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Abstract

Many algorithms in computer graphics improve their efficiency by using Hierarchical Space Subdivision Schemes
(HS?), such as octrees, kD-trees or BSP trees. Such HS® usually provide an axis-aligned subdivision of the 3D
space embedding a scene or an object. However, the purely volume-based behavior of these schemes often leads
to strongly imbalanced surface clustering. In this article, we introduce the VS-Tree, an alternative HS® providing
efficient and accurate surface-based hierarchical clustering via a combination of a global 3D decomposition at
coarse subdivision levels, and a local 2D decomposition at fine levels near the surface. First, we show how to
efficiently construct VS-Trees over meshes and point-based surfaces, and analyze the improvement it offers for
cluster-based surface simplification methods. Then we propose a new surface reconstruction algorithm based on
the volume-surface classification of the VS-Tree. This new algorithm is faster than state-of-the-art reconstruction
methods and provides a final semi-regular mesh comparable to the output of remeshing algorithms.

1. Introduction

Hierarchical Space Subdivision Schemes (HS>) are ubig-
uitous in computer graphics: simplification, reconstruction,
compression, visibility, and many other processing steps are
based on trees to partition and structure data sets. The ini-
tial space, often an axis aligned bounding box, is recursively
subdivided until each cell satisfies a given error criterion.
The root cell of the HS? can be either globally associated
with the whole scene, or locally with each single object.
Some of the most popular HS> are octrees, kD-Trees and
axis-aligned BSP-Trees, which are easy to implement and to
integrate in existing computer graphics frameworks.

Nevertheless, in the case of 3D surfaces, while HS> generate
satisfying clustering at coarse subdivision levels, it is obvi-
ous that at finer levels, when the cells come closer to the
surface, volume-based decomposition leads to imbalanced
clustering in areas where the surface is not aligned with the
main directions of the data structure (see Figure 1(a)).

In this article, we propose an alternative HS> which com-
bines a 3D scheme for the first levels of the tree, and a 2D
scheme as soon as the surface can be projected onto a plane
without folding. We call such a tree a Volume-Surface Tree
(or VS-Tree, for short). We show that VS-Trees achieve ef-
ficient and elegant surface-based partitioning that can be ap-
plied to a variety of applications, such as surface simplifica-
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tion and surface reconstruction. In the first part of this paper,
we review previous work (Section 2) before introducing VS-
Trees (Section 3) and show how this structure improves prior
surface simplification algorithms based on hierarchical ver-
tex clustering (Section 4). In the second part of the paper
(Section 5), we describe a new efficient surface reconstruc-
tion algorithm based on the specific volume-surface behavior
of VS-Trees.

2. Related Work
Hierarchical Space Subdivision Schemes: All HS? are
based on a recursive subdivision of a root cell, as long as

(b) VS-Tree clustering

(a) Octree clustering

Figure 1: Comparison between (a) octree clustering and (b)
VS-Tree clustering. The local 2D scheme used by VS-Trees
produces much better alignment of clusters and reduces the
total number of clusters within a given error bound.
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some user-specified criterion is not satisfied in every subcell.
As outlined above, octrees, kD-Trees and BSP-Trees are by
far the most popular HS>. In the case of BSP Trees [FKN80],
the space subdivision is diadic, using a simple split plane,
often chosen axis-aligned for the sack of efficiency. The kD-
Tree data structure [Ben75] performs orthogonal space sep-
aration and stores additional data elements at internal nodes.
Finally, quadtrees and octrees [JT80, Sam89] express the di-
mension of the subdivided space directly in their structure:
a 1-to-4 scheme for quadtrees in 2D, and a 1-to-8 scheme
for octrees in 3D. The very simple construction of the oc-
tree, as well as its fast convergence toward the shape of the
embedded 3D surface, makes it very popular when geometry
processing methods, such as surface simplification and sur-
face reconstruction, need to be scaled toward large data sets.

