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Figure 1: High resolution passive facial performance capture. From left to right: Acquisition setup; one reference frame; the reconstructed
geometry (1 million polygons); final textured result; and two different frames.

Abstract

We introduce a purely passive facial capture approach that uses only
an array of video cameras, but requires no template facial geome-
try, no special makeup or markers, and no active lighting. We obtain
initial geometry using multi-view stereo, and then use a novel ap-
proach for automatically tracking texture detail across the frames.
As aresult, we obtain a high-resolution sequence of compatibly tri-
angulated and parameterized meshes. The resulting sequence can
be rendered with dynamically captured textures, while also consis-
tently applying texture changes such as virtual makeup.

CR Categories: 1.3.3 [COMPUTER GRAPHICS]: Pic-
ture/Image Generation—Digitizing and scanning; 1.3.5 [COM-
PUTER GRAPHICS]: Computational Geometry and Object
Modeling—Geometric algorithms, languages, and systems.

Keywords: face reconstruction, performance capture, markerless
motion capture

1 Introduction

Facial performance capture is evolving into a major tool for creating
realistic animations in both movie and game industries. A practi-
cal and versatile facial performance capture system should fulfill a
number of requirements. First, it should generate sequences of de-
tailed meshes with dynamic texture in order to capture both geomet-
ric deformations of the face, as well as the corresponding changes
in skin appearance due to sweating or changes in blood circulation.
Second, the triangulation of the meshes and their mapping between
frames should be compatible over time, such that both the geom-
etry and the texture can be edited by an artist (e.g. by applying
virtual makeup), and these changes can be propagated over time.
Finally, the capture process itself should be simple and automatic,

and should not require separate geometry scans or excessively ex-
pensive hardware.

Reconstructing a human face is challenging, since most faces do not
have sufficient medium-scale texture to establish dense correspon-
dences between different viewpoints. For this reason, commonly-
used methods typically involve either structured lighting [Zhang
et al. 2004; Wang et al. 2004], special makeup [Furukawa and
Ponce 2009], or markers [Bickel et al. 2007; Ma et al. 2008] to
track the geometry. This makes it difficult to simultaneously cap-
ture both geometry and texture, thus requiring either inpainting of
markers or sacrificing temporal resolution by staggering structured
light with uniform light. Additionally, these active methods can be
uncomfortable for the actors, affecting their performance. Many of
these techniques also require an initial laser scan of the face, while
the others suffer from low-resolution reconstructions.

In this paper, we present a fully passive method for facial perfor-
mance capture that satisfies the criteria outlined above. By using
only a camera array and uniform illumination, our setup is less in-
trusive to the actors. We require no markers, no face paint, no flu-
orescent makeup, no structured light, and no laser-scanned model,
yet are still able to reconstruct high resolution time-varying meshes
at 30 frames per second. Our passive setup also allows us to recon-
struct high-resolution, time-varying texture maps that can capture
potential changes in skin appearance due to, for example, blushing
or sweating of the actor. Our reconstruction is made possible by a
number of contributions:

1. A novel high-resolution acquisition setup that allows us to use
pores, blemishes and hair follicles as trackable features.

2. A high-quality stereo reconstruction algorithm, extending a
current state-of-the-art technique [Bradley et al. 2008a] to in-
clude new disparity constraints that work with our setup.

3. Most significantly, an automatic surface tracking method
based on optical flow. This method supports automatic drift
correction and edge-based mouth tracking, which together
yield realistic, time-varying, textured facial models.

Our capture system consists of the three main components shown
in Figure 2:

e Acquisition setup - Our setup consists of 14 high definition
video cameras, arranged in seven binocular stereo pairs. Each
pair is zoomed-in to capture a small patch of the face surface
in high detail under bright ambient illumination (Section 3).
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Figure 2: Overview of our algorithm.

e Multi-view reconstruction - We use an iterative binocular
stereo method to reconstruct each of the seven surface patches
independently, and then combine them into a single high-
resolution mesh. The zoomed-in cameras allow us to use skin
pores, hair follicles and blemishes as surface texture to guide
the stereo algorithm, producing meshes with roughly 1 mil-
lion polygons (Section 4).

