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Holographic 3D Particle Imaging With Model-Based
Deep Network

Ni Chen , Congli Wang , and Wolfgang Heidrich , Fellow, IEEE

Abstract—Gabor holography is an amazingly simple and ef-
fective approach for three-dimensional (3D) imaging. However, it
suffers from a DC term, twin-image entanglement, and defocus
noise. The conventional approach for solving this problem is either
using an off-axis setup, or compressive holography. The former sac-
rifices simplicity, and the latter is computationally demanding and
time-consuming. To cope with this problem, we propose a model-
based holographic network (MB-HoloNet) for three-dimensional
particle imaging. The free-space point spread function (PSF), which
is essential for hologram reconstruction, is used as a prior in the
MB-HoloNet. All parameters are learned in an end-to-end fashion.
The physical prior makes the network efficient and stable for both
localization and 3D particle size reconstructions.

Index Terms—Holography, inverse problems, neural networks.

I. INTRODUCTION

HOLOGRAPHY is a powerful tool for 3D imaging and
display due to its wavefront encoding ability. Since it

has been proposed in 1948 [1], a large amount of work has
emerged for solving the DC and twin-image problems in the
hologram reconstruction. These problems can be improved by
changing the optical system, such as off-axis holography [2],
phase-shifting holography [3], optical scanning holography [4],
and others. However, the simplicity and high space-bandwidth
product of Gabor holography remains attractive and competitive.
Apart from the DC term and twin-image, the main issue in 3D
digital holographic imaging is the defocus noise. Compressive
sensing approaches [5]–[7] are efficient in restoring 3D images
from holograms. However, these methods are computationally
intensive and usually require fine-tuned parameters, such as the
regularization and relaxation ones [5], [8].

Recently, deep learning has emerged as a comprehensive
tool in computational imaging [9], in areas of optical tomog-
raphy [10], ghost imaging [11], digital holography [12], imag-
ing through scattering media [13], and phase imaging [14].
However, compared to other fields, deep learning has been
under-utilized in digital holography [15], especially for 3D holo-
graphic imaging. Most previous works for optical imaging rely
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on an end-to-end neural network, which requires large amounts
of data for training. 3D holographic imaging is challenging
for data-driven networks due to the limitations of acquiring
large quantities of training data. There are mainly two popular
ways for obtaining the training data-sets: (1) Display the target
(labels) on spatial light modulators (SLM) or digital micromirror
devices (DMD) for capturing the images (data) of the labels
that passing through the optical system [11]; (2) Capture a
few high-resolution optical images, calculate the labels with
conventional imaging methods. More data and labels are ob-
tained by cropping, rotating of the existing ones [16]. Both
approaches are not practical for 3D images. Therefore, for 3D
holographic imaging, only a few results have been reported [17]–
[19]. The state-of-the-art technique can reconstruct particle lo-
cations in a volume [17], [18]. The authors obtained training
data with a previously well-developed technique, for example,
scanning microscopy, and a modified U-Net was applied for par-
ticle localization requiring time-consuming measurements (e.g.
scanning microscopy) to obtain ground-truth particle training
datasets.

Besides holography, many optical imaging techniques rely
on specific physical models. Most of the previous works rely on
an end-to-end neural network while neglecting the knowledge
in established physics models [20]. More specifically, while
the initial estimates are physically accurate, the network ar-
chitectures are not inherently physics-aware. As such there are
no guarantees that the final result will indeed be physically
accurate. To integrate physical knowledge as network priors,
several model-based schemes have been proposed to incorporate
priors with the forward model in the learning process to ensure
data consistency and prior suitability, known as the unrolled net-
works [21]–[23]. Unrolled networks mimic the behavior of tradi-
tional optimization-based solvers, since each stage corresponds
to one iteration of such an optimization. Furthermore, physics
constraints can be explicitly enforced in each stage/iteration,
making the whole network inherently physics-aware. Such com-
bined approaches have been successfully applied to computed
tomography (CT) [24] and magnetic resonance imaging (MRI)
reconstruction [25]. In particular, Kristina et al. [25] have un-
rolled a traditional model-based optimization algorithm based
on the alternating direction method of multipliers (ADMM) [26]
with a convolution neural network (CNN) for mask-based lens-
less imaging.

