex-
ture, the original texture based volume render-

ing algorithm can be modified to include direct
light. To this end we sort the slices back-to-front,
and render every slice in two different passes.
In the first pass, we have to take care of the
absorption in the volume. This is done in the
same way the original texture based volume ren-
dering algorithm handles absorption: the slice
is texture mapped with the local density p(x),
which is interpolated from a volume texture. In a
back to front rendering of the slices using alpha-
blending, the previously rendered parts are at-
tenuated by the absorbed parts.

In a second pass, the slice is rendered again,
this time to add in the direct illumination. This
local interaction of light is described as

1

L) =)= [PTG - Lal).

(1)

For the case of directional or point light

sources that we want to consider here, we get

La(x, ;) = 8(&;,1)-La(x, 1), and Equation 1 sim-
plifies to

1 -

Ly(x,) = p(x) =p((#|]}) - La(x, D). (2)

Thus, the slice is texture-mapped with the
3D texture Ld(x,l;), multiplied with the local
volume density p(x) take from the volume data
set, and weighted by the phase function p(cos),
which is either constant (corresponding to direc-
tional light and orthographic viewer), or can be
interpolated as an additional 1D texture or per-
vertex color. The result of this pass is added
to the result of the first pass in the framebuffer.
An example of the direct illumination generated
with this method can be seen on the left side of
Figure 14.

6.2 Scattering in Participating Media

Now that we have an algorithm for rendering the
direct illumination in a volume, we can again use
the idea of precomputing visibility information
to accelerate the computation of indirect illumi-
nation (scattering) in participating media. We
assume that the direct illumination Lg(x,ly) is
given on a regular grid that is axis-aligned with
the original volume data, as discussed above.
However, the grid used for the direct illumina-
tion does not need to have the same resolution
as the original volume data.

To compute the actual indirect illumination
in the medium, we first require visibility infor-
mation for the scattering process, similar to the
case of geometry. Again, we randomly define
a global set of directions D = {d;}. Then we
compute one volume of visibility information for
each direction. Each point x in such a scattering
volume S; represents the coordinates of another
point y withy =x+k- J; The distance k is de-
termined by sampling the volume along the ray
in fixed step sizes, and at each sample making
a stochastic decision based on the local volume
density as to whether or not the ray is scattered
at that sample location. If we decide that light is
scattered, we store the coordinate of the sample
as the point visible from the origin of the ray, as
well as the percentage of light that arrives at the
scattering point from the origin of the ray with-
out being absorbed or scattered. Otherwise, we
continue traversing the ray through the volume.
This method in essence resembles volume render-
ing by stochastic ray-tracing, but the difference
is again that we apply the method of dependent
tests by reusing this same sampling pattern for
multiple light paths, rather than generating a
different pattern for every path.

Given a direct illumination volume Ly along

with the scattering volumes S;, the actual light
transport for the indirect light is then similar
to the case of parametric surfaces, except that
we have to use the phase function of the volume
instead of a BRDF in order to model the local in-
teractions of light with matter. We use the pre-
computed visibility information for the volume
scattering for transporting light from one posi-
tion in the volume into a given global direction.
Note that in contrast to the surface algorithms,
the visibility information is now stochastic, due
to ray-casting approach employed in the precom-
putation phase. The core of the algorithm is
again to use a simple table lookup in texture
space to find the point visible from another point
in a certain direction. The right side of Figure 14
shows the result of such a rendering, while the
left side shows the result of direct illumination
only.

The difference in the light transport for par-
ticipating media to the algorithms for surfaces
is mostly the fact that all tables, including the
direct illumination L; and the scattering tex-
tures S; are now 3-dimensional. As a conse-
quence, the table lookups for the light transport
also have to be 3-dimensional. Unfortunately, 3-
dimensional dependent texture lookups are not
available on current hardware or in specifications
of future hardware like DirectX 8. Therefore it
is at the moment necessary to implement the ta-
ble lookups in software. In Sections 7 and 8 we
discuss the performance implications of this. We
will see that the method can be quite fast even
in software implementations.

7 Applications and Results

For the implementation of our methods we chose
two different platforms. The methods described

in Sections 3, 4, and 5 were implemented on
SGI workstations as well as PCs with GeForce
class graphics cards, while the methods from
Section 6 were only implemented on an Octane
VPro, which supports 3D textures and provides
enough texture RAM for our volume rendering
algorithm.

