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Abstract. Realisticmodelingand high-performance renderingof cloth and
clothing is a challenging problem. Often thesematerialsareseenat distances
whereindividual stitchesandknits canbe madeout andneedto be accounted
for. Modelingof thegeometryat this level of detailfailsdueto sheercomplexity,
while simpletexturemappingtechniquesdo not producethedesiredquality.
In this paper, we describean efficient andrealisticapproach that takes into ac-
countview-dependenteffectssuchassmalldisplacementscausingocclusionand
shadows, aswell asilluminationeffects.Themethodis efficient in termsof mem-
ory consumption, andusesa combination of hardwareandsoftwarerenderingto
achieve highperformance.It is conceivablethatfuturegraphicshardwarewill be
flexible enoughfor full hardwarerenderingof theproposedmethod.

1 Intr oduction

Fig. 1. Woolensweaterrenderedusingour ap-
proach(knit andperl loops).

One of the challengesof modeling and
rendering realistic cloth or clothing is
that individual stitchesor knits can of-
tenberesolved from normalviewing dis-
tances. Especially with coarselywo-
ven or knitted fabric, the surfacecannot
be assumedto be flat, since occlusion
and self-shadowing effects becomesig-
nificantat grazing angles.This rulesout
simpletexture mapping schemesaswell
as bump mapping. Similarly, model-
ing all thegeometricdetail is prohibitive
both in terms of the memory require-
mentsandrendering time. On the other
hand, it is probablypossibleto compose
a complex fabric surfacefrom copiesof
individual weaving or knitting patterns
unlessthe viewer gets closeenough to
thefabricto noticetheperiodicity. This leadsto approacheslikevirtual ray-tracing[5],
which aremorefeasiblein termsof memory consumption, but still resultin long ren-
dering times.

In this paperwe presenta fastandmemory-efficient methodfor modeling andren-
dering fabricsthat is basedon replicatingweaving or knitting patterns.While theren-
dering partcurrently makesuseof a combinationof hardwareandsoftwarerendering,
it is conceivablethatfuturegraphicshardwarewill beflexible enoughfor full hardware
rendering.

Our method assumeswe have oneor a small number of stitch types,which are
repeatedover thegarment.Usingageometric modelof asinglestitch,wefirst compute
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the lighting (including indirect lighting andshadows) usingthe methods describedin
[3]. By samplingthestitchregularly within a planewe thengenerateaview dependent
texture with per-pixel normalsandmaterialproperties.

Beforewe cover thedetailsof this representation in Section3, wewill briefly sum-
marizerelatedwork in Section2. We thendescribe acquisition andfitting of datafrom
modeledmicro-geometry in Sections4,and5. After discussingtherenderingalgorithm
in Section6 we finally present our resultsin Section7.

2 RelatedWork

In orderto efficiently render replicatingpatterns suchascloth without explicitly repre-
sentingthegeometry at the finestlevel, we canchoosebetweenseveral different rep-
resentations. Thefirst possibility is to composeglobalpatternsof partswith precom-
putedillumination, suchaslight fields [13] andLumigraphs[6]. However, theseap-
proachesassumefixedilluminationconditions,andexpandingthemto arbitrary illumi-
nationyieldsan8-dimensionalfunction(whichhasbeencalledthereflectancefield [4])
thatis too largeto storefor practicalpurposes.

Anotherpossibility is to model the patterns asvolumes [7, 14] or simplegeome-
try (for example, height fields) with a spatiallyvarying BRDF. Hardware accelerated
methods for renderingshadowing andindirect illumination in height fields have been
proposedrecently[8, 16], aswell ashardwarealgorithms for renderingarbitraryuni-
form [9, 10] and space-variant materials[11]. However, the combination of space-
variant materialswith bump- or displacement mapsis well beyond thecapabilitiesof
currentgraphicshardware.Thiswouldrequireanexcessivenumber of renderingpasses
which is neitherpracticalin termsof performancenor in termsof numerical precision.

