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Abstract

Image-based representations for illumination can capture complex real-world lighting that is difficult to represent
in other forms. Current importance sampling strategies for image-based illumination have difficulties in cases
where both the illumination and the surface BRDF contain important high-frequency detail – for example, when
a specular surface is illuminated by an environment map containing small light sources.
We introduce the notion of bidirectional importance sampling, in which samples are drawn from the product
distribution of both the surface reflectance and the light source energy. While this approach makes the sample
selection process more expensive, we drastically reduce the number of visibility tests required to obtain good
image quality. As a consequence, we achieve significant quality improvements over previous sampling strategies
for the same compute time.

Keywords: Methods and Applications – Monte Carlo Techniques; Rendering – Ray Tracing; Rendering – Global
Illumination.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [COMPUTER GRAPHICS]: Three-Dimensional
Graphics and Realism, Raytracing.

1. Introduction

Image-based representations for illumination, such as envi-
ronment maps, textured area lights, and light fields, have re-
ceived considerable attention in recent years. The main rea-
son for this attention is that images can capture complex
real-world illumination that is difficult to represent in other
forms.

When integrating image-based lighting such as environ-
ment maps into a rendering system, the use of a good sam-
pling strategy for illumination is paramount. While several
researchers have recently worked on this problem, the ap-
proach taken in most of that work is an importance sam-
pling strategy based on the energy distribution in the image.
Unfortunately, such an approach performs poorly for highly
specular surfaces, since samples chosen this way have a low
probability of residing within the specular lobe. Similarly,
if importance sampling is based solely on the BRDF of the
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surface, then the sampling will not perform well for high-
frequency illumination. In either case, costly visibility tests
are required for directions that contribute little to the surface
illumination for a particular viewpoint.

This paper introduces bidirectional importance sampling,
a method that samples visibility according to an importance
derived from the product of BRDF and environment map il-
lumination.† The challenge of this approach is to develop an
efficient means of drawing samples from this product dis-
tribution. The task is complicated by the fact that the 2D
BRDF slice varies from point to point on the surface. Fur-
thermore, the environment map is usually represented rel-
ative to a global coordinate frame, while the BRDF is ex-
pressed in a local frame that changes with surface orienta-

† In our discussion we will refer to environment maps although the
method also applies to texture-mapped area light sources as illus-
trated in Figure 7.
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tion. For these reasons, precomputation approaches, such as
storing a table of the product distribution, are infeasible.

Our solution to this problem is a two-step approach. In the
first step, the product distribution is estimated based solely
on light source and BRDF information, but not visibility.
This estimate is implemented using either rejection sampling
(Section 4.1) or sampling-importance resampling (SIR, Sec-
tion 4.2). Since no visibility tests are involved in this first
step, it can be performed rapidly. The second step then uses
the distribution generated in the first step for importance
sampling of the direct illumination, including visibility tests.
This approach has the following benefits:

• Visibility tests are restricted to directions that can con-
tribute significantly to the illumination. The number of
visibility tests can be reduced drastically as a result.

• While our method increases the cost of sample generation,
we achieve significant quality improvements for the same
compute time under the assumption of BRDF representa-
tions that support efficient evaluation and sampling.

• The performance gains increase for more complex scenes,
since sample generation is independent of scene complex-
ity whereas visibility tests are not.

• Our method creates samples on the fly and does not re-
quire expensive precomputation.

The rest of this paper is structured in the following man-
ner. Section 2 reviews some of the relevant work in sam-
pling from images and environment maps. Section 3 gives an
overview of our approach, before describing two realizations
in Section 4. Stratification as well as an extension adding a
solid angle term to the importance are discussed in Section 5.
We conclude with results and a discussion in Section 6.

2. Related Work

All rendering systems, both global and local, must at some
point compute the direct illumination in the scene. Unfortu-
nately, this task remains expensive, especially for complex
light sources such as environment maps and other image-
based representations. Much effort has focused on the de-
velopment of more efficient techniques for completing this
task.

2.1. Sampling from Environment Maps

Illumination from environment maps has been a topic of
much recent research. Most of this work focuses on inter-
active applications and therefore uses expensive precompu-
tation [Gre86,HS99,KM00,KVHS00]. In some recent work,
the illumination and/or BRDF are projected into finite bases
such as spherical harmonics (e.g., [RH01, RH02, SKS02])
and wavelets [NRH03].