Geometry and texture tracking - In order to consistently
track geometry and texture over time, we choose a single ref-
erence mesh from the sequence, and compute a mapping be-
tween it and every other frame by sequentially using optical
flow. The observed pores and other surface details not only
serve to provide accurate per-frame reconstructions, but also
allow us to compute cross-frame flow. Drift caused by in-
evitable optical flow error is detected in the per-frame texture
maps and corrected in the geometry. In order to account for
the high-speed motion generated by talking, the mapping is
guided by an edge-based mouth-tracking process (Section 5).

2 Related Work

Previous techniques for facial performance capture can largely be
divided into the following categories: methods that use markers
or special face paint to guide the reconstruction, structured light
approaches, and finally methods that fit parametric face models to
observed video sequences.

Markers and Face Paint. Traditional marker-based face capture
dates back to Williams [1990], and consists of covering the face
with a large number of black dots or fluorescent colors [Guenter
etal. 1998; Lin and Ouhyoung 2005] in order to track the geometry.
Bickel et al. [2007] augment the traditional methods to incorporate
multiple scales of geometry and motion using markers, face paint,
and an initial scan. Most recently, Furukawa and Ponce [2009]
present a face capture technique that deforms a laser-scanned model
to match a highly-painted face while regularizing non-rigid tangen-
tial deformations.

Unfortunately, these techniques have trouble reconstructing accu-
rate per-frame face textures, and require expensive hardware to per-
form initial scans.

Structured Light. Another approach to facial performance cap-
ture is to combine cameras with at least one projector that casts a
structured light pattern onto the face in order to provide dense sur-
face texture. Zhang et al. [2004] use space-time stereo with struc-
tured light to reconstruct temporally smooth depth maps of a face.
They then fit a deformable template model at each time step using
optical flow. Wang et al. [2004] project phase-shifted color-fringe
patterns onto the face and acquire the 3D shape in real-time. They
establish correspondences between frames using a multi-resolution
model fitting approach. However, the resulting meshes have in-
sufficient resolution (at most 16K vertices) for capturing fine-scale
facial details such as wrinkles.

Ma et al. [2008] achieve high-resolution reconstructions by in-
terleaving structured light with spherical gradient photometric
stereo [Ma et al. 2007] using the USC Light Stage. New facial per-
formances are then synthesized using a marker-based, data-driven
approach. However, this method requires expensive hardware.

Structured light approaches are unattractive because they can be
distracting to the actor, and they suffer from the inability to re-
construct face textures without sacrificing temporal resolution by
interleaving ambient illumination with the structured light.

Parametric Models from Video. The goal of this category of
methods is to determine the parameters of a deformable face model
from observing a video sequence without markers or structured
light [Li et al. 1993; Essa et al. 1996; DeCarlo and Metaxas 1996;
Pighin et al. 1999]. However, the resulting face reconstructions tend
to be very low resolution, lacking any person-specific details.

In a related work, Blanz et al. [2003] re-animate faces in video by
parameterizing a database of different laser-scanned faces and ex-
pressions. They can then estimate the 3D shape and pose of new
faces in video images with a parameter fitting algorithm. But like
the other parametric approaches, the final models tend to lack facial
details.

Commercial Systems and Other Projects. A number of com-
mercial systems have been developed for facial performance cap-
ture.  Vicon’s marker-based system' and Mova’s fluorescent
makeup CONTOUR Reality Capture® are two prominent examples,
while Dimension Imaging 3D is among the first to use markerless
facial reconstruction in industry®. Recently, Alexander et al. [2009]
created a photoreal facial modeling and animation system in the
Digital Emily Project. Finally, Borshukov et al. [2003] recreate ac-
tors for The Matrix Reloaded using their Universal Capture system.
These systems both start with laser-scanned models. The approach
of Borshukov is most similar to ours. Optical flow and camera tri-
angulation advances a face model over time, and a time-varying
texture map is computed from multiple videos. Unlike our auto-
matic approach, however, optical flow errors and drift are corrected
using tedious manual geometry reshaping.

To our knowledge, ours is the first face capture method with fully-
automatic temporal reconstruction, rivaling current state-of-the-art
techniques, but without the need for markers, face paint, expensive
hardware or structured light. It is worth noting that concurrent to
our work, Beeler et al. [2010] present a similar technique for pas-
sive face reconstruction that captures pore-scale geometry of static
faces. Our automatic surface tracking method for generating tem-
porally compatible animations could complement their approach.