Inspired by previous studies, we integrate the physical prin-
ciples of holography with deep learning-based approaches for
3D holographic particle imaging. We consider 3D holographic
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Fig. 1. Schematic image of an in-line holography system.

imaging as a compressive sensing problem and adopting an iter-
ative shrinkage-thresholding algorithm to perform 3D hologram
reconstruction, named model-based holonet (MB-HoloNet). In
particular, MB-HoloNet takes a single Gabor hologram along
with the free-space PSF and outputs the 3D particle volume.
It is composed of a fixed number of stages, each of which
strictly corresponds to an iteration in the shrinkage-thresholding
algorithm. Features of the objects and all the parameters involved
are learned in an end-to-end fashion. That said, MB-HoloNet
differentiates the algorithmic parameters with the labor heavy
parameter tuning done in the network training process. FCom-
pared to prior arts, our proposed MB-HoloNet leverages both
the physical models and the data-driven learning techniques,
in a differentiable unified optimization framework. The PSF
fed into the network makes it more accurate and numerically
stable. MB-HoloNet can work when the test holograms are
captured under different environments, as in the training data.
We further show that the network trained with synthesized data
works for experimental captured hologram reconstruction, as
a natural consequence of the physically motivated property of
our proposed learning framework. FWe believe MB-HoloNet
will serve as an initial point for future unrolled networks for
holographic reconstruction.

II. PHYSICALLY BASED MB-HOLONET

The proposed method consists of two steps: (i) Linearization
of Gabor hologram imaging; (ii) Solving the linear problem
augmented with data-driven priors in MB-HoloNet.

A. Linearization of Gabor Holographic Imaging

In a Gabor holographic imaging system, as in Fig. 1, a 3D
object of amplitude transfer function o(r, z) is positioned at
the origin of the coordinate system, with r = (x, y). A plane
reference wave field exp(jkz) of wave number k = 2π/λ illu-
minates the object, producing the object field o(r, z) exp(jkz),
with position z encoded in the phase delay.

Both the reference and the object field propagates along the
z-axis, arriving at the sensor plane at z0. According to scalar
diffraction theory [27], with h(r, z) denoting free-space propa-
gation of point (r, z) and ⊗ for convolution, the impinging 2D
fields are ur(r) ≈ 1 and

uo(r) =

∫ z2

z1

(o(r, z) exp(jkz))⊗ h(rh − r, z0 − z) dz. (1)

The two fieldsur anduo interfere with each other and produce
an interferometric intensity pattern Ih = |ur + uo|2, known as
the Gabor hologram, and is captured by the image sensor.

Expanding Ih with �{·} denoting the real part and {·} denoting
the complex conjugate:

Ih(r) = 2�{uour}+ |ur|2 + |uo|2, (2)

where |ur|2 is known from calibration, and |uo|2 is treated as a
non-linear model error. With these, the hologram reconstruction
is rephrased as a linear inverse problem:

Ih ≈ 2�{Po}, (3)

where bold fonts denote vectors in linear algebra, discretized
from their continuous versions, and P is a linear operator that
maps 3D complex fields to 2D complex fields.