Other researchers have used importance sampling tech-
niques to distribute samples according to the energy distri-
bution in the environment map. The importance sampling is

often implemented using a point relaxation scheme [CD01,
KK03] related to Lloyd’s clustering algorithm [Llo83]. This
method has also been used in a stippling context for im-
portance sampling from image data [DHvOS00]. These re-
laxation methods have the disadvantage of requiring time-
consuming precomputation. Also, Lloyd’s algorithm is not
proven to converge in dimensions higher than 1, and in prac-
tice these algorithms can miss high-frequency detail in the
images.

Ostromoukhov et al. [ODJ04] presented a technique for
distributing 2D point samples that is much faster than
relaxation-based approaches and also appears to produce
a good spatial distribution for the points. In the context
of stippling, Secord et al. [SHS02] described an algorithm
based on computing the cumulative density function by pre-
integrating and inverting the image intensities. Afterwards,
samples can be drawn from the cumulative density function
in constant time. This is a simple and efficient method, a
variant of which we use in our work.

Agarwal et al. [ARBJ03] introduced a sampling method
for environment maps in which the sampled importance
takes into account both the energy distribution in the en-
vironment map and the solid angle separating the samples.
In this way, close clustering of environment map samples is
avoided, which reduces redundant shadow tests. In our work,
we can also choose to include the solid angle in the impor-
tance term (Section 5). Like other algorithms, Agarwal et
al.’s method is based on point relaxation, but in addition they
require quantization of the environment map.

As an extension to their work, Agarwal et al. [ARBJ03]
sort the samples for each shading operation by the magnitude
of their contribution to the final illumination. They sample
all point lights deterministically, in order of contribution, un-
til the contrast that the remaining lights can add falls below
a predetermined threshold. This use of the product of BRDF
and environment map value is one step towards our approach
of drawing samples according to an importance that is the
product of BRDF and light distribution.

However, like other point-relaxation methods, Agarwal et
al. generate only one sampling pattern and use it through-
out the scene. This technique essentially replaces the en-
vironment map with a set of directional light sources. On
the one hand, this approach eliminates noise, but on the
other hand it introduces aliasing visible in the form of quan-
tized penumbra regions, banding, or missing highlights from
smaller light sources. Kollig and Keller [KK03] propose to
use interleaved sampling [KH01] of multiple precomputed
patterns to reduce this problem.

In our work, we use different random sampling patterns
for every surface location. While this introduces noise, it gets
rid of aliasing and helps avoid visibility tests for directions
that are not important for a given BRDF.
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2.2. Sampling from BRDFs

Importance sampling from the BRDF is a common opera-
tion. The exact mechanics of it, however, depend on the spe-
cific representation used. Simple analytical models such as
diffuse, Phong, or generalized cosine models can be sampled
analytically (see e.g., [Shi00]).

For tabulated BRDFs, McCool and Harwood [MH97]
proposed a kd-tree representation that can be efficiently
traversed for importance sampling. Recently, Lawrence et
al. [LRR04] introduced a method that works on a factored
representation instead. This also reduces the memory foot-
print of the BRDF representation.

In the case of procedural shaders, importance sampling is
difficult, but it can be done if the shader provides additional
information. For example, Slusallek et al. [SPS95] propose
that the shader should provide cosine lobes approximating
the full reflectance function for a given point. These lobes
can then be sampled analytically.

In our current implementation we use only Phong and dif-
fuse reflection models. However, our method could easily be
extended to incorporate more sophisticated materials using
any of the above methods.

2.3. Multiple Sampling Approaches

There has also been work on multiple sampling approaches.
Veach and Guibas [VG95] weight samples drawn from both
the light sources and the BRDF to reduce the variance of
the results. Before rendering, a decision is made as to how
many samples to draw from each distribution. The resulting
variance is therefore a simple blend between the variances
of the individual distributions (see Section 3). Our method
reduces variance further by sampling directly from the prod-
uct distribution, rather than just mixing samples taken from
the individual distributions.