Vicon MX - www.vicon.com
2CONTOUR Reality Capture - www.mova.com
3www.di3d.com



Figure 3: Iteratively constrained multi-view stereo removes outliers by iteratively tightening depth constraints.

3 Acquisition Setup

Our acquisition setup consists of 14 high definition Sony HDR-SR7
cameras arranged in an array in front of the actor (see Figure 4). The
cameras are geometrically calibrated [Bradley and Heidrich 2010]
and optically synchronized [Bradley et al. 2009]. We use nine LED
light fixtures, each with 192 LEDs, to provide both bright, uniform
illumination, as well as the camera synchronization.
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Figure 4: Schematic view and photo of our acquisition setup.

As we mentioned previously, reconstructing a human face is chal-
lenging because most faces do not have sufficient medium-scale
surface texture. This is the main reason why previous work relies
on hand-placed markers or structured light patterns. However, this
assumption does not hold if we increase the resolution of the acqui-
sition system and capture images of very small face details such as
pores, freckles and wrinkles.

To this end, we arrange the cameras in seven stereo pairs and max-
imize the optical zoom level in order to observe fine-scale surface
details, providing a natural surface texture for reconstruction. Fig-
ure 4 shows an illustration of the setup and the seven face regions
observed by the stereo pairs, along with a photo of the actual setup.
Note that there is significant overlap between the face regions, even
though it is not shown in the illustration. Figure 5 shows a video
frame captured from one camera, demonstrating the high resolution
surface details. We also have an additional reference camera that is
not zoomed-in and not used for processing. This camera provides a
normal video for comparison with our results.

Figure 5: One HD video frame showing that pores can be used as
natural surface texture for face reconstruction.

Preparing an actor for capture requires very little work, since we do
not place markers on the face or require an initial scan. We do use
oft-the-shelf foundation makeup to reduce specularity in the case of
oily skin, however this is common practice for preparing actors for
any performance.

4 Multi-View Reconstruction

To reconstruct a mesh for each face frame, we perform binocular
stereo for each of the seven facial regions, resulting in seven over-
lapping depth images. The natural surface texture obtained from
our capture setup provides sufficient detail for stereo reconstruc-
tion. The seven depth images are then merged into a single trian-
gle mesh using the multi-view reconstruction system of Bradley et
al. [2008a]. This system was successfully used for garment cap-
ture [Bradley et al. 2008b], which has similar requirements on ac-
curacy and efficiency for capturing deformable geometry.

However the method of Bradley et al. [2008a] is designed for 360°
reconstruction, where the visual hull of the object can be pre-
computed and used to reduce outliers in the binocular reconstruc-
tions. Our camera setup prevents us from applying the technique
exactly as described, because we observe only patches of the face
and do not have full 360° coverage. Thus we cannot compute a vi-
sual hull. Without the visual hull constraint, the resulting depth im-
ages can contain many outliers (Figure 3, c). We resolve this prob-
lem by adopting an iteratively constrained binocular reconstruction
approach, designed to iteratively remove outliers in the reconstruc-
tion. We apply this method to each of the seven camera pairs.

Iteratively Constrained Binocular Reconstruction. In the first
pass of binocular reconstruction, we enforce a loose depth con-
straint that corresponds to the maximum reconstruction volume for
the face patch (measured by hand). The resulting depth image has
many valid samples but also contains outliers. Figure 3 (a) and (b)
shows an example stereo pair, and the depth outliers can be seen in
the corresponding point cloud in Figure 3 (c). In order to reduce
outliers, we tighten the initial depth constraints for the next itera-
tion. To this end, we perform Gaussian smoothing on the current
depth image using a large kernel size, creating an over-smooth ap-
proximation of the surface with fewer outliers. This smooth depth
image is used to compute per-pixel constraints for a second pass of
binocular stereo. During the second pass, we process only the pixels
whose depth in the first reconstruction violates the new constraints.
If the depth is within an acceptable distance from the smooth sur-
face then we do not re-process the pixel. By tightening the depth
constraints, the depth image computed in the second pass has fewer
outliers (Figure 3, d). We repeat the smoothing process on the new
depth image to establish new constraints for the next pass, iterat-
ing between stereo matching and constraint tightening until conver-
gence. In practice, we found that three iterations was sufficient for
all reconstructions (Figure 3, e).