7.1 Efficient Simulation of BRDF's

As a first application of our method we consider
the simulation of BRDFs. We used our methods
for generating BRDF samples for several differ-
ent micro geometries by first computing shad-
owing and indirect illumination in texture space
as described above. We then rendered an ortho-
graphic image of the geometry from the viewing
direction to handle occlusion. For the BRDF
computation we assume periodic micro geome-
try, which means we also have to handle occlu-
sions between several periods of the geometry.
Rather than replicating the geometry to account
for this kind of occlusion, we simply replicate
the 2D image of one period, and composite mul-
tiple copies back to front. A BRDF sample is
then obtained by averaging over the area cov-
ered by one copy of the micro geometry. Figure 9
demonstrates the acquisition process. If we sam-

(a) (b) (c)

Figure 9: (a) micro geometry after lighting com-
putation (b) replication and composition of the 2D
image. (c) only the area visible through the yellow
window is averaged (only pixels with alpha # 0)

10

ple light and viewing directions over the sphere
rather than the hemisphere, we can also account
for transmission, yielding a bidirectional scatter-
ing distribution function, or BSDF'. In this case it
is usually advisable to also store a transparency
value for each direction, which accounts for the
Dirac peak of light passing straight through the
material. To obtain this transparency, we gener-
ate an alpha mask in the framebuffer during the
rendering of the geometry. This mask represents
pixels that are actually covered by the geometry.
During averaging of the BRDF sample, the ra-
tio of covered and uncovered pixels is taken into
account for generating the transparency.

The computation time for one BRDF sample
depends mostly on the texture size and on the
number of directions used for computing the in-
direct light. In our case we used 128 sample
directions for the integration and were able to
compute a single sample for a 32x32 texture in
0.7 seconds, or for a 64x64 texture in 2.3 sec-
onds. Due to the cost of traditional simula-
tion algorithms, the usual approach of simulat-
ing BRDFs with a virtual gonioreflectometer is
to acquire only a small number of samples, and
to project those into a basis like Spherical Har-
monics [12] or cosine lobes [21] in order to arrive
at a smooth BRDF representation. We found
that this method blurred out a lot of the detail
for some of our more complex micro-geometry,
and therefore obtained a more dense sampling
with 10000 samples. For a model fitting into
a 64x32 texture the simulation therefore takes
slightly more than four hours. We took samples
for all combinations of 200 viewing and lighting
directions distributed on the whole sphere.

The resulting tabular BRDF's were then used
in a ray tracer to generate the scene in Figure 15.
The sofa’s BRDF was computed from the model
depicted in Figure 15¢, consisting of about 3400

11

vertices. The resulting BRDF is more or less dif-
fuse with a slight color shift from green to blue
for different viewing angles. The satin BRDF
of the cushion and the tablecloth was computed
from the model shown in Figure 15a. We used
a specular value of k; = 0.3 and an exponent of
N = 8 for the micro BRDF that also shows up
as a specular highlight in the simulated BRDF.
The red curtains were made of a woven mate-
rial modeled with the piecewise parametric sur-
face shown in Figure 15d. We aligned the tan-
gents of the curtain model in such a way that
the grey cylinders of the micro geometry run
horizontally across the curtain. The resulting
BRDF is anisotropic and shows clear color shifts
to red and blue, respectively, for grazing view-
ing angles. Also note how the BRDF becomes
less transparent for these angles. This behavior
is even more prominent for the BRDF generated
from the micro geometry shown in Figure 15b,
which we used for the almost transparent cur-
tains in front of the windows. Note how the cur-
tains are nearly invisible for orthogonal viewing
directions and only become grey and less trans-
parent for grazing angles.

Model | Size Time in sec | Memory in kB
Scat. | Shad. | Scat. | Shad.

c 64x64 | 82.46 | 85.47 | 2051 257

d 64x32 | 18.91 | 15.11 | 4099 513

Table 1: Precomputation times for 128 scattering
directions and 32 shadow regions for the models in
Figure 15¢ and d.

The timings for the precomputation of scatter-
ing textures and shadow fractions for the models
c and d in Figure 15 can be taken from Table 1.
The set of scattering directions consisted of 128
directions uniformly distributed over the sphere.