The recent work of Szecsi et al. [SSSK04] is based on
correlated sampling, in which the unoccluded illumination
is computed separately, and only the difference due to vis-
ibility is sampled. This method generally performs well in
fully visible regions, but rather poorly in occluded or par-
tially occluded regions, since the sampling of visibility does
not follow a special sampling pattern. Our work, by con-
trast, focuses visibility tests on directions for which we can
expect major contributions to the illumination. Our approach
is mathematically straightforward and allows for direct sam-
pling of the product distribution of illumination and BRDF
without any guesswork.

3. Bidirectional Importance Sampling

As mentioned in the introduction, we propose a bidirectional
sampling approach in which both the energy distribution in
the environment map and the reflectance of the BRDF are

taken into account. This is a two-step approach: we initially
create samples according to either the BRDF alone or the
environment map alone, and then adjust these samples to be
proportional to the product distribution. The adjusted sam-
ples are then used for visibility testing.

We operate on the assumption that creating samples from
only the environment map or only the BRDF model is inex-
pensive, and that the visibility test dominates the cost. This
assumption holds for scenes with complex geometry and for
BRDF models optimized for sampling. In this scenario, one
can benefit from extra time spent in attaining a good sam-
ple distribution that takes both the BRDF and environment
map into account. Such a distribution selects only those di-
rections for visibility testing that contribute significantly to
the reflected radiance of the surface under evaluation.

Consider the direct illumination at a point for a given ob-
server direction ωr:

Lr(ωr) =
∫

Ω
fr(ωi → ωr)cosθiLi(ωi)V (ωi)dωi, (1)

with Li denoting the incident illumination from an environ-
ment map, fr representing the BRDF, and V being the binary
visibility term.

Our approach is to perform importance sampling using
the product of the incident light distribution and the BRDF
as the importance function:

p(ωi) :=
fr(ωi → ωr)cosθiLi(ωi)∫

Ω fr(ωi → ωr)cosθiLi(ωi)dωi
. (2)

Observe that the normalization term in the denominator is
the direct illumination integral with the visibility term V (ωi)
omitted. In other words, this term is the exitant radiance in
the absence of shadows. We refer to it as Lns (“radiance, no
shadows”):

Lns :=
∫

Ω
fr(ωi → ωr)cosθiLi(ωi)dωi. (3)

If we draw sample directions ωi, j ∼ p(ωi) according to
the product distribution in Equation 2, we can estimate Equa-
tion 1 with LN,p, where

LN,p(ωr) =
1
N

N

∑
j=1

fr(ωi, j → ωr)cosθi, jLi(ωi, j)V (ωi, j)

p(ωi, j)
;

=
Lns

N

N

∑
j=1

V (ωi, j). (4)

We refer to LN,p as the bidirectional estimator for the di-
rect illumination integral. The evaluation of Equation 4 can
be interpreted as taking the unoccluded reflected radiance
Lns and scaling it by the average result of N visibility tests
performed along directions that contribute most significantly
to the radiance.
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We can compute the variance of this estimator using stan-
dard results for importance sampling (e.g. [Shi00]), and ob-
tain

ωi, j ∼ p(ωi) → var(LN,p) =
L2

ns
N var(V (ωi)).

Note that the variance of the bidirectional estimator for the
reflected radiance depends only on the variance in the vis-
ibility function. By contrast, conventional approaches per-
form importance sampling either solely from the intensity in
the lighting or solely from the BRDF. In the former case, we
get the importance function

qL(ωi) :=
Li(ωi)∫

Ω Li(ωi)dωi
(5)

with the corresponding Monte Carlo estimator

LN,L(ωr) =
1
N

N

∑
j=1

fr(ωi, j → ωr)cosθi, jLi(ωi, j)V (ωi, j)

qL(ωi, j)

=

∫
Ω Li(ωi)dωi

N

N

∑
j=1

fr(ωi, j → ωr)cosθi, jV (ωi, j).

The resulting variance using this estimator ωi, j ∼ qL(ωi)
is then:

var(LN,L) =

∫
Li

2

N
var( fr(ωi → ωr)cosθiV (ωi)).