For high-performancerenderingwe therefore needto comeup with moreefficient
representationsthatallow usto simulateview-dependentgeometriceffects(shadowing
andocclusion)aswell asillumination effects(specularity andinterreflection) for space-
variant materialsin a way thatis efficientbothin termsof memoryandrendering time.

In work parallel to ours,Xu etal. [18] developedthelumislice, whichis arendering
method for textiles that is more tailoredfor high-quality, off-line rendering, whereas
ourmethodusesmoreprecomputationto achievenear-interactiveperformance. In fact,
thelumislicecouldbeusedasa way to precomputethedatastructureswe use.

Themethodweproposeis mostcloselyrelatedto bidirectional texturefunctions [2]
andvirtual ray-tracing[5]. As we will discussbelow, our representation is, however,
morecompactandis easyto filter for correctanti-aliasing. Our approachis alsore-
latedto imagebasedrenderingwith controllableillumination, asdescribedby Wonget
al. [17]. Again, our representation is morecompact, easierto filter andlendsitself to
partial useof graphics hardware. Futurehardwareis likely to have enough flexibility
to eliminatethe remaining softwaresteps,making the methodsuitablefor interactive
applications.

3 Data Representation

Ourrepresentationof clothdetailis basedonthecompositionof repeating patterns (in-
dividualweavesorknits)for whichefficientdatastructuresareused.In orderto capture
thevariation of theopticalpropertiesacrossthematerial,weemploy aspatiallyvarying
BRDF representation. The two spatialdimensions arepoint sampledinto a 2D array.
For eachentry we storedifferent parameters for a Lafortunereflectionmodel[12], a



lookup table,aswell asthenormal andtangent.
An entry’s BRDF � � � �	 
 �� � for the light direction �	 andthe viewing direction �� is

given by thefollowing equation:� � � �	 
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Eachlobe’sshapeandsizeis definedby its fourparameters % ! 
 % " 
 % � , and6 . Since� l
is wavelengthdependent,we representevery parameter asa three-dimensionalvector,
onedimensionpercolorchannel. Beforeevaluating thelobewetransform thelight and
viewingdirection into thelocalcoordinatesystemgivenby thesamplingpoint’saverage
normal andtangent, yielding �	  and ��  . In orderto account for areaforeshortening we
multiply by

	 �
.

Thelookuptable� � �� � storescolorandalphavaluesfor eachof theoriginal viewing
directions. It thereforecloselyresemblesthedirectional partof a light field. Valuesfor
directionsnotstoredin thelookuptableareobtainedby interpolation.Althoughgeneral
view-dependent reflectionbehavior including highlights etc.,couldbe described by a
simpleLafortuneBRDF, weintroducethelookuptableto takemorecomplex properties
like shadowing andmasking(occlusion) into account that arecausedby the complex
geometryof theunderlying clothmodel.

Like in redistribution bumpmapping[1], this approachaimsat simulatingtheoc-
clusioneffectsthatoccurin bumpmapsat grazing angles.In contrastto redistribution
bumpmapping, however, we only needto storea singlecolor valueperviewing direc-
tion, ratherthanacompletenormal distribution. Figure5 demonstratestheeffectof the
modulationwith thelookuptable.Thesamedata,acquiredfromthestitchmodelshown
in the middle,wasusedto fit a BRDF model without a lookup table,only consisting
of several cosinelobes(displayed on the left cloth in Figure5) anda modelwith an
additional lookup table(cf. Figure5 on the right). Both imageswererendered using
the samesettingsfor light andviewing direction. Generally, without a lookup table,
theBRDF tendsto blur over thesingleknits. Also theBRDF without thelookuptable
clearly is not ableto capturethecolor shifts to redat grazingangles, which arenicely
visibleon theright cloth.