In this approach, we assume that the true surface lies within a small
distance of the over-smoothed one in each iteration. This holds true
if the surface does not contain very high curvature or sharp features,
which is the case for faces. We also assume that outliers have small
local support, so that they are removed by the smoothing step.

Pair Merging. After applying iterative binocular reconstruction
for each camera pair, we obtain seven corresponding point cloud
reconstructions. The point clouds are then merged into a single
dense point cloud. On average, we reconstruct approximately 8-10
million points per face. These points are downsampled, filtered and



Figure 6: Multi-view reconstructions for three different frames.

triangulated using the system of Bradley et al. [2008a] without fur-
ther modification. Our final meshes have approximately S00K ver-
tices (1 million triangles). Each frame ¢ of a capture sequence can
be reconstructed independently, so we perform the reconstructions
in parallel. In the following we refer to these initial meshes as G*.
The reconstruction of a selection of frames is shown in Figure 6.

5 Geometry and Texture Tracking

Given the per-frame reconstructions, the next step is to reconstruct
the motion of the face by tracking the geometry and texture over
time. We explicitly compute a sequence of compatible meshes
without holes, which allows artists to later edit both the geometry
and the texture, and to propagate these modifications consistently
over time. Given the initial per-frame reconstructions Gt, we would
like to generate a set of compatible meshes M that have the same
connectivity as well as explicit vertex correspondence. That is to
say, we desire one mesh that deforms over time. In order to create
high-quality renderings, we also require per-frame texture maps 7"
that capture appearance changes such as wrinkles and sweating of
the actor.

We propose an optical flow based approach for motion reconstruc-
tion, as illustrated in Figure 7. The basic method works as follows:
starting with a single reference mesh M, generated by manually
cleaning up the first frame G° (Section 5.1), we compute dense
optical flow on the video images and use it in combination with the
initial geometric reconstructions G* to automatically propagate M°
through time (Section 5.2). At each time step, we compute a high-
quality 2D face texture 7" from the video images (Section 5.3).

In theory this basic method can reconstruct the face motion and
produce a temporally consistent animation. However, the practi-
cal limitations of optical flow can pose problems. For instance,
optical flow is prone to errors during rapid deformations such as
lip movement during speech, and can be inaccurate for a variety
of other reasons including occlusions, insufficient image details,
and appearance changes such as the formation of wrinkles. Fur-
thermore, since the basic method processes the frames sequentially,
even the smallest error will accumulate over time, causing the ge-
ometry to drift. Temporal drift is unacceptable, as it will destroy the
consistent mapping between frames that we aim to reconstruct. We
overcome these issues with two improvements to the basic method,
which aim to stabilize the animation through explicit mouth track-
ing and texture-based drift correction (Section 5.4). As a final step,
we perform smoothing to remove unwanted noise in the animation
(Section 5.5).

5.1 Reference Mesh

We start each performance with a neutral facial expression, from
which we create our reference mesh. The first reconstruction, G°,
(shown in Figure 6 left) is manually edited to remove any outliers
caused by hair, and then a 2D parameterization of the geometry is
computed. We use LSCM [Lévy et al. 2002] to generate the pa-
rameterization because it successfully deals with the holes in our
initial reconstruction. The holes are filled in 2D by creating small
Delaunay triangulations [Shewchuk 1996], and the new 3D geom-
etry is created as a membrane surface, C'* continuous with the sur-
rounding geometry, using the Laplacian formulation of Bradley et
al. [2008b]. Finally, a slit is cut in the mesh for the mouth. The
result is the first mesh M° of the final sequence. The 2D param-
eterization computed here will become the domain for the texture
map. Note that this parameterization remains constant for the en-
tire sequence. That is to say, as a vertex v; of the mesh moves over
time, its texture coordinates never change.

5.2 Frame Propagation (Basic Method)

We compute optical flow [Bouguet 1999] over the whole sequence
for each of the 14 video cameras individually. Using this flow and
the initial reconstructions G, we can now propagate M° forward
in time to produce our output sequence. The process is illustrated
in Figure 8, and it proceeds as follows. For each vertex vffl of
M*'! we project the vertex onto each camera ¢ in which it is vis-
ible (i.e. inside the field of view of and not occluded). Let p; . be
this projected pixel. We then look up the 2D flow vector that cor-
responds to p;,. and add the flow to get a new pixel location pj ..
Back-projecting from p; . onto G" gives us a guess for the new ver-
tex location, which we call ﬁf,c. The illustration in Figure 8 has
exaggerated inter-frame motion for better visualization.
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Figure 8: Computing vertex positions for the next frame, using per-
camera optical flow (with exaggerated motion for visualization).