In other words, when proposing samples from the envi-
ronment only, the resulting variance is proportional to the
variance in the BRDF. Similarly, when proposing solely
from the BRDF, variance is proportional to the lights. It fol-
lows that the greatest reduction in image noise occurs when
samples are drawn from the function with greater variance.
This is consistent with intuition. If the BRDFs are diffuse
but the lighting contains high frequencies, then directions
should be chosen according to the importance of the lights.
On the other hand, if light sources in the environment map
are relatively broad but the surfaces are glossy or shiny, then
proposing from the BRDF will be the better approach.

Either approach will produce significant noise if both the
BRDF and the illumination contain any high frequency in-
formation. The solution of Veach and Guibas [VG95] was
to combine samples drawn exclusively from either the lights
or the BRDF. However, a mix of samples still suffers from
dependence on the variances of the individual techniques.

Figure 1 shows angular plots of the probability densities
corresponding to the various proposal distributions. The top
image depicts samples drawn from a Phong BRDF over-
laid onto the energy distribution of an environment map. It
is obvious that sampling from the BRDF alone misses the
bright lights in the environment. The center image shows
samples drawn from an environment map, rendered into the
importance function for the Phong BRDF at a specific view-
ing direction. It can be seen that most of these samples are
placed outside the specular lobe of the BRDF. Finally, the

Figure 1: From top to bottom: angular plots of the impor-
tance function of the Grace Cathedral EM, a specular Phong
BRDF of exponent 50, and their product. Samples (red discs)
drawn solely from the BRDF or the environment vastly un-
dersample the product distribution. The sample set in the
bottom image was generated with our SIR technique (de-
scribed in Section 4.2).

bottom image represents samples drawn form the product
distribution, as well as the product distribution itself. With
this method, all samples reside on bright spots of the envi-
ronment map but also inside the specular lobe.

4. Realizing Bidirectional Sampling

The challenge in realizing bidirectional importance sam-
pling is that the product distribution of the BRDF and en-
vironment map is not only too expensive to compute on the
fly when drawing samples, but also too high-dimensional to
precompute. The BRDF is a 4D function that maps from in-
coming directions to outgoing directions. The relevant 2D
slice of the BRDF, corresponding to a specific outgoing light
direction ωr, varies from point to point in the scene due to
changes in the local surface orientation. Directional illumi-
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nation such as an environment map is two-dimensional, and
thus the BRDF-EM product has six dimensions. Even with a
coarse discretization of the BRDF, which might cause high
frequency features in the BRDF to be lost, precomputing the
product distribution and storing it in a table for sampling is
prohibitively expensive.

We suggest the following process for sampling from the
product of the lights and the BRDF. First, we create sam-
ples according to either the environment map or the BRDF.
Then, we adjust the sample distribution such that the direc-
tions chosen for visibility testing will be proportional to the
product distribution.

We have developed two solutions that realize this redis-
tribution of samples, one based on rejection sampling and
the other on the sampling-importance resampling (SIR) al-
gorithm. Note that the overall algorithm is a two-stage ap-
proach. That is, the local illumination integral is always esti-
mated with importance sampling, but the subproblem of cre-
ating the appropriate samples is solved with either rejection
sampling or SIR.

Our two realizations of bidirectional importance sampling
are detailed in the following two sections.

4.1. Sample Generation through Rejection

Our first approach for sampling from the product distribu-
tion is through rejection sampling. To create samples ωi, j ∼
p(ωi), we can approximate p(ωi) with a PDF q(ωi), such
that p(ωi) < c ·q(ωi) for some constant c and all directions
ωi. We then generate random samples ωi, j ∼ q(ωi) and ac-
cept them with a probability of p(ωi, j)/(c ·q(ωi, j)).

In our particular case, a simple way of bounding p(ωi)
from Equation 2 is to use qL, the energy distribution of
the light sources (Equation 5), as the approximation. The
bounding constant in this case is fmax := maxωi q f (ωi), the
largest value of the BRDF distribution over all incident light
directions but for a given fixed exitant direction. Clearly,
p(ωi) < fmax ·qL(ωi). Figure 2 illustrates rejection sampling
using this approach.