Thealphavaluestoredin the lookup tableis usedto evaluatethe transparency. It
is not considered in the multiplication with � l , but usedasdescribedin Section6 to
determine if thereis aholein themodelatacertainpoint for agiven viewing direction.
Thealphavaluesareinterpolatedsimilarly to thecolorvalues.

4 Data Acquisition

After discussingthedatastructurewe usefor representing thedetailof thefabrics,we
now describehow to obtainthenecessarydatafrom a given 3D model.

2Both 7�8 9: ; and < l aredefinedfor each color channel, so = denotesthecomponent-wisemultiplication of
thecolor channels.

3Theoperator > ? is definedto return zero if >A@CB .



We modelthe basegeometry of our knits andweavesusingimplicit surfaces, the
skeletonsof which aresimpleBéziercurves. By applying the Marching Cubesalgo-
rithm we generatetrianglemeshes,whicharetheinput for ouracquisition algorithm.

Now we canobtaintherequired data.As mentionedin Section3, thespatialvaria-
tionsof thefabricpatternarestoredasa 2D arrayof BRDF models. Apart from radi-
ancesamplesD � �	 
 �� � for all combinationsof viewing andlight directions,we alsoneed
anaveragenormal, anaveragetangent,andanalphavaluefor eachviewing direction
for eachof theseentries.

We usean extensionof Heidrich et al.’s algorithm ([8]) to trianglemeshes([3]),
whichallowsusto compute thedirectandindirect illumination of a trianglemeshfor a
given viewing andlight direction pervertex in hardware(for detailssee[3]). In order
to accountfor maskingandpartsof therepeatedgeometrybeingvisible through holes,
wepastetogether multiple copiesof thegeometry.

Fig. 2. Computingthe samplinglocationsfor the radiancevalues.
Left: top view, middle: projection,right: resultingsamplingloca-
tions,discardingsamplesat holes.

Now we need to
collecttheradiancedata
for eachsamplingpoint.
We obtainthe2D sam-
pling locationsby first
defining a setof evenly
spacedsamplingpoints
on the top face of the
model’s bounding box,
as can be seenon the
left in Figure 2. Then we project thesepoints according to the current viewing di-
rection(seeFigure2 in themiddle)andcollect theradiancesamplesfrom thesurface
visible through these2D projections(seeFigure2 right), similarly to obtaining a light
field.

Notethat,dueto parallax effects,for eachentrywecombineradiancesamplesfrom
a number of different pointson the actualgeometry. Like in [17], we will usethis
informationfrom differentsurfacepoints to fit aBRDFfor thegivensamplinglocation.

for each 9: {
ComputeSamplingPoints();
RepeatScene(vertex color=normals);
StoreNormals();
StoreAlpha();

for each 9E {
ComputeLighting();
RepeatScene(vertex color=lighting);
StoreRadiance();

}
}
AverageNormals();

Fig. 3. Pseudocodefor theacquisitionprocedure.

As the stitch geometry can have
holes,theremight be no surfacevis-
ible at a samplingpoint for a certain
viewing direction. We store this in-
formation as a boolean transparency
in the alphachannel for that sample.
Multiple levelsof transparency values
can be obtained by super-sampling,
i.e. consideringthe neighboring pix-
els.

In order to compute the normals,
we display the sceneonce for each
viewing direction with the normals
codedascolorvalues.An averagenor-

mal is computedby adding the normals separatelyfor eachsamplingpoint andaver-
agingthemat theend.We canconstructa tangentfrom thenormal andthebi-normal,
which in turn we defineasthevector perpendicularto boththenormal andthe F -axis.
Figure3 showshow thestepsareput togetherin theacquisitionalgorithm.



5 Fitting Process

Oncewe have acquired all the necessarydata,we useit to find an optimal setof pa-
rameters for the Lafortunemodel for eachentry in the arrayof BRDFs. This fitting
procedurecanbe divided into two majorstepswhich areappliedalternately. At first,
theparametersof the lobesarefit. Then, in thesecondstep,theentriesof the lookup
tableareupdated.Now thelobesarefit againandsoon.