B. Model-Based HoloNet

Due to the large solution space of o, it is ill-posed for directly
solving (4). By assuming that o is real valued with physically re-
alistic sparsity properties [28], [29] in linear basisΨ, regularized
least squares fitting (3) yields:

min
o

1

2
‖Φo− Ih‖22 + γ‖Ψo‖1, (4)

whereΦ = 2�{P},‖ · ‖22 is the �2-norm squared, expressing fit-
ting fidelity between measurement and the physical model, ‖ · ‖1
is the �1-norm, and γ is a trade-off parameter. Though coupled,
the two terms in (4) can be de-coupled and alternatively solved
via the half-quadratic splitting method [30]. By introducing an
additional variable v = o, the two terms are separated:

min
o,v

1

2
‖Φo− Ih‖22 + γ‖Ψv‖1 + μ

1

2
‖o− v‖22, (5)

with μ → ∞ being an algorithmic parameter. At the nth itera-
tion, solving o and v yields the following two update steps in
sequence:

on+1 = argmin
o

‖Φo− Ih‖22 + μ‖o− vn‖22, (6)

vn+1 = argmin
v

1

2
‖v − on‖22 +

γ

μ
‖Ψv‖1. (7)

Equation (6) and (7) can be solved efficiently using proximal
algorithms [26], [31]. However, these methods usually require
hundreds of iterations to obtain a satisfactory result, which
inevitably gives rise to high computational cost and is thus
restricting for fast applications. In addition, all parameters must
be pre-defined, and it can be quite challenging to tune them
priori. Also, the selection for sparsity basis Ψ is usually hand-
crafted, and the physical parameters of the setup need to be
calibrated or chosen very carefully. To resolve these difficulties,
we solve (6) and (7) using unrolled neuronal networks [32],
seeking for a good balance between speed and accuracy. The
idea is to turn the fixed, human-tuned algorithmic parameters,
as well as the physical parameters of the imaging setup into
differentiable system parameters that are automatically tuned
via back-propagation through supervised learning.

We now discuss specific solutions (termed network modules)
to these two steps, as illustrated in Fig. 2. The input and output
of the network are a hologram and the corresponding 3D vol-
ume, respectively. Right after the input is a back-propagation
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Fig. 2. Framework of the MB-HoloNet with Ns stages. BP: back-propagation.

initialization block for speeding up network convergence, since
compared to random initialization, the back-propagated recon-
struction is much more physically close to the target volume,
though accompanied with some unwanted noise. The network
consists of several stages. Each stage consists of two blocks,
corresponding to the on-module and vn-module respectively,
as presented in the following paragraphs. To increase network
flexibility, we allow both γ and μ to vary across iterations, with
subscript n denotes for the nth iteration, i.e. the nth stage in the
network.
on-module corresponds to (6), which produces an immediate

reconstruction on+1 from the previously calculated vn. The
solution to (6) is simply a least squares estimate:

on = (ΦᵀΦ+ μnI)−1 (vn + μnΦ
ᵀIh), (8)

with I being the identity matrix. Fortunately, under the assump-
tion of ur being a plane-wave illumination, the linear operator
P can be rephrased as a convolution followed by sum. We can
further break down the above separately for each 2D plane at
specific z as:

on = [on
z1
, . . . ,on

z2
]ᵀ, (9)

on
z = F−1

(
F(pz)F(Ih) + μnF(vn

z )

μn|F(pz)|2 + 1

)
, (10)

wherepz is the propagation kernel at depth z, andF/F−1 denote
for the forward/inverse Fourier transforms. We initialized v0

with classical back-propagated solution, i.e. v0 = ΦᵀIh.
vn-module aims to compute vn from on according to (7),

which is a special case of the so-called proximal mapping
proxτφ(·) where φ(v) = ‖Ψv‖1. We now consider a general
nonlinear transform G(·) that sparsifies the object. Replacing
Ψ with G(·), we can obtain a sparsity-inducing regularization
problem. Inspired by the powerful representation of convolu-
tional neural networks (CNN) and its universal approximation
property [33], we designG(·) as a block of ResNet, i.e., two3× 3

convolutional layers with the same number of output channels,
while the output channel equals to the volume depth, this is
similar to 3D kernels from a mathematical perspective. Each
convolutional layer is followed by a batch normalization layer
and a rectified linear unit (ReLU) activation function, then add
the input directly before the final ReLU activation function [34].
This can be represented as:

G(v) = ReLU (Conv (ReLU (Conv(v))) + v). (11)

To obtain v from G(v), we introduce the inverse transformation
function G−1(·), which can be written in the same structure as
G(v). Incorporating G(·) and G−1(·) into (7), we obtain the
optimization vn = G−1(SoftThreshold(G(on), τ)), as in [23].