Since qL is just the usual importance from the environ-
ment map alone, we can sample from it in constant time by
pre-computing the cumulative density function through inte-
gration and inversion, as described by Secord et al. [SHS02].
This precomputation step needs to be performed only once
per environment map, and only requires a fraction of a sec-
ond, so that even dynamic changes of the environment map
in an interactive ray-tracer should be feasible.

In order to accept N visibility samples, on average we
have to create M ≈ fmax ·N environment map samples ωi, j
through importance sampling, and then accept each sample
individually with probability

reject region

fmax ·qL(xi)

p(xi)

xi ∼ qL(x)

accept region

u · fmax ·qL(xi)

Figure 2: Sample generation by rejection sampling. A sam-
ple xi ∼ qL(x) is accepted as being a valid sample of the tar-
get distribution p(x) if a uniform sample in [0, fmax · qL(x))
falls under the product distribution p(xi).

p(ωi, j)

fmax ·qL(ωi, j)
=

fr(ωi, j)cosθi, j ·
∫

Ω Li(ωi)dωi

fmax ·Lns
.

Both this formula and the final radiance estimate from
Equation 4 require the normalization term Lns from Equa-
tion 3. We can estimate this term using information that has
already been computed during the rejection sampling: since
we already evaluate both the BRDF and environment map
for the M directions ωi, j ∼ qL(ωi), we can approximate Lns
as

Lns ≈

∫
Ω Li(ωi)dωi

M

M

∑
j=1

fr(ωi, j → ωo)cosθi, j. (6)

Another interpretation of this method is that we estimate
the unoccluded illumination Lns with M samples, using im-
portance sampling from the environment map. However, we
evaluate the visibility for only N of those samples for which
the BRDF is large enough to amount to a significant light
contribution. The directions for the visibility tests are cho-
sen in an unbiased fashion.

So far, we have bounded the actual target PDF as a con-
stant times the environment map PDF. This is appropriate if
the BRDF contains mostly low frequencies, i.e., if fmax is a
close bound of the real BRDF distribution. If this is not the
case, then most samples will be rejected, and the rejection
sampling will become inefficient. In that case, we can per-
form the same rejection sampling algorithm by approximat-
ing the environment map with a conservative bound and then
selecting samples according to the real BRDF. Under this
scheme, we now have p(ωi) < Lmax ·q f (ωi), which amounts
to generating samples from the BRDF alone and then reject-
ing them according to the product distribution as before.

Given these two ways of rejection sampling, we usually
want to draw the initial samples in such a way that the
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bounding constant is minimized. That is, if fmax < Lmax we
importance sample from the environment map; otherwise,
we importance sample from the BRDF. In practice, we ran-
domly choose which of the two methods to use. The method
with the smaller bounding constant is chosen with a higher
probability.

As demonstrated in Section 6, our rejection sampling ap-
proach has worked well in our experiments. However, the
inherent downside of using rejection sampling is that one
cannot guarantee bounds on the execution time for creating
a new sample. If the area between c · q(ωi, j) and p(ωi, j) is
large, the probability of sample acceptance will be low.

One way of dealing with this is to choose a maximum
number of sample attempts in the rejection sampling. If no
samples are accepted, a possible strategy could be to test
visibility for a random subset. A less expensive but biased
possibility is to use the unoccluded illumination wherever
visibility has not been tested at all. The rationale behind this
approach is that the rejection process will fail mostly in very
dark areas, where the product of illumination and BRDF is
very small. In these areas, the visibility term will not have
significant impact anyway. In practice, we have not found it
necessary to resort to these biased methods, since the rejec-
tion sampling acceptance probability has been sufficiently
high even in the presence of highly specular BRDFs and
complex environments.

4.2. Sample Generation through SIR

Our second method from sampling the product distribution
does not suffer from the unbounded execution time of the re-
jection sampling. This method uses the so-called sampling-
importance resampling (SIR) algorithm [Tan96, GCSR95,
SG92].

SIR first draws a set of M samples X = {x1, . . . ,xM} from
a simple distribution q(x). The actual target distribution p(x)
is evaluated at these M samples, and the resulting values
are used to approximate p. In a second step, a smaller set
of N samples Y = {y1, . . . ,yN} is drawn from X with sam-
ple probabilities w(xi) proportional to their importance ra-
tio p(xi)/q(xi). As the number of first-round samples M ap-
proaches infinity, the sample set Y can be shown to have
been drawn directly from p. The closer q approximates p,
the faster the method converges.