We require at least two cameras to agree on the new vertex location.
We say that cameras c; and cp agree if

| ey — iep |< Lmim. (1

The computed vertex location ! is then a weighted average of the
n per-camera guesses that agree:

n

_t t ot

v; = E Wi ¢ * Vi 2)
c=1

where wf’c is the dot product between the surface normal at 17f,c
and the vector from there to c. The difference between the new ver-
tex location and its previous location can be considered a 3D flow
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vector, which we denote d7. If not enough cameras agree on a new
vertex location, for example if a vertex falls on a hole in the next
frame, then the 3D flow from neighboring vertices is interpolated.
We assume that the motion of the face is spatially smooth, so neigh-
boring vertices have similar 3D flow. The interpolation is achieved
by solving a simple least-squares Laplacian system on the surface
for all vertices that were not updated (all updated vertices remain
fixed):

min || AS! ||* . 3)

Finally, we apply regularization to the mesh in order to avoid possi-
ble triangle-flips and remove any unwanted artifacts that may have
been present in the initial reconstruction. Following the regular-
ization method of de Aguiar et al. [2008], we again solve a least-
squares Laplacian system using cotangent weights and the current
positional constraints o¢. Thus, we generate the final mesh M* by
minimizing

argmin{|| vf — 3} ||* +a || Lv' — Lo” |7}, “)

where L is the cotangent Laplacian matrix. The parameter o con-
trols the amount of regularization, and is set to 100 for all recon-
structions.

5.3 Computing 2D Texture

At each time step, in addition to reconstructing geometry, we also
compute a high-resolution 2D texture 1" for rendering. Since we
do not use markers or face paint, our texture images are rich in de-
tail, containing per-frame appearance changes due to, for example,
blushing or sweating of the actor. As pointed out by Borshukov et
al. [2003], these textural variations are very important for creating
believable facial renderings.

All of our 14 HD cameras are used to compute a single texture
that covers the entire surface. This allows us to create very high-
resolution textures, in the order of 8-10 megapixels, for extreme
zooms (see Figure 17). For other purposes, lower resolution tex-
tures may be sufficient (e.g. 900x900 as used in most of our exam-
ples). The domain of the texture image is given by the 2D parame-
terization of the mesh (Section 5.1). Every vertex of the mesh has
unique 2D coordinates in the parameter domain, yielding a one-to-
one mapping between 2D and 3D mesh triangles.

Figure 7: Overview of our geometry tracking algorithm.

To compute the texture for frame ¢, we start by projecting each tri-
angle of M onto the camera that observes it best, as determined
by the dot product between the triangle normal and the camera di-
rection. The camera pixels corresponding to the projection are then
copied to the corresponding 2D triangle in the texture domain. Fig-
ure 9 shows the computation of a face texture. We visualize the
contribution from each camera as a grayscale patch image in Fig-
ure 9 (middle-left). Figure 9 (middle-right) shows the initial texture
result after copying the pixels from the camera images. Since the
cameras are not radiometrically calibrated, different texture patches
can have drastically different skin tones. To compute the final tex-
ture, shown in Figure 9 (far right), we apply Poisson image edit-
ing [Pérez et al. 2003] similar to Mohammed et al. [2009]. We
start with the largest patch and iteratively add adjacent patches un-
til the texture image is complete. For each new patch we compute
x- and y-gradients inside the patch and solve a Poisson equation to
find a new patch that matches the gradients as closely as possible,
while also obeying the boundary conditions set by other completed
patches. Finally, in order to have temporally consistent textures,
we use the previous texture T~ ! as per-pixel soft constraints when
solving the Poisson equation.

Figure 9: 2D texture generation. From left to right: reference im-
age, camera contribution image, initial texture, final texture.

Two additional textures for the same sequence are shown in Fig-
ure 10. Notice how the texture domain remains fixed even though
the 3D face undergoes substantial deformations, including opening
of the mouth. The only differences in the textures is changes in skin
appearance caused by wrinkles, blushing or sweating of the actor.