We divided the sphere into 32 regions to deter-
mine fractional visibility for the shadow compu-
tations. The column marked “Size” refers to the
amount of texture space used up by the models.

We also used the method described by Kautz
and McCool [22] to render the BRDFs in hard-
ware. After reparameterizing the BRDF, this
method approximates the 4D BRDF by a prod-
uct of two 2D functions, each of which is sam-
pled and stored in a texture map. During ren-
dering the product is computed using blending
operations. The torus in Figure 10 was rendered
with the same BRDF as the red curtains in Fig-
ure 15 (the transmission of the material is ig-
nored here). Note the color shifts to red and
blue for the grazing angles.

Figure 10: Frame from hardware rendering of
BRDFs as described in [22] using BRDF computed
from model in Figure 15d. Note the color shifts at
grazing angles.

7.2 Generation of Bidirectional Tex-
ture Functions (BTFs)

By slightly modifying the algorithm for comput-
ing BRDF samples sketched above, we can also
compute samples for BTFs [15, 16]. Again we
compute the direct and indirect light, as well
as shadows and repeat the scene to account for
occlusion. However, we store a whole image

per combination of one viewing and one light-
ing direction, instead of only an averaged BRDF
sample. Figure 11 shows four sample images
computed by our method. Since BTFs are six-
dimensional functions, a faithful representation
is very demanding in terms of memory and band-
width. For instance, writing a computed image
for the model in Figure 156 takes nearly as long
as the illumination computation. This makes the
generation of BTFs almost a factor of 2 slower
than the BRDF simulation.

Figure 11: Four BTF samples generated for two dif-
ferent light and two different viewing directions.

In [23] we present a technique for creating and
rendering the spatially variant BRDF of textiles.
To capture the necessary data, we slightly mod-
ified the algorithm for computing BTF samples
and render the geometric model of a stitch or
weave for a set of different light and viewing di-
rections. After fitting a specialized BRDF model
to the data, we are able to generate realistic im-
ages of clothing, as can be seen in Figure 12.

7.3 Computation of Light Fields

Another application for our method is to gen-
erate light fields of globally illuminated scenes.
Light fields consist of a high number of images
of a scene for different view points. The infor-
mation in these images can be used to render
the scene at interactive rates, completely inde-
pendent of its complexity. In comparison to the
BRDF and the BTF, the illumination remains

12

Figure 12: Data for spatially variant BRDF was ob-
tained with algorithm similar to Section 7.2

the same over all images, only the camera loca-
tion changes. Therefore it is sufficient to com-
pute the direct, indirect light and shadows once
for a scene similar to the one depicted in Fig-
ure 13.2 We then rerender the scene from dif-
ferent camera locations, storing separate images
for each eye point, see Figure 13(a). Similar
to the applications described above we manage
to achieve extremely low computation times by
reusing visibility information, allowing us to gen-
erate a light field of the resolution 2562x162 in
less than two minutes. Figure 13(b) shows a
snapshot from the rendering of this light field.

7.4 Participating Media

As mentioned above, the algorithm for partic-
ipating media has been implemented for SGI
VPro, which has enough texture memory for our
purposes, and supports 3D textures. On this
platform, computing the direct illumination Ly
as described in Section 6.1 and displaying it as
described in Section 6.2 is interactive, at about

2Especially in this application we might want to com-
pute the lighting for more than one light source. To do
so, we have to modify the first part of the algorithm (see
Section 3), the computation of Lg, to accumulate the illu-
mination of all light sources in direction —d;. The second
step (scattering) remains the same as for one light source.

13

PO

(a) (b)
Figure 13: (a) slices of the light field computed using
our methods. (b) rendering of the light field

12 frames per second for the 2563 cloud data in
Figure 14. If we assume a constant phase func-
tion p(a) = ¢, Ly does not need to be recom-
puted if the light source remains fixed. In this
case, we achieve about 20 fps. for displaying the
direct illumination in the volume as described in
Section 6.2.

(a) (b)

Figure 14: Volume lighting. (a) direct illumination
only. (b) direct illumination and one-bounce indirect
illumination.