We can apply SIR to the problem of drawing samples from
the bidirectional distribution. We can use either qL (i.e., sam-
pling from the light sources) or q f (i.e., sampling from the
BRDF) for the first stage. As in the rejection sampling ap-
proach, starting with qL is advantageous if the illumination
contains higher frequencies than the BRDF and vice versa,
since the higher frequency factor better approximates the
shape of the product distribution.

Figure 3 summarizes the approach. The total number of

ωi,M L(ωi,N)

ωi, j ∼ f (ωi, j)

ωi,2

L(ωi, j)

L(ωi,1)

L(ωi,2)

...
...

ωi,1

ωi,1

ωi,N

...

ωi, j ∼ LM(ωi, j)

V (ωi, j)

Figure 3: Sampling-importance resampling (SIR). First, M
samples are proposed from q f , the PDF of the BRDF. The
candidate directions are then resampled based on the in-
coming light along those directions, producing N samples
for visibility testing. N is generally much less than M.

samples generated for each pixel is exactly M+N. This is an
improvement over rejection sampling for two reasons. First,
execution time is tightly bounded. We no longer have to wait
an indeterminate time for the rejection criterion to accept
a sample. Using the SIR algorithm, samples can be drawn
directly from the product distribution in constant time.

The second improvement over rejection sampling is that
the sample sizes M and N can be chosen freely, yielding fine
control over the tradeoff between quality and time. For ex-
ample, the BRDF sample size can be adjusted based on the
expense of sampling from the BRDF model. The sample size
M dictates the quality of the estimate of Lns, and hence the
quality of unoccluded regions. Also, it is possible to directly
select N — the target number of visibility rays traced per
pixel — based on, for example, scene complexity.

As the cost of ray tracing typically dominates rendering
time, our general approach for generating results has been to
fix N and adjust M so as to increase or decrease the variance
in resampled directions. Typical values of M are one to two
orders of magnitude larger than N. Note that conventional
importance sampling from either the BRDF or the illumina-
tion alone are just special cases of the SIR technique where
M = N = 1.

5. Enhancements

Stratification. It is also possible to stratify bidirectional
sampling, although this would only make a difference for
low frequency illumination and BRDFs. Sampling from the
BRDF or environment map is just importance sampling, and
can hence be stratified.

One way of achieving approximate stratification is to sam-
ple from the cumulative density function based on a low-
discrepancy series rather than Poisson distributed samples
[SHS02]. This is the approach we take in our implementa-
tion. If the samples in the first stage are stratified, the visibil-
ity rays in the rejection sampling case are automatically also
stratified, because we are just using a subset of the original
samples. In the SIR algorithm, the resampling stage is again
essentially an importance sampling step and hence can also
be stratified.

c© The Eurographics Association 2005.
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Solid Angle Weighting. So far, we have used the light in-
tensities directly as an importance function whenever we
sampled from the light sources. Agarwal et al. [ARBJ03]
pointed out that the variance of the visibility tests can be
reduced by introducing a solid angle term that prevents the
rays from clustering in small regions, since the visibility test
is likely to yield the same result for similar rays.

This solid angle weighting is easy to incorporate into our
sampling strategy, simply by adjusting the probability func-
tion generated from the environment map. This proceeds as
follows. Like Agarwal et al., we first quantize the image into
k intensity levels. This binning is performed on the loga-
rithm of pixel intensity to account for HDR representations.
Next, connected components are found in the quantized im-
age by running a breadth-first search. The solid angle of each
connected component is found by summing the solid angles
of each pixel making up the connected component. Impor-
tances Li of the pixels, originally taken just from intensity,
are now scaled by this solid angle area. The new importance
is given q′L = L · (min(0.01,∆ω))b as discussed by Agarwal
et al. [ARBJ03], where b is in the range [0.1,0.2], depending
on the average size of the light sources in the environment
map.