5.4 Tracking Enhancements

In general, the basic optical flow-based tracking technique de-
scribed so far produces realistic animations of face deformation.
For most of the face, optical flow vectors are both dense and accu-
rate, since our capture setup provides natural high-resolution sur-
face features which easily guide the flow computation. However,



Figure 10: Texture results for two different frames, including refer-
ence images.

optical flow can fail during very fast motion such as rapid mouth de-
formations, and minor inaccuracies can accumulate over time lead-
ing to temporal drift. We resolve these problems automatically by
enhancing the basic technique with an explicit mouth tracking al-
gorithm, along with a method for detecting and correcting temporal
drift.

5.4.1 Mouth Tracking

To perform automatic mouth tracking, we introduce positional con-
straints for a sparse set of points around the mouth at each time
step. The positional constraints are computed in image-space, and
thus do not map directly to mesh vertices. Instead, they are incor-
porated as barycentric constraints on mesh triangles.

The constraint points are determined by tracking the mouth in a
single camera (either one of the two green cameras in Figure 4).
We perform edge detection [Canny 1986] on each frame within a
user-specified region-of-interest (ROI). The region should contain
the mouth throughout the sequence but avoid other edges caused
by surrounding wrinkles or the silhouette of the face. If the se-
quence contains too much global face motion to contain the mouth
in a single ROI then mouth tracking can be performed in temporal
segments with different ROIs. For each frame we perform a sim-
ple analysis of the detected edges to locate the mouth. Figure 11
shows a few different frames of mouth tracking. Detected edges
are shown in white, and the ROI is indicated by the blue rectangle.
If we consider the image as a set of rows and columns, we start by
choosing the two corners of the mouth (shown as red points) as the
minimum and maximum columns that contain an edge pixel. We
then detect the top and bottom lips by uniformly sampling a sparse
number of columns between the mouth corners, and selecting the
minimum and maximum rows at each column that contain edge pix-
els (shown as green points). Empirically we found that 30 sample
columns were sufficient. These 62 pixels then become the mouth
constraints for this frame. We process each frame in the same man-
ner, yielding an explicit temporal correspondence between each of
the individual constraints. Since edge detection is notoriously un-
stable, we smooth the constraints both spatially and temporally to
remove outliers. Although our mouth tracking technique is rather
simple, we found the results to be quite robust, as we show in the
bottom row of Figure 11.

Figure 11: Mouth tracking through edge detection. The green and
red points become constraints in geometry tracking.

We back-project the constrained pixels into the reference frame
M? to determine the set of constraint mesh triangles and the corre-
sponding barycentric coordinates for each of the mouth constraint

points. We encode the barycentric coordinates in a sparse matrix
B which has similar structure to the Laplacian matrix, except that
it contains rows only for vertices that are adjacent to a constraint
triangle. Let PP be the set of 3D constraint points determined from
the back-projection, then

P’ = By, 5)

Throughout the sequence B remains fixed. The per-frame mouth
constraints are used to compute 3D constraint points P’ by back-
projecting onto the initial reconstructions G*. The mouth con-
straints guide the regularization from Section 5.2, replacing Equa-
tion 4 with

argmin{|| v —7; ||* +a || L' — Lo ||* +5 || Bo" — P ||},
(6)

where 3 controls how much we constrain the mouth. We use a high
weight, 3 = 10, since the mouth can deform quite rapidly, causing
large errors in the basic optical flow approach. Our mouth tracking
procedure alleviates these errors, and thus is an essential part of our
method for generating realistic facial animations.

5.4.2 Drift Correction

It is well-known that optical-flow based tracking methods suffer
from accumulation of error, known as drift [DeCarlo and Metaxas
2000; Borshukov et al. 2003]. DeCarlo and Metaxas [1996] solve
this problem by combining optical flow with edge information, and
Borshukov et al. [2003] rely on manual intervention. A key feature
of our method is that we are able to detect and correct drift in the
3D animation automatically, using the texture domain of the faces.

Drift typically occurs because optical flow is computed between
successive video frames only. If it were possible to accurately com-
pute flow between the first video image and every other frame, there
would be no accumulation of error. Unfortunately, temporally dis-
tant video images in a capture sequence are usually too dissimilar
to consider this option. In our case, however, the texture domain of
the mesh remains constant over time, which means that the com-
puted per-frame texture images are all very similar. Any temporal
drift in the 3D geometry appears as a small 2D shift in the texture
images, which can easily be detected, again by optical flow.