Simplification by Clustering: The goal of simplification
methods is to reduce the resolution of an object, while
maintaining as much detail as possible from the original
shape [HDD*93, GH97, CSADO04]. Clustering methods are
a particular subset of simplification techniques, which cast
the problem as a partitioning problem, where each partition
only keeps one single sample that minimizes the error, in a
given metric [GH97,CSADO04], with the original surface. Hi-
erarchical approaches, such as BSP-based methods [SGO1]
or octree-based methods [SWO03], provide adaptivity in the
surface partitioning. This adaptivity allows for more accu-
rate simplification of non-uniformly sampled surfaces than
regular grid partitioning methods [RB93, Lin00], while re-
maining almost as efficient. Such techniques have originally
been developed for meshes, but they can also be directly ap-
plied on point clouds, when the sampling density is high
enough [PGKO2]. In practice, it appears that the quality of
the mesh simplified by hierarchical clustering is strongly re-
lated to the subdivision scheme, and we will show how the
local 2D scheme used by VS-Trees offers a much more reg-
ular sample decimation than the 3D scheme induced by oc-
trees (see Section 4).

Surface Reconstruction: The surface reconstruction prob-
lem arises in many applications such as processing of real-
world range scanned objects, surface deformation, con-
version between different surface representations, or even
remeshing. To be as generic as possible, surface recon-
struction techniques usually start from a sampling of the
original surface in the form of a point cloud. Note that in
addition to its position, each sample may also carry ad-
ditional information, such as normal vector, that may (or
may not) be exploited during the reconstruction. Since the
seminal work of Hoppe et al. [HDD*92, HDD*94], vari-
ous surface reconstruction approaches have been proposed
in the literature, either based on the Delaunay triangula-
tion [BC00, GKS00, ACKO1, DGHO1], deformable mod-
els [DQO1,DYQS04], implicit surfaces [CBC*01, TO02] or
displaced subdivision surfaces [STKK99,JK02].

Recent advances in 3D acquisition techniques have dra-

matically improved the size and the density of available
point clouds. In order to manage the intrinsic computa-
tional complexity of surface reconstruction from such huge
point clouds, hierarchical data structures have been intro-
duced. For instance, an implicit surface reconstruction can
be obtained by splitting the input point cloud with an oc-
tree, computing a separate implicit surface for each leaf of
the octree, and finally blending together the set of local
implicit surfaces by using the Partition Of Unity method.
This process has been successfully used for fast local poly-
nomial fitting in the Multi-Level Partition of Unity Implic-
its (MPU) [OBA*03] as well as for Radial Basis Func-
tions [TRS04]. Unfortunately, to get an efficient visualiza-
tion by graphics hardware, the reconstructed implicit sur-
face has to be converted into a mesh, which involves an
expensive tessellation step [Blo94]. Moreover, the quality
of the resulting mesh is generally poor and has to be im-
proved using, for instance, an additional remeshing step, ei-
ther based on parameterization [LSS*98], or fitting of sub-
division surfaces [HDD*93, EDD*95,7SS97, MK04]. Con-
sequently, even if the computation of the implicit surface is
efficient thanks to the space subdivision, the whole recon-
struction process including the generation of an high quality
semi-regular mesh becomes rather expensive.

Instead of using a completely automated reconstruction pro-
cess that is likely to fail in some pathological zones of
an object (e.g., undersampled areas, high curvature areas),
we believe that the quality of surface reconstruction can
be greatly improved by using an interactive user-controlled
process. Obviously, aiming for user interaction implies that
the whole process has to be extremely efficient. Thus, we
propose here a performance-oriented surface reconstruction
technique that takes fully benefit of the volume-surface or-
ganization of the VS-Tree, to generate a semi-regular mesh
of arbitrary genus over an unorganized point-cloud, dealing
both with noise and non-uniform sampling (see Section 5).