C. Network Structure and Loss Design

As stated previously, the parameters to be learned are Θ =
{γn, μn, τn,Gn,G−1

n }Ns
n=1. The whole framework of the MB-

HoloNet consists of Ns stages, as shown in Fig. 2, with the
input being a single 2D hologram image, and output being
the desired 3D particle volume to be restored. As mentioned,
on denotes the restored 3D object of the nth stage, and vn

denotes the auxiliary variable in the nth stage. In each stage,
the on is updated according to (6), the estimated immediate
reconstruction on is passed to the CNN for the next stage to
compute vn according to (7). The filter number of the CNN
equals to the number of depth slices of the 3D object. A sigmoid
activation layer is implemented before the output to map the
object transfer function to the absorption function.

Loss function: o is the corresponding true value of the the
estimated network output vNs , MB-HoloNet seeks to optimize
the following total loss function

L = Lmodel + τLresidual (12)
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given by the squared �2-norm of the 3D data and a penalty of
the residual block, to guarantee both data and prior fidelity:

Lmodel =
1

NbN

Nb∑
n=1

‖vNs − o‖22, (13)

Lresidual =
1

NbNNs

Nb∑
n=1

Ns∑
m=1

‖G−1
m Gm(vn)− vn‖22, (14)

where Nb is the block number, Ns is the stage number, and N
is the object size.

In summary, with this designed network, at each stage, based
on the previously calculated object, the on-module and vn-
module optimize the object with a special back-propagation and
the following proximal mapping, and the output is transferred to
the next stage for further optimization. This structure ensures all
parts of the network are based on the imaging model, thus being
more powerful. To tackle the issues of limited computational
memory and stagnation in local minima during optimization,
every time only a small batch of the entire training data is fed
into the network, instead of the entire set of holograms. The
network is trained using the Adam optimizer [35], which is a
form of gradient descent, where the initial learning rate is set
empirically, decaying according to the loss descent rate dynam-
ically as the training progresses. We implement the MB-HoloNet
using Tensorflow 1.15 and Keras 2.2.5. All experiments were
performed on a workstation with an Intel Core i7-6820 CPU
and an NVIDIA GTX1080 GPU.

III. VERIFICATION

A. Evaluation Metrics

We make use of three quantitative evaluation metrics for the
assessment of the network performance. These are pairwise
correlation coefficient (PCC), structural similarity index for
measuring (SSIM) and mean absolute error (MAE). These are
defined as:

PCC(x, y) =

∑N
n=1(xn − μx)(yn − μy)√∑N

n=1(xn − μx)2
√∑N

n=1(yn − μy)2
, (15)

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)
, (16)

MAE(x, y) =
1

N

N∑
n=1

|xn − yn|, (17)

where μx and μy are means of x and y, σ2
x and σ2

y are the
corresponding variances, and σxy is the covariance of x and
y. c1 = (k1L)

2, c2 = (k2˜L)
2, where k1 = 0.01, k2 = 0.03, L

is the dynamic range of the pixel-values. The first two metrics
measure how well the samples are likely to be predicted by
the model, with best possible scores 1.0, and smaller values
indicating worse performance. MAE is an average measure
of the absolute difference between two variables and its best
possible score is 0.

Fig. 3. Training and validation loss decrease along the training process. Only
first 500 iterations are shown here.

B. Numerical Verification of Particle Localization

Particle localization is a special case of the more general
particle volume reconstruction when the particle and voxel are
of the same size. In this section, we verify the feasibility of the
proposed MB-HoloNet and its robustness with single-pixel size
particles.