Givena setof all radiancesamplesandthecorrespondingviewing andlight direc-
tions acquired for onesamplingpoint, the fitting of the parameters of the Lafortune
model � l requiresa non-linearoptimizationmethod. As proposedin [12], we applied
theLevenberg-Marquardtalgorithm [15] for this task.

Theoptimizationis initiatedwith anaveragegrayBRDF with a moderatespecular
highlight andslightly anisotropic lobes,e.g. % ! 
HG I J JLK % " for the first and % " 
G I J JMK % ! for thesecondlobeif two lobesarefit. For thefirst fitting of theBRDF the
lookup table � � �� � is ignored,i.e. all its entriesaresetto white.

After fitting thelobeparameters,weneedto adapt thesamplingpoint’s lookuptable� � �� � . Eachentryof the tableis fit separately. This time only thoseradiancesamples
of thesamplingpoint thatcorrespondto theviewing directionof thecurrent entryare
considered.Theoptimal color for oneentryminimizesthefollowing setof equations:N D � �	 O 
 �� � 
 D � �	 P 
 �� � 
 I I I 
 D � �	 Q�
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where D � �	 O 
 �� � 
 I I I 
 D � �	 QA
 �� � are the radiance samplesof the samplingpoint with the
common viewing direction �� andthedistinct light directions �	 O 
 I I I 
 �	 Q . Thecurrently
estimatedlobesareevaluatedfor every light directionyielding � l � �	 � 
 �� � . Treatingthe
color channels separately, Equation3 canberewritten by replacingthecolumn vector
onits left sideby �D � �� � , thevectoronits right sideby ��#� �� � , yielding �D � �� ��
�� � �� �W� ��#� �� � .
Theleastsquaressolutionto this equation is given by� � �� ��
YX ��#� �� � Z �D � �� � [X ��#� �� � Z ��#� �� � [ (4)

where X � Z � [ denotesthedotproduct. This is doneseparatelyfor every color channel and
easilyextends to additional spectralcomponents.

To further improve the result we alternatelyrepeatthe stepsof fitting the lobes
andfitting the lookup table. The iterationstopsassoonasthe averagedifferenceof
theprevious lookuptable’s entriesto thenew lookup table’s entriesis below a certain
threshold.

In addition to thecolor, eachentryin thelookup tablealsocontainsanalphavalue
indicating the opacityof the samplepoint. This value is fixed for every viewing di-
rectionandis not affectedby thefitting process.Insteadit is determinedthrough ray-
castingduring thedataacquisition phase.

Currently, wealsoderive thenormal andtangent ateachsamplepoint directly from
thegeometric model.However, theresultof thefitting processcouldprobably befurther
improvedby alsocomputinganew normal andtangent to bestfit theinputdata.

5.1 Mip-Map Fitting

The samefitting we have donefor every singlesamplepoint canalsobe performed
for groups of samplepoints. Let a samplepoint bea texel in a texture. Collectingall



radiancesamplesfor four neighboringsamplepoints,averaging thenormals,fitting the
lobesandtheentriesof thelookup tablethenyieldstheBRDF correspondingto a texel
on thenext highermip-map level.

By grouping even moresamplepoints, further mip-maplevels canbe generated.
Theoverall effort per level staysthesamesincethesamenumber of radiancesamples
areinvolvedat eachlevel.