To incorporate drift correction, we employ a simple modification to
the basic tracking method described in Section 5.2. After comput-
ing the geometry M* and texture 7" for a given frame, we compute
optical flow between the textures 7° and T°. This flow (if any is
detected) is then used to update M* on a per-vertex basis using the
direct mapping between the geometry and the texture. Any shift in
texture space becomes a 3D shift along the mesh surface. After up-
dating the vertices to account for drift we apply regularization again
(Equation 6), to avoid possible triangle flips.

The only problem that remains is that, if significant appearance
changes such as wrinkles have occurred in the current frame, op-
tical flow between T° and T can fail, resulting in large flow errors.
However, since we expect drift to appear gradually, the flow be-
tween T° and T" should never be more than a few pixels. Larger
flow vectors are discarded as outliers. Still, face regions that con-
tain these appearance changes may incur drift, as wrinkles can be
present for a significant number of frames. In these regions, we de-
tect drift more locally by computing the flow between 7 ~* and T,
and updating the geometry accordingly. We choose k to be small,
so that both frames (¢ — k) and ¢ contain similar appearance, such
as the same wrinkles, allowing flow to be computed accurately. On
the other hand, k£ must be large enough so that drift can accumulate
and be detected. In all reconstructions, we found that &k = 5 was an



appropriate trade-off. The decision to switch from global to local
drift correction is made automatically, on a per pixel basis, when
there is no valid optical flow between T° and T°. By performing
local drift correction we are, in effect, only slowing down the drift
accumulation rather than removing it. However, this approach does
stabilize the animation until the wrinkles disappear, at which time
normal drift correction is automatically resumed.

5.5 Post-Processing

As a final step, we post-process the sequence to provide a smooth,
realistic facial animation.

Saliency-Based Smoothing. As with any stereo reconstruction
method, spatial noise can appear in the resulting geometry due
to, for example, slight inaccuracies in camera calibration (see Fig-
ure 12-bottom left). We wish to smooth the face meshes to remove
this noise, but avoid removing the spatial features and wrinkles
that define the face. To accomplish this, we introduce saliency-
based smoothing, a technique for smoothing less-salient regions of
the face while preserving more-salient features. Saliency is com-
puted in the texture image 7" through a simple analysis of local
histograms. Kadir and Brady [2001] remark that areas of an im-
age with high saliency tend to have flatter distributions in the local
histogram of intensities. Following this principle, we mark a pixel
in T as non-salient if its local histogram contains a single strong
peak. All other pixels are salient. We compute histograms in local
15x15 windows, quantized to 8 intensity bins and use simple thresh-
olding to determine if a peak exists. Figure 12 (top row) shows
one of the texture images and the computed saliency mask, where
salient pixels are white. The saliency mask is then used to constrain
salient vertex positions in a Laplacian smoothing step. The result
is shown in the bottom row of Figure 12. Notice that the eyebrows,
mouth and cheek deformation were not affected by the smoothing.

Figure 12: Saliency-based spatial smoothing. Top: an input texture
and the saliency map. Bottom: before and after smoothing.

Relaxing the Eye Geometry. As we saw in the initial reconstruc-
tions (Figure 6) and again in Figure 12, the eye regions are not
reconstructed well. This is because eyes are too specular, and sur-
rounding eye-lashes are thin hairs that only add noise to the surface.
We alleviate this problem by performing localized smoothing in the

eye regions, as shown in Figure 13. These eye regions are marked
manually in the first frame and are then propagated automatically
for the rest of the sequence.
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Figure 13: Local smoothing to improve the eye regions.

Temporal Smoothing. We end with a single pass of Gaussian
smoothing in the temporal domain to prevent temporal flicker. In
practice we found that temporal noise was minimal, so we use a
small smoothing radius of only three frames.

After all post-processing, 2D textures are re-computed since the
face geometry has changed.

6 Results

We now show results for a number of facial performances given by
different people. All of our results were rendered with Renderman,
using the MakeHuman skin shader in Pixie*. We encourage the
reader to also view the accompanying video, which further demon-
strates our results.