3. VS-Trees
3.1. Definition

A VS-Tree is a surface-based HS? . The basic idea is to com-
bine an octree and a set of quadtrees to describe a discrete 3D
surface. During the recursive split involved in the octree con-
struction, we switch to a quadtree as soon as the area of the
surface associated with the current node is consistent with
a scalar-valued function over a given ground plane (in other
words, a height field). Figure 2 presents the three different
kinds of VS-Tree nodes:

e Volume Nodes (V-Nodes): comparable to octree nodes.
Each V-Node has 0 or 8 children, which can be V-Nodes
or T-Nodes.

o Transition Nodes (T-Nodes): leaves of the 3D hierarchy
which also are roots of the 2D hierarchies. Each T-Node
has O or 4 children that are S-Nodes.
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Figure 2: VS-Tree structure.
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o Surface Nodes (S-Nodes): comparable to quadtree nodes.
Each S-Node has 0 or 4 children that are S-Nodes.

Note that each T-Node carries a local frame that is used to
align its corresponding sub-quadtree. The union of all T-
Nodes defines the volumetric layer under which it becomes
possible to implement 2D algorithms (see Figure 2); we call
it the Transition-layer or T-layer.

VS-Trees are proposed in order to increase efficiency of ge-
ometric processing usually combined with simple and ef-
ficient hierarchical structures such as octrees. In order to
maintain a behavior as similar as possible to octrees, the
ideal structure should have the following properties:

e Purely recursive construction: popular hierarchical struc-
tures have the strong advantage to be instanced through a
simple recursive call, which is easy to implement;

e Efficient construction: rigid organization of data, such as
the 1-to-8 split of octrees, allows efficient traversal and
refinement of an hierarchical structure;

e T-layer at low depth: switching to quadtrees as soon as
possible reduces the memory overhead thanks to the 2 di-
mensional structure, and speeds-up traversals and tests.
Inclusion tests for arbitrary points are performed in 2D
using the quadtrees placed under the T-layer;

e Graceful degradation: in the worst case of very small or
under-sampled topological features, such as iso-surface
extraction from physical simulation, the structure should
behave no worse than an octree.

3.2. Construction

There are a large number of possible 3D surface decomposi-
tions that lead to a collection of 2.5D pieces. We propose to
use the following simple recursive construction method that
is easy to integrate in existing application softwares.

Input: Let S be the set of samples defining the input surface.
Each sample s; of S is defined by a position p; and a normal
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vector n;. For dense meshes, S can be chosen, for instance,
as the original vertices of the mesh, or as the barycenters
of the polygons. S can also be a point-based surface, with
normals approximated with a Principal Component Analysis
(PCA) [HDD*92, GKS00] if not available.

Clustering: The construction of a VS-Tree begins with the
computation of a bounding box B of § recursively subdi-
vided with a 1-to-8 octree scheme. At each level, the current
set of samples S; associated with the bounding box B; at that
level is classified against each child’s bounding box. Let K
be a height field indicator, signaling whether S; is consistent
with a height field (i.e., it is 2.5D rather than 3D). This flag
stops the recursive 1-to-8 subdivision process. When «(S;)
is true, the current node is set as a T-Node, and a local co-
ordinate frame is computed. This local frame will strongly
influence the final quality of the clustering, and must be
carefully chosen. While it is generally impossible for a hi-
erarchical structure to precisely recover all the anisotropic
features present in the discrete surface, a well-aligned sub-
hierarchy can often be computed by analyzing the under-
lying surface and considering its main directions (see Fig-
ure 1 and Figure 4). Thus, for constructing this local frame,
we use a PCA on §;, but rather than considering positions
of samples [HDD*92, GKS00], we use their associated nor-
mals, a more relevant information when clustering surfaces
[CSADO4].

Since we are looking for directions, we can perform the PCA
in the normal space of S;. The set of resulting eigenvectors is
a good approximation of the tangent frame of the surface. We
choose {n;,u;,v;} as a local frame, where n; is the average

(@) (b)

(c) (@

Figure 3: Different levels of a VS-Tree. (a) The input dis-
crete surface. (b) The upper levels of the tree are three-
dimensional (in green). (c) The transition between 3D and
2D structure (in blue) is possible as soon as the surface can
be locally expressed as a height field. (d) The lower levels of
the VS-Tree are two-dimensional.
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Models Samples | Octree | VS-Tree | Gain
Feline 49864 0.18s. 0.19s. 18%
Igea 134346 0.33s. 0.34s. 49%
Vase lion 200002 0.83s. 0.80s. 18%
Raptor 1000080 3.50s. 3.11s. 39%
XYZ dragon | 3609601 11.82s. 9.88s. 52%
XYZ Statue 5000000 | 17.82s. 14.90s. 32%