In the first simulation, one thousand Gabor holograms of ran-
domly distributed particle volumes were synthesized. The lateral
and axial resolutions of the particle volumes are 20μm and
100μm, respectively, and the sensor pixel pitch is the same as
volume voxel size. The particle density is 5× 10−3 particle per
voxel (ppv). For each hologram, we have added 50 dB random
Gaussian noise. The generated holograms, along with the 3D
particle volumes, were fed into the proposed MB-HoloNet as
the training data and label. We split 80% as training set and
20% for validation. Extra 100 holograms were synthesized with
the same specifications for testing. Fig. 3 presents one example
of the training and validation loss. As seen, the MB-HoloNet
converges gradually as the loss decreases along with the training.
This agrees with our expectation that the network is continuously
updating its parameters and learning representative features
of the holograms. We then investigated the affection of stage
number NS . To do that, we performed training with varying
stage numbers. The training loss with respect to the stage number
are presented in Fig. 4, which demonstrates that convergence
depends on the stage number. It converges faster as the stage
number increasing. However, when the stage number is larger
than 6, the convergence does not improve further. Considering
the computational cost, we chose Ns = 5 in our following
simulations.

Next, We verified the robustness of the MB-HoloNet by
showing that the MB-HoloNet works for systems with varying
specifications, and the trained network works for holograms
captured in different scenarios as the training data. To verify that
MB-HoloNet works for varying systems, objects with different
dimensions (32× 32× 7, 64× 64× 32, and 128× 128× 30)
were used to synthesize the holograms. In each configura-
tion, the wavelength is fixed to λ = 660 nm. Specifications
of the training parameters and the test results are in Table I.
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TABLE I
TRAINING DETAILS OF DIFFERENT DATASETS

Fig. 4. Loss along the training process with respect to varying stage number
Ns. The bottom figure is the part within the gray dashed rectangle in the above
figure.

Fig. 5 shows several selected ground-truths and the correspond-
ing MB-HoloNet predictions with the back-propagated initial
volumes, while the first row shows the back-propagation re-
construction and the second row shows the predicted locations
compared to the ground-truths. Comparing to ground-truths,
we conclude that MB-HoloNet works well for all the present
cases. FIt should be mentioned that the memory usage issue
is inevitable in 3D imaging. Representing 3D volume using
2D depth maps may be one solution, but it can not deal with
occlusion in a 3D volume. Our approach represents the 3D
volume explicitly, and hence the memory usage in the training
stage increases with the volume size, as shown in the bottom
row of Table I. Yet this memory limitation issue can be resolved
by sequential training on multiple GPUs or on CPU clusters.

Fig. 5. Hologram localization reconstruction with three different dimen-
sions, synthesized with various specifications. The above images are the back-
propagated reconstructions. In the below images, the red, blue circles are the
predictions and ground-truth, and the green dots in red and blue circles are the
unpaired ground-truth and the false predictions.

Fig. 6. Test accuracy with respect to varying noise levels.

Furthermore, we test the trained network with holograms
synthesized by the same system but with different noise levels
and different ppvs. We choose the trained model in Fig. 5(a)
for the test. In the first test, seven groups of holograms with
added noise from 10 dB to 50 dB were fed to the network. The
quality of the network outputs are measured with the metrics
presented in Section III-A. Fig. 6 plots the accuracy metric
concerning varying noise levels, and Fig. 7 shows randomly
selected scattering plot of the predictions and ground-truth. In
Figs. 6 and 8, the metrics values were averaged over all of the test
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Fig. 7. MB-HoloNet particle reconstruction vs. ground-truth under varying
noise. The red, blue circles are the predictions and ground-truth, and the
green dots in red and blue circles are the unpaired ground-truth and the false
predictions.

Fig. 8. Test accuracy with respect to varying ppv.

data. It shows that when the noise SNR is much lower than that
in the training data (50 dB), we can still reach a reasonable image
quality. This indicates that the network is numerically stable to
noise, at ppv of 1 ∼ 5× 10−3. Given that the reconstruction
volume consists of sparse particles, in this situation, all metrics
are consistent with respect to the noise level, indicating that our
proposed approach is robust to noise for this particular ppv.