For the computation of the indirect illumi-
nation it is advisable to reduce the resolution
of the grid in order to save memory. For the
cloud we used a grid size of 643, with precom-
puted visibility for 64 directions, yielding 64 MB
of scattering information that can be generated

in about 17 minutes by volume ray-casting on
a 300 MHz R10k. As described in Section 6.2,
we perform the light transport for the volume
rendering algorithm in software. This means
that for computing one-bounce indirect illumi-
nation in the participating medium, we have to
traverse these 64 MB of data in software, and
perform 16 million table lookups. This takes
about 1.6 seconds, with about 0.7 seconds spent
on cache misses (we measured this by comparing
the rendering times to a variant of the algorithm
that performed the same operations on constant
data). We expect that these costs could be re-
duced by adding hardware support for this kind
of 3D table lookup, because the graphics chips
have a higher bandwidth to the texture RAM
than the CPUs have to the main memory. In
addition, graphics chips are able to employ more
aggressive caching and prefetching schemes than
general-purpose CPUs.

In the special case of a constant phase function
we only need to recompute the indirect illumina-
tion once for every change of the light source. In
that case the indirect illumination can be merged
into one volume with the direct illumination and
displayed at 12 fps.

8 Discussion and Conclusions

As we have seen in the previous section, our ap-
proach allows for the efficient computation of il-
lumination for different lighting and viewing sit-
uations, using precomputed visibility informa-
tion. The precomputation times are quite mod-
erate, and we can amortize them over many dif-
ferent light transports, for example to generate
different light paths for a single image, or to com-
pute many different images with varying illumi-
nation and changing camera positions.

14

The efficiency of our algorithms is not only
due to the fact that we reuse visibility infor-
mation that would have had to be recomputed
with other approaches. Another reason is that
we use regular data structures, which allow us
to reduce the light transport operator to simple,
constant time table lookups. As a result we ob-
tain regularized memory access patterns, which
already yield a high performance in software im-
plementations. However, we have argued that we
can achieve additional performance benefits by
mapping the light transport onto graphics hard-
ware. This in turn is possible because similar
table lookups are performed for all points on the
surface or in the volume, which leads to a SIMD-
style parallelism.

Since most computations take place in tex-
ture space, we do not make much use of spe-
cific hardware features like geometric transfor-
mations and scan-conversion of geometric prim-
itives. In fact these are only used for the final
display of the scene after the illumination has al-
ready been computed. The use of graphics hard-
ware is still interesting for this kind of algorithm,
mostly because it is optimized for high band-
widths to texture and framebuffer RAM with
specific caching schemes specifically designed for
this kind of lookup process.

Of course the final display of the illuminated
scene could easily be replaced by other algo-
rithms like interactive ray-tracing, while keep-
ing our algorithms for light transport based on
precomputed visibility. In this case we would
only need a high-bandwidth architecture opti-
mized for performing the table lookups.

Furthermore, our algorithm should be easy to
parallelize on multiprocessor systems or clusters.
One way would be to use different CPUs to com-
pute different light paths. Each CPU then only
needs to know the visibility textures correspond-

Figure 15:

o
T
I

Using our methods, BRDFs can efficiently be computed for different micro geometry (a-d).

These BRDFs can then be used, e.g. in a ray tracer, to correspondingly shade objects in a scene: the cushion
and tablecloth exhibit the BRDF computed from (a) (satin), (b) was used for the nearly transparent curtains
over the windows, the sofa’s BRDF was computed from (c), and (d) was used for the red curtains.

ing to directions that are comprised in its paths.

In this work we have demonstrated the fea-
sibility, quality, and performance of the pro-
posed method by applying it to the simulation
of BRDFs, the computation of light fields and
BTFs, and near-interactive illumination in par-
ticipating media. We think that these appli-
cations show the possibilities of utilizing our
method also for other scenarios, such as the effi-
cient illumination of animation sequences.

References

[1] G. Ward and P. Heckbert. Irradiance Gradi-
ents. Third Eurographics Workshop on Render-
ing, pages 85-98, May 1992.

[2] H. W. Jensen. Global Illumination using Pho-
ton Maps. In Furographics Rendering Workshop

15

[3]

[4]

[5]

[6]

1996, pages 21-30. Eurographics, 1996.

P. Shirley, B. Wade, P. Hubbard, D. Zareski,
B. Walter, and D. Greenberg. Global Illumi-
nation via Density Estimation. In Furographics
Rendering Workshop 1995. Eurographics, June
1995.