Table 1: Computation time to generate the HS> with L* er-
ror bounded at 10~*. The gain is relative to the final number
of partitions.

normal of S;, while u; and v; are the normalized projections
of the two eigenvectors that minimize the dot product with
n; onto the plane I1; defined by n; and ¢; (the centroid of S;).

The set of samples S; associated with the T-Node 7; is pro-
jected on II;. Finally, a bounding quad is computed for S;
and is recursively subdivided with a 1-to-4 quadtree scheme.
The recursion is stopped when the error, computed over S;,
is below a threshold. Figure 3 shows the different steps in-
volved in this construction. Note that the T-layer becomes
independent of the discrete surface resolution when the sam-
pling density is sufficient: typically, over-tessellating a dense
mesh will not change the depth of the T-layer.

Height field indicator: Evaluating if a piece of surface will
exhibit folding during a lower dimensional projection can
be done by numerically integrating the curvature over this
area. Nevertheless, such a test is computationally expensive
even in the case of regular meshes, and more complicated
for non-manifold meshes or topology-free representations
such as point clouds. In order to make our approach more
general and efficient, various heuristics can be used to de-
fine the height field indicator x for such a predicate. Pauly
et al. [PGO1] propose a normal-cone test for allowing the
projection of a set of surfels using the miniball algorithm.
Boubekeur et al. [BRS05] extend this idea by introducing an
additional displacement threshold to detect scan misalign-
ment in dense acquired point sets. Although a formal proof is
not available, since it would depend on some form of density
and/or topology criterion, this indicator x gives convincing
results in practice. So we define x to be true when:

nij - ng > §,with &, € [0,1] and

|(pij—ci)ni] .
mﬂXk,-(HPik,-*CiH) < SdWIIh 6d S [07 1]

Vj € [kai[ {
where k; is the number of samples of the current cell i, n;
the average normal of the surfels in the cell, p;; and n;; are
the position and the normal of the j sample of the cell i. §,
(angle deviation) and J; (displacement deviation) are user-
provided thresholds. In our implement, 8, =0 and 6; = 1/6
has provided satisfying results in all our tests. Note that by
increasing &, and decreasing 8, it becomes harder for k to
be true, and thus the T-layer is conservatively dropped to a
lower level of the hierarchy.

Error metrics: As usual with HS3, an error metric € has to
be defined to control the recursive subdivision. A good er-

ror function should be monotonic and decreasing with the
size of S;. Geometric error metrics such as the L2 metric
used in the Quadratic Error Function [GH97] or the normal-
based L2 metric [CSADO04] are used to drive our VS-Tree
construction. More complex combined metrics, such as the
Sobolev one, may also be used. In the case of large objects,
simple approximated metrics, such as the local density, may
be chosen for efficiency.

4. Clustering and Application to Simplification

Balanced clustering: Figure 1 illustrates the difference of
vertex clustering obtained with an octree and a VS-Tree. The
volume-based behavior of octree decomposition frequently
leads to very imbalanced clustering, mixing small clusters
(when the surface is located near the corner of the octree
cell) and large ones (when the surface passes near the center
of the octree cell). Moreover, the cuts generated by the octree
cell boundaries can be clearly identified within the clustering
(see Figure 1(a)). VS-Tree decomposition strongly reduces
both artifacts, as it provides a much better alignment of the
cluster boundaries with the embedded surface (see Figure
1(b)). A very low variance can be observed in the size of
the clusters, basically because the clustering only depends
on the planarity, but not on the orientation, of the surface
locally associated with each T-Node. For instance, the vari-
ance in the number of samples per cluster has almost been
divided by 2 between Figure 1(a) and Figure 1(b). Addition-
ally, an almost regular quad-like clustering can be observed.
The few remaining non-quad clusters primarily come from
the volume-based decomposition created at the top levels of
the VS-Tree.