Fig. 8 plots the accuracy metrics with respect to varying ppv
and Fig. 9 shows several selected scatter plots of the predictions
and ground-truth. They show that when the ppv is lower than in
the training data, the trained network can always reconstruct the
particles. However, the image quality degrades while the ppv
increasing in the testing data, while the SSIM can still maintain
a high degree even if the particle density of the test data is twice
that of the training data.

One more simulation was performed for comparing the par-
ticle localization with the state-of-the-art work [17]. In the
reference paper, volumes with particle per pixel (ppp) of 1.9×
10−4 ∼ 6.1× 10−2 were tested. This corresponds to a ppv of

Fig. 9. MB-HoloNet particle reconstruction vs. the ground-truth under varying
ppv. The red, blue circles are the predictions and ground-truth, and the green dots
in red and blue circles are the unpaired ground-truth and the false predictions.

Fig. 10. Comparison of prediction results with different ppp’s. The red, blue
circles are the predictions and ground-truth, and the green dots in red and blue
circles are the unpaired ground-truth and the false predictions.

1.5× 10−6 ∼ 4.8× 10−4. We have synthesized holograms for
particles with the same ppv and dimension of 64× 64× 64,
trained the network with 1500 data-sets for 2000 epochs. Fig. 10
presents the comparison between the ground-truths and the
network predictions, while Fig. 10(a) and (b) are with ppp of
1.6× 10−2 and 6.1× 10−2 respectively, the location extraction
rates are 87.5% and 82.4%, which are lower than the 95% in the
reference paper.

C. Numerical Verification of Particle Size Reconstruction

We verify the particle reconstruction by setting the particle
size larger than a single voxel. In preparing the training data,
the particles were assumed as disks with a radius of 50μm,
with a camera pixel pitch of 7μm. Therefore, the reconstructed
particles should be disks and their radius should cover about
seven image pixels. The training process is the same as de-
scribed in previous sections. We have tested the trained network
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Fig. 11. Comparison of particle size reconstruction.

Fig. 12. Experimental holograms (a), Back-propagation reconstructions (a),
and the corresponding extracted particle locations with the MB-HoloNet (b).
Refer to Visualization 1, 2, 3, 4 for a complete 3D visualization.

after 1500 epochs. Two randomly selected ground-truth and the
predictions are shown in Fig. 11. The reconstructions indicate
that the circular shape particles, and the pixel count of the
disks’ radius are approximately seven, as expected, revealing
a successful reconstruction of the particle shape and size. From
the error plots, we can see that the particle size have been well
reconstructed.

IV. EXPERIMENTAL VERIFICATION

A. Particle Localization

In the first experiment, particles with a diameter of 50μm
were randomly seeded in water. The particles were located
at a distance ranging from 12 mm to 60 mm to the image
sensor. A laser with a wavelength of 660 nm illuminated the
particles and form the hologram captured by the CCD, as shown
in Fig. 12(a). The pixel pitch and resolution of the CCD are
3.45μm and 1024× 1024 respectively. The captured hologram
is subtracted by the background and scaled using bicubic in-
terpolation to a size of 128× 128 pixels. Since the particles
are very sparse, the depth interval of the view interest was set

Fig. 13. Location comparison of reconstructed particles between FASTA
deconvolution and MB-HoloNet.

to 1 mm, which corresponding to a volume of 128× 128× 49
voxels. We generated one thousand and five hundred holograms
with the same specifications as in the processed hologram and
trained the network with the synthetic holograms. After 1000
epochs training (took 12 hours), we test the MB-HoloNet with
the experimental captured hologram. Fig. 12 shows the results,
while Fig. 12(a) shows four processed holograms and Fig. 12(b)
shows the reconstructed particle locations.