6 Rendering

After the fitting processhasbeencompleted for all samplingpointswe arereadyto
applyour representationof fabric patternsto a geometric model. We assumethegiven
model haspervertex normalsandvalid texturecoordinates\/] ( I I ^ 4A_ P , wherê 4 is the
numberof timesthepatternis to berepeatedacrossthewholeclothgeometry. Further-
more, we assumethefabricpatterns arestoredin a 2D array, thedimensions of which
correspondto thepattern’sspatialresolution� res! 
 res" � . Our renderingalgorithmthen
consistsof four steps:

1. Interpolateperpixel normals
2. Computeindices into thepatternarray, yielding aBRDF �W�
3. Evaluate� � with light andview mappedinto geometry’s localcoordinatesystem
4. Write resultto framebuffer

Thegoalof Step1 is to estimateanormal for eachvisiblepoint ontheobject. Wedo
this by colorcoding thenormals at theverticesandrendering thesceneusingGouraud
shading. Eachframebuffer valuewith analphavalue `
 ( now codesa normal.

Thenext stepis to find out which BRDF we needto evaluate in order to obtainthe
color for eachpixel. In orderto do this we first generatea texture with the resolution� res! 
 res" � in which theredandgreen channel of eachpixel encode its position.Note
that this texture hasto begenerated only onceandcanbe reusedfor otherviews and
light directions. Using hardware texture mapping with the above mentioned texture
coordinates,thetextureis replicated̂ 4 timesacrosstheobject. Now theredandgreen
channel of eachpixel in theframebuffer holds thecorrectindicesinto the2D arrayof
BRDFsfor this specificfabricpattern.

Oncewe know which BRDF to evaluate,we mapthe light andviewing direction
into thegeometry’s local coordinatesystem,usingthenormalsobtained in Step1 and
a tangent constructedasdescribedin Section4. Note that two mappingsneedto take
place: this one, which mapsthe world view and light to the cloth geometry’s local
coordinatesystem(yielding �	 and �� ), andanother whenevaluating the BRDF, which
transformsthesevaluesto thepattern’s localcoordinatesystem(yielding �	  , ��  ).

Thesoftwareevaluationof theBRDFmodel(seeSection3) returns threecolorsand
analphavalue from thelookuptable,whichwe thenwrite to theframebuffer.

The presentedrendering technique utilizes hardware asfar aspossible.However,
the BRDF model is still evaluatedin software,although mapping this onto hardware
shouldbefeasiblewith thenext generation of graphics cards.

6.1 Mip-Mapping

As describedin Section5.1, we cangenerate several mip-maplevels of BRDFs. We
will now explain how to enhance the above algorithmto correctlyusedifferent mip-
maplevels,therebyexploiting OpenGLmip-mapping.



First we modify Step2 andnow generateonetexture permip-maplevel. Eachtex-
ture’s resolution correspondsto theBRDF’s spatialresolutionat this level. As before,
theredandgreenchannel code thepixel’s locationin thetexture. Additionally, wenow
useeachpixel’s bluechannel to codethemip-maplevel of thecorresponding texture.
For example, if wehave a levels,all pixel’s bluevalues are ( in texture0, ( I J in texture
1, ( I b in texture 2 andsoon.

If we set up OpenGLmip-mappingwith thesetextures specifiedfor the correct
levels,thebluechannel of eachpixel will tell uswhichtexture to use,while theredand
greenchannel still codetheindicesinto thearrayof BRDFsat this level.

Blendingbetweentwo mip-maplevelsis alsopossible.As we donotwantto blend
thetexture coordinatesin theredandgreenchannels,however, we needtwo passesto
do so. Thefirst passis thesameasbefore. However, in thesecondpasswe setupthe
mip-map technique to linearly interpolatebetweentwo levels. We avoid overwriting
thevalues in theredandgreenchannelsby usinga color mask.Now thevalueof the
blue channel � c codesbetweenwhich levels to blend(in the above example between
levels

	 d#e f 
hg � c i ( I J j and
	 d�k l 
hm � c i ( I J n ) andalsotellsustheblending factor(here� � c�o 	 d�e f � ( I J � i ( I J ).