Computation efficiency: In addition to providing more bal-
anced clustering, the VS-Tree is also more efficient than the
octree when computing the HS3. Moreover the advantage
of the VS-Tree over the octree increases with the size of the
input data, as shown on Table 1. For large objects, a 16% im-
provement can be observed in the computation time, as well
as a reduction of the number of clusters between 18% and
52% for the same bounded error. This may appear quite sur-
prising as octree decomposition is generally considered ex-
tremely efficient. In fact, the speedup observed by VS-Tree
decomposition comes from two different properties. First,
when the size of the input data increases (e.g., very dense

Figure 4: Hierarchical mesh simplification with L* error
bounded at 2.1073. Left: Original object (7M triangles).
Middle: Octree simplification (1.75 sec. - 62856 triangles).
Right: VS-Tree simplification (1.20 sec. - 52024 triangles).
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Figure 5: Noise filtering. (a) Input point cloud (137063 sam-
ples). (b) Reconstruction with VS-Tree L? error bounded at
10~% (1.758 sec, 125K triangles). (c) Reconstruction with
VS-Tree L? error bounded at 103 (0.987 sec, 32K trian-
gles).

meshes), most of the data will be represented below the T-
layer, and thus 1-to-4 splits will be much more frequent than
1-to-8 splits. To reach a given error threshold, the octree
is thus usually much deeper, with significantly more empty
cells compared to the corresponding VS-Tree. Second, be-
low the T-layer, all the computations involved in the VS-
Tree are done in 2D. When there is a large number of points
in the sub-hierarchy of a given T-Node, these 2D computa-
tions more than compensate for the overhead involved in the
projection to the local 2D frame.

Mesh simplification: We have implemented a mesh simpli-
fication algorithm similar to the octree clustering introduced
by Schaefer and Warren [SWO03], simply by replacing the oc-
tree with our VS-Tree. Here again, the more balanced cluster
sizes provided by the VS-Tree reduce the mismatch of fea-
tures for a given error threshold, without imposing an overly
conservative mesh density. Moreover, the local frame com-
puted independently for each T-Node roughly captures the
anisotropy of the underlying mesh, while the octree com-
pletely ignores it. For instance, see the cheek on Figure 4.
As expected, the VS-Tree introduces fewer clustering arti-
facts in the mesh topology, and better captures the original
geometry (see near the eye, for instance).

5. Application to Fast Surface Reconstruction
5.1. Problem Analysis

Obviously, meshes have become the de-facto standard for
3D geometry processing and rendering. Development of 3D
acquisition techniques, which have become widely available
in recent years, has dramatically increased the need for ro-
bust and efficient point-to-mesh surface reconstruction tech-
niques. Several mandatory properties for such a reconstruc-
tion processes have been introduced by recent work: (1)
dealing with arbitrary genus; (2) offering intuitive de-noising
control; (3) avoiding final remeshing by directly providing
a semi-regular mesh; (4) providing error controlled output;
and, of course, (5) being as efficient as possible. In this sec-
tion, we propose to use the advantages of the VS-Tree de-
composition in order to develop a point-to-mesh reconstruc-
tion technique that fulfills these five properties.

Intuitively, most of the global topological features of the sur-
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face can be recovered at the T-Layer of the VS-Tree. Thus,
the T-Layer helps us to split the problem into two main steps:
a coarse mesh My is generated during the first step, and re-
fined during the second step, to account for all the details
included in the input point cloud. This second step uses a
displacement process driven by the quadtree corresponding
to each T-Node. The following algorithm summarizes our
approach:

Mesh POINT_TO_MESH (PointSet S, float Threshold)
VSTree T := buildVSTree (S);
Mesh M := extractMeshAtTLayer (T);
while (error (M, S) > Threshold) do
M := refinePN (M);
M := displace (M, T);
return M

5.2. VS-Tree Based Surface Reconstruction

VS-Tree construction: Globally, we follow the construc-
tion process presented in Section 3. Similar to Pauly et
al. [PGKO02], the high frequency noise typically present in
scanned data [NRDROS5], is directly addressed at the point
level by simply specifying an L? error threshold driving
the VS-Tree creation. While more formal noise removal so-
lutions exist [PGO1, SFSOS5], this simple technique nicely
smoothes out the noise, as shown on Figure 5, and is intu-
itive enough to be easily tuned by the user.