Since there is no ground-truth for the real particles, we verify
the predicted particle locations by comparing them to the recon-
structions of the previously developed methods, which are also
not fully accurate but only for empirical comparison. Comparing
to the extended-focused-imaging [36]–[38], the deconvolution
approaches are more accurate and practical for 3D particle
imaging [5], [8]. Here we choose the state-of-the-art FASTA
deconvolution method [8]. Fig. 12 shows the results after FASTA
performed 1000 iterations. The left image shows the 3D view of
the location comparison, and the middle and right images show
the top and side view of the left image, respectively. The red
circles and green dots represent the FASTA deconvolution and
MB-HoloNet, respectively. We can see that most of the particle
locations predicted by the MB-HoloNet match the FASTA de-
convolution results. The axial locations are not as good as the
lateral ones, but this is reasonable because the axial resolution
is always worse than the lateral resolution [27]. Given similar
reconstruction quality, the MB-HoloNet only took 85 ms while
the FASTA deconvolution took 173 s for 1000 iterations.

B. Particle Size Reconstruction

In the second experiment, we show that the proposed MB-
HoloNet can reconstruct particle size and locations simulta-
neously. The particles with diameters ranging from 45μm to
53μm were adhered on a microscopy slide. The slide was put
at a distance of 19.7 mm from the CCD camera. The pixel
pitch and resolution of the CCD are 3.45μm and 1024× 1024
respectively. The holograms were cropped to 256× 256 pixels
and then resized to 128× 128 pixels. Thus the diameter of the
reconstructed particles from the processed holograms should be
7∼ 8 pixels. For the training data, volumes span a depth of
14 mm to 25 mm were chosen to synthesize the holograms. All
other parameters matched the processed hologram. A total of
1500 data-sets were used to train the network for 1000 epochs,
which took 4 h 32 min.
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Fig. 14. Captured hologram (a), processed holograms (b), hologram recon-
struction with MB-HoloNet (c).

Fig. 14 shows the results. Fig. 14(a) is the original hologram,
Fig. 14(b) shows several sub holograms cropped from the origi-
nal one, and Fig. 14(c) is the corresponding network predictions.
The bottom row of Fig. 14(c) is the corresponding slice views
of the above row. From the above row, we can see that the parti-
cles were reconstructed at the correct locations (z = 19.7mm).
Compare the bottom row with the corresponding holograms in
Fig. 14(b), we see that most of the particles were reconstructed,
the red rectangles shows the error predicated particles, while the
error amount is at a low rate. The lateral pixels of each particle
in Fig. 14(c) is seven, which matches the expectation.

V. CONCLUSION

We have presented MB-HoloNet for 3D particle imaging
with Gabor holography. The MB-HoloNet takes a single 2D
hologram as input and outputs the corresponding 3D particle
volume. Compared to state-of-the-art technique [17], our pro-
posed MB-HoloNet involves the prior of the underlying imaging
model in network design and is able to reconstruct particle size
and perform particle localization at the same time, even though
the location extraction rate is slightly lower than the reference
work. The physical prior employed makes it possible to train

the network with a relatively small amount of training data
(1000∼ 1500 in all of the presented cases in this paper). Besides,
the single 2D image input and 3D volume output is simple
with no time-consuming pre- or post-processing required. Most
importantly, the model trained with synthesized data can process
experimentally captured holograms; this is superior to previ-
ously published works.

While the proposed MB-HoloNet has superior performance
compared to the state-of-the-art 3D hologram reconstruction
methods, there remains room for further improvements: (1)
For the MB-HoloNet, training labels are 3D, which is GPU
memory consuming and limits the total volume size that can
be processed. The sparsity of the particles may be considered
to alleviate the memory consumption, promote training speed,
and more massive volume processing. (2) Due to the available
small volumes mentioned in (1), the required input holograms
have to be small. For this purpose, captured holograms (usually
of a larger size) have to be cropped or resized. The cropped
holograms cover a small imaging region of a few particles,
also the resizing decrease hologram details, and usually leads
to induced resolution. It is our next work to find an alternative
3D representation to overcome these limitations.
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