Figure 18 contains six frames from the first sequence, rendered in
a number of different ways to highlight the results. The top row
is the reference footage. In the second row we show the geome-
try without a texture map. Here we can see the exact geometric
details that form each facial expression. The third row is rendered
using a static checkerboard texture. This visualization shows how
the skin stretches and compresses during deformation, for exam-
ple when raising the eyebrows in the second image from the left.
The stability of the checker pattern over time also indicates that we
have achieved a drift-free reconstruction. The fourth row shows our
high-quality rendering using the captured per-frame textures. Fi-
nally, the last row demonstrates how virtual makeup can be applied
to the sequence. Here, an artist would edit the makeup in the first
frame and the edits would be propagated to the rest of the sequence
automatically. Once a facial performance has been captured, we
can also render it from arbitrary viewpoints or lighting conditions,
as we show in Figure 19.

In the fifth column of Figure 18, note that the mouth of the actor is
open, resulting in a hole where the teeth should be. Like most meth-
ods for facial performance capture, we do not reconstruct the inside
of the mouth. Although this effect can be distracting, making the
entire face appear different from the reference image, we illustrate
that the face reconstruction is still accurate by manually composit-
ing the teeth from the reference frame into the result, as shown in
Figure 14. The final result including the teeth now matches the ref-
erence frame and is very compelling, indicating an area of future
work to simultaneously reconstruct time-varying teeth models with
the rest of the face.

We show the versatility of our approach by capturing two other ac-
tors, one male and one female. Results are shown in Figure 15 and
Figure 16, including the pure geometry result and the high-quality
textured rendering. Two extreme zoom renderings are shown in
Figure 17(middle and right), using a 10 megapixel texture that we
reconstructed from the video images.

4www.makehuman.org, www.renderpixie.com



Figure 14: Adding the teeth creates a compelling result, indicating
an area for future research.

Figure 15: Capture results for another sequence, including the ref-
erence frames (left), pure geometry result (center), and high-quality
rendering with texture (right).

7 Conclusion

In this paper we present a purely passive method for facial perfor-
mance capture. Unlike previous methods that require markers, face
paint, structured light, or expensive hardware, we use only a cam-
era array and uniform illumination. Nonetheless, we are able to
reconstruct high resolution, time-varying meshes at 30 frames per
second. The absence of markers and structured light allow us to
capture detailed, per-frame textures and create high-quality render-
ings.

One of the keys to our approach is our novel high-resolution ac-
quisition setup. We are able to use natural skin blemishes, hair
follicles and pores both for establishing detailed geometric recon-
structions, and also for tracking the face over time. Our geometry
and texture tracking method is fully automatic, and includes robust
temporal drift correction. While the small facial details are visible
in the video images, spatial geometry regularization and temporal
smoothing prevent us from reconstructing the finest pore-scale ge-
ometry. These smoothing steps are required to overcome inaccu-
racies in the initial reconstructions and in the optical flow vectors.

Figure 16: Capture results for yet another sequence, including the
reference frames (left), pure geometry result (center), and high-
quality rendering with texture (right).

Figure 17: 10 megapixel textures allow extremely close zoom ren-
derings (middle and right).

However, we do provide much higher resolution than previous pas-
sive methods [Li et al. 1993; Essa et al. 1996; DeCarlo and Metaxas
1996; Pighin et al. 1999]. Also note that fine wrinkles and pores
can be added to the geometry in a post-process similar to Beeler et
al. [2010], and we consider this future work.

Our method is versatile, which we demonstrate by reconstructing
three different facial performances given by different actors, and
including very different deformations. To our knowledge, this paper
presents the first automatic technique to reconstruct high-quality
facial performances without the need for markers, face paint, or
structured light.

The main limitation of our technique is that very fast motion can
lead to incorrect geometry tracking due to motion blur and inaccu-
rate optical flow. Furthermore, since our method processes frames
sequentially, an error in tracking could cause an early termination
of the face sequence. Additionally, our method is not designed to
reconstruct facial hair, and we require manual processing of one
frame of the sequence to build the reference mesh.

In the future, we plan to explore methods for automatically com-
pleting the face model by capturing the teeth. In addition, cor-
rectly capturing the eye geometry, including eyelashes and eye-
brows, would produce even more realistic results, particularly for
high-quality specular rendering of the eyes.
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Figure 18: Capture results for one sequence including the reference footage (top row), pure geometry result (2nd row), skin stretch visual-
ization (3rd row), high-quality rendering with texture (4th row), and virtual makeup (bottom row).

Figure 19: Realistic renderings under various different illuminations and viewpoints.