The time complexity of the area-weighting algorithm de-
scribed above is linear in the size of the environment map,
and can be performed in negligible time during loading.
Sampling is still constant in time using the cumulative den-
sity function of the new importance distribution. In our ex-
periments, we found that this additional solid angle weight-
ing does not measurably improve our results. We believe that
this is due to the fact that we work with very small sam-
ple sizes, which makes clustering of visibility rays unlikely,
even without the solid angle weighting. However, since in-
cluding the term is cheap, we use it anyway.

6. Results

In the following, we compare the results of our techniques
with previous sampling strategies for rendering from envi-
ronment maps. In our tests, illumination comes from image-
based representations of illumination, such as environment
maps and texture-mapped area light sources. Images were
generated with a reasonably well-optimized ray tracer using
a voxel grid as the acceleration data structure for intersection
queries. Our comparisons examine the output quality of the
various rendering algorithms for a fixed amount of comput-
ing time. We performed these tests on a 3.0 GHz P4 running
Linux.

Figures 8, 4, and 6 contain images of Michelangelo’s
David in the Grace Cathedral environment. We use the ver-
sion of David with 700k-triangles acquired from the Digital
Michaelangelo Project [Sta01]. In our implementation, in-
tersecting a ray with the David model takes, on average, 6.1
µs on our test machine. The Grace Cathedral environment is

a 1024× 512 HDR map with a contrast ratio of 107 : 1. In
all tests, each algorithm was given 13.0 seconds to render a
176×248 image. This small image resolution was chosen in
order distinguish differences between the images when pre-
sented in print form.

In a first test, we compared rejection sampling and SIR
(Figure 8). Both the algorithms produced images of indistin-
guishable quality at the same computing time for a variety
of combinations of materials and environment maps. In the
rest of this section, we therefore compare previous sampling
techniques only to our SIR algorithm, which we prefer be-
cause of its deterministic performance characteristics.

Figure 6 compares bidirectional sampling to earlier meth-
ods: sampling only from either the lights or BRDFs, and
Veach&Guibas’ multiple importance sampling [VG95]. In
the latter case, the weights for choosing between lights and
BRDF were optimized manually through trial and error.
For bidirectional importance sampling, we used SIR with
M = 800 primary samples and N = 15 final samples for
which visibility was tested.

The first row of the figure uses a glossy Phong BRDF with
an exponent of 10. In this case, sampling from the environ-
ment map only (left column) is still preferable to sampling
from the BRDF (center left), since the environment map con-
tains higher frequencies than BRDF. Even so, sampling from
the environment map only results in visible noise. Multiple
importance sampling produces a result comparable to envi-
ronment map sampling, while bidirectional sampling clearly
outperforms all other methods.

The second row of Figure 6 shows the same scene with a
shinier BRDF (Phong exponent of 50). Now, sampling from
the BRDF produces better results than sampling from the
environment map. Multiple importance sampling further im-
proves on this result. However, bidirectional sampling again
outperforms all other methods. In the last row of the figure,
we added a diffuse component. This significantly lowers the
quality of BRDF sampling. Again, bidirectional sampling
is superior to the other strategies without having to adjust
weights as in the case of multiple importance sampling.

Figure 7 shows more comparisons between bidirectional
sampling and importance sampling from light sources. In
the left image pair, the illumination is from an HDR envi-
ronment of lower frequency than the Grace Cathedral while
the BRDF of the Buddha model has significant specular
(Phong exponent of 50, ks = 0.5) as well as diffuse (kd = 0.5)
components. In this case, sampling only according to either
the BRDF or the illumination performs particularly poorly
compared to bidirectional sampling. In the right image pair,
the light source is now a texture-mapped area light. Note
how the reflections of the windows on the shiny floor are
smoother with bidirectional sampling.