W. Heidrich, K. Daubert, J. Kautz, and H.-P.
Seidel. Illuminating Micro Geometry Based on
Precomputed Visibility. In Computer Graphics
(SIGGRAPH 00 Proceedings), pages 455464,
July 2000.

G. Greger, P. Shirley, P. Hubbard, and
D. Greenberg. The Irradiance Volume. IEEE
Computer Graphics € Applications, 18(2):32—
43, March—April 1998.

P. Hanrahan, D. Salzman, and L. Aupperle.
A Rapid Hierarchical Radiosity Algorithm. In

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Computer Graphics (SIGGRAPH 91 Proceed-
ings), pages 197-206, July 1991.

S. Gortler, P. Schréder, M. Cohen, and P. Han-
rahan. Wavelet Radiosity. In Computer Graph-
ics (SIGGRAPH 98 Proceedings), pages 221
230, August 1993.

N. Max. Horizon mapping: shadows for
bump-mapped surfaces. The Visual Computer,
4(2):109-117, July 1988.

J. Stewart. Computing Visibility from Folded
Surfaces. Computers and Graphics, 23(5):693—
702, October 1999.

F. Durand, G. Drettakis, and C. Puech. The Vis-
ibility Skeleton: A Powerful and Efficient Multi-
Purpose Global Visibility Tool. In Computer
Graphics (SIGGRAPH ’97 Proceedings), pages
89-100, August 1997.

B. Cabral, N. Max, and R. Springmeyer. Bidi-
rectional Reflection Functions From Surface
Bump Maps. In Computer Graphics (SIG-
GRAPH ’87 Proceedings), pages 273-281, July
1987.

S. Westin, J. Arvo, and K. Torrance. Predict-
ing Reflectance Functions From Complex Sur-
faces. In Computer Graphics (SIGGRAPH 92
Proceedings), pages 255-264, July 1992.

M. Levoy and P. Hanrahan. Light Field Ren-
dering. In Computer Graphics (SIGGRAPH ’96
Proceedings), pages 31-42, August 1996.

S. Gortler, R. Grzeszczuk, R. Szelinski, and
M. Cohen. The Lumigraph. In Computer Graph-
ics (SIGGRAPH ’96 Proceedings), pages 43-54,
August 1996.

K. Dana, B. van Ginneken, S. Nayar, and
J. Koenderink. Reflectance and Texture of Real
World Surfaces. ACM Transactions on Graph-
ics, 18(1):1-34, January 1999.

J.-M. Dischler. Efficiently Rendering Macro Ge-
ometric Surface Structures with Bi-Directional
Texture Functions. In Rendering Techniques

16

[17]

[18]

[19]

[20]

[21]

[22]

[23]

’98 (Proc. of Eurographics Workshop on Ren-
dering), pages 169-180, June 1998.

L. Williams. Casting Curved Shadows on
Curved Surfaces. In Computer Graphics (SIG-
GRAPH 78 Proceedings), pages 270-274, Au-
gust 1978.

A. Lee, W. Sweldens, P. Schroder, L. Cowsar,
and D. Dobkin. MAPS: Multiresolution Adap-
tive Parameterization of Surfaces. In Computer
Graphics (SIGGRAPH 98 Proceedings), pages
95-104, July 1998.

B. Cabral, N. Cam, and J. Foran. Acceler-
ated Volume Rendering and Tomographic Re-
construction Using Texture Mapping Hardware.
In 1994 Symposium on Volume Visualization,
pages 91-98, October 1994.

J. Kajiya and B. Von Herzen. Ray Tracing Vol-
ume Densities. In Computer Graphics (SIG-
GRAPH ’8 Proceedings), pages 165-174, July
1984.

S. Foo, K. Torrance, and
D. Greenberg. Non-Linear Approximation of
Reflectance Functions. In Computer Graphics
(SIGGRAPH ’97 Proceedings), pages 117126,
August 1997.

J. Kautz and M. McCool. Interactive Rendering
with Arbitrary BRDF's using Separable Approx-
imations. In Rendering Techniques ’99 (Proc.
of Eurographics Workshop on Rendering), pages
247 — 260, June 1999.

K. Daubert, H. Lensch, W. Heidrich, and H.-P.
Seidel. Efficient Cloth Modeling and Rendering.
In S. Gortler and K. Myszkowski, editors, Ren-
dering Techniques, pages 63—70. Springer, June
2001.

E. Lafortune,