7 Resultsand Applications

We implementedour algorithms on a PC with an AMD Athlon 1GHz processorand
a GeForce2 GTS graphics card. To generatethe imagesin this paperwe appliedthe
acquired fabric patterns to cloth models we modeledwith the 3D StudioMax plug-
ins GarmentMaker andStitch. Our geometric models for the knit or weave patterns
consistof 1300–23000verticesand2400–31000 triangles.Thecomputationtimesof
the acquisitionprocessdependon the number of triangles,as well as the sampling
densityfor the viewing and light directions, but generally vary from 15 minutes to
about 45 minutes. We typically used32 p 32 or 64 p 64 viewing andlight directions,
uniformly distributedover thehemisphere,generatingup to 4096 radiancesamplesper
samplingpoint on thelowestlevel. We found a spatialresolutionof 32 p 32 samplesto
besufficient for ourdetailgeometry, whichresultsin 6 mip-maplevelsand1365BRDF
entries. The parameterfitting of a BRDF arrayof this sizetakesabout 2.5 hours. In
our implementationeachBRDF in thearray(including all themip-map levels)hasthe
samenumberof lobes. We found out thatgenerallyoneor two lobesaresufficient to
yield visuallypleasingresults.Thethreshold mentionedin Section5 wassetto 0.1and
we notedthatconvergencewasusuallyachieved after2 iterations.Onceall parameters
have beenfit we needonly 4 MB to storethecompletedatastructure for onetypeof
fabric,including all mip-maplevelsandthelookup tableswith 64entriesperpoint.

Therendering timese.g. for Figure1 areabout 1 framepersecondfor a resolution
of q r ( p b ( ( pixels. The bulk of this time is spenton readingbackthe framebuffer
contents in order to evaluatetheBRDF for every pixel. We thereforeexpect thatwith
theadventof moreflexible hardware, which will allow us to implementtherendering
partof thispaperwithout suchasoftwarecomponent,theproposedmethod will become
feasiblefor interactiveapplications.

The dressin Figure4(a) displaysa fabric patterncomputedwith our method. In
Figure4(b) we compare theresultsof a mip-mappedBRDF to a singlelevel one. As
expectedthe mip-mapping nicely getsrid of the severealiasingclearly visible in the
not mip-mappedleft half of the table. Figure5 illustrateshow evencomplex BRDFs
with colorshiftscanbecapturedusingourmodel.Figure1 andFigure6 show different
fabricpatternsdisplayedon thesameclothgeometry.



8 Conclusions

In this paper we have presenteda memory-efficient representationfor modelingand
renderingfabricsthatisbasedonreplicating individualweavingorknittingpatterns.We
have demonstratedhow our representationcanbegeneratedby fitting samplesfrom a
global illumination simulationto it. In asimilar fashionit shouldbepossibleto acquire
a fitted representation from measuredimagedata. Our model is capableof capturing
color variations dueto self-shadowing andself-occlusion aswell as transparency. In
addition, it naturally lendsitself to mip-mapping, therebysolvingthefiltering problem.

Furthermore we presentedan efficient rendering algorithm which canbe usedto
applyourmodelto any geometry, achieving near-interactive framerateswith a combi-
nationof hardwareandsoftwarerendering. With theincreasingflexibility of upcoming
generationsof graphics boards,we expect to beableto implement therenderingalgo-
rithm completely in hardware soon. This would make the approachsuitablefor fully
interactive andevenrealtimeapplications.
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(a) (b)

Fig. 4. (a) A dressrenderedwith BRDFsconsistingof only onelobe. (b) Left: Aliasing artifacts
areclearlyvisible if no mip-mapping is used.Right: usingseveralmip-mappinglayers.

Fig. 5. Thefabricpatternsdisplayedon themodels(left andright) werebothcomputedfrom the
microgeometryin themiddle. In contrastto theright BRDFmodel,theleft onedoesnot include
a lookup table.Clearlythis BRDF is not ableto capturethecolor shift to redfor grazingangles,
nicely displayedon theright.

Fig. 6. Differentfabricpatternson thesamemodel.Left: plainknit, middle: loopswith different
colors,right: perl loops.