Figure 4 presents a quality comparison between bidirec-
tional sampling and the best case scenarios for sampling
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Figure 4: Quality comparison between SIR algorithm and
the best cases for importance sampling techniques. Top row:
David with a purely diffuse BRDF in high frequency lighting.
Bottom row: David with a purely specular BRDF (Phong
exponent 50) in low-frequency lighting. Top left: Importance
sampling according to EM. Top right: SIR algorithm propos-
ing samples according to EM and resampling according
to BRDF. Bottom left: Importance sampling according to
BRDF. Bottom right: SIR algorithm proposing samples from
the BRDF and resampling according to EM. 176× 248 im-
ages computed in 13.0 seconds.

from either the lights or the BRDF only. The top row shows
the David model with a purely diffuse BRDF in high fre-
quency lighting of the Grace Cathedral. This is the best case
for importance sampling from the lights, as the environment
map contains all the high frequency information, whereas
the BRDF is very smooth. Veach&Guibas’ multiple impor-
tance sampling more or less reduces to pure importance sam-
pling from illumination in this case. Bidirectional sampling
does better than purely sampling from the illumination even
in this case, since it accounts for the cosine falloff of the
diffuse material.

The bottom row of Figure 4 shows a highly specular
David in the comparatively low frequency lighting of the
Uffizi Gallery. This is the opposite scenario, where it makes
sense to sample according to the BRDF, which is a high fre-

quency function. Even here, bidirectional sampling outper-
forms pure importance sampling, resulting in a higher qual-
ity image for the same compute time.
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Figure 5: Convergence plots of RMS errors for importance
sampling and bidirectional sampling. Note how the RMS er-
ror reduces faster for bidirectional sampling.

Finally in Figure 5, we present a comparison of the con-
vergence in terms of RMS errors for importance sampling
and bidirectional sampling. The plot here was computed for
the David model (Phong exponent 50, ks = 0.5,kd = 0.5) in
the Grace Cathedral environment, with first round sampling
from the illumination and resampling based on the BRDF. It
is clear from the figure that the RMS error converges faster
for bidirectional sampling. We found similar behavior for
other materials and environment maps.

In summary, the results presented here clearly demon-
strate that the approach of sampling directly from the prod-
uct distribution outperforms previous sampling strategies.
What is more, we are able to achieve comparable quality
with far fewer rays, meaning that our techniques are particu-
larly beneficial to rendering complex scenes where ray-scene
intersection queries are expensive.

7. Conclusions

We presented two Monte Carlo strategies for sampling
the incident illumination from environment maps, taking
into account both the light distribution and the surface re-
flectance. By providing a means of sampling from a more
complex target distribution, our methods achieve lower vari-
ance, especially in renderings of scenes with high frequency
lighting or specular BRDFs, as compared to traditional im-
portance sampling strategies.

Although our proposed bidirectional methods take longer
to generate samples than simpler approaches, the number
of samples required to achieve good quality is considerably
less than when sampling according to a simple function. For
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Figure 6: David in Grace Cathedral – 176×248 images rendered in 13.0 seconds. Left column: Importance sampling purely
from the illumination (100 samples). Center left: Importance sampling purely from the BRDF (75 samples). Center right:
Combined sampling (Veach&Guibas) with manually fine-tuned weights. Right: Bidirectional importance sampling with SIR
(15/800 samples). Top row: Phong exponent 10, ks = 1.0,kd = 0.0. Center: Phong exponent 50, ks = 1.0,kd = 0.0. Bottom row:
Phong exponent 50, ks = 0.5,kd = 0.5.

large datasets with complex structures, the time required to
trace shadow rays will dominate the rendering time. In such
cases, our methods provide greater benefit over importance
sampling from the EM or BRDF alone.

Future work in this direction could be the examination

of other sampling strategies that exist in the literature, such
as iterative SIR, Metropolis-Hastings, and particle filter-
ing [AdFDJ03]. The general idea behind these strategies is
to use samples that have already been drawn as a basis for
proposing further, fitter samples. It would be interesting to

c© The Eurographics Association 2005.



D. Burke, A. Ghosh & W. Heidrich / Bidirectional Importance Sampling for Direct Illumination

explore how these methods of sampling from more com-
plicated distributions could be applied to other problems in
computer graphics.
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Figure 7: Quality comparison of our method against standard importance sampling for the same compute time. Left image
pair: illumination from an environment map. Right image pair: illumination from an area light source. Left column: traditional
importance sampling from the light source. Right column: bidirectional importance sampling.

Figure 8: Quality comparison between our two proposed bidirectional sampling methods. Left: Rejection sampling. Right:
Sampling-importance resampling (SIR). 176×248 images computed in 13.0 seconds using 15/800 rejection and SIR samples.
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