Base mesh reconstruction: The remainder of the algorithm
will inherit the global topology of My, and in particular its
genus. Since the geometry of S-Nodes does not change the
global topology of the shape, My is created using only the
T-Layer (see Figure 6(a)). However, the set of T-Nodes com-
posing the T-Layer can be sparse (e.g., large areas with low
curvature), which does not allow the use of Delaunay-based
reconstructions for this base-mesh. Moreover, ideally, we
would like a watertight 2-manifold, homomorphic to the in-
put point-based surface. This naturally leads us to choose a
simple implicit surface reconstruction, by just considering
the half space defined by the oriented frame of each T-Node
(i.e., a linear polynomial acting as a distance function) and
contouring it in similar fashion to Hoppe et al. [HDD*92].

(a) () (©

Figure 6: Coarse mesh generation. (a) Input point cloud (in
blue) clustered in a VS-Tree (T-Layer in orange). (b) March-
ing cube dual contouring at the resolution of the deepest
T-Node. (d) Coarse mesh My generated by simplifying the
mesh at the T-Layer level.
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Figure 7: Top: vertex insertion comparison. Bottom: VS-
Tree refinement and displacement in a T-Node.

However rather than directly contouring this simple local-
ized distance function with a marching cube algorithm, we
rather construct a smooth implicit surface using a Partition
of Unity scheme. The octree structure of the upper levels
of the VS-Tree allows consistent generation of overlapping
zones that can be used to blend the local distance func-
tions, in a similar fashion as the quadrics used by Ohtake
et al. [OBA*03]. The mesh is then generated by applying a
Bloomenthal polygonization [Blo94]. In order to guarantee
that no topological feature of the VS-Tree will be missed,
we use a dual contouring grid and set its resolution to that
of the deepest T-Node (see Figure 6(b)). Finally, this mesh
is simplified by clustering it at the T-Layer level. This leads
to the final coarse mesh M, which contains only one vertex
for each T-Node (see Figure 6(c)).

Mesh refinement: The goal of this second stage is to iter-
atively refine the mesh, until the geometric features of the
input point cloud are recovered according to a given error
threshold. For triangular meshes, the approximating subdi-
vision scheme proposed by Loop [Loo87] is known to pro-
vide high quality mesh refinement. But in our quest for effi-
ciency, we need to find a trade-off between speed and qual-
ity. We have found that local subdivision based on Curved

PN-Triangles [VPBMO1] are well suited to our constructive

approach. This leads us to the following efficient two-step

refinement technique:

1. each triangle of the mesh M; is refined into four sub-
triangles and the newly inserted mid-edge vertices are
translated according to the cubic Bezier triangular patch
computed by the PN-Triangle scheme;

2. these three mid-edge vertices are translated to their final
position, according to the geometry stored in the local
quadtree (see Figure 7).

This displacement procedure is the step that benefits most
from the specific properties of our VS-Tree decomposition.
Instead of having to define a smooth scalar field such as in
implicit surface reconstruction methods, or a robust energy
functional such as in dynamic model fitting [DYQS04], we

simply use the quadtree defined at each T-Node to displace
the inserted vertices accordingly. Let v denote an inserted
vertex that has to be displaced. First, we find the highest S-
Node s that only contains v. Then, we select the leaf [ ex-
hibiting the highest local variation in the quadtree built on s.
Finally, we translate v toward the average sample carried by
. We mark [ as locked, and will no more consider it for fu-
ture displacement steps: as PN-Triangles provide an interpo-
lating scheme, this vertex is now interpolated until the end of
the refinement loop. This simple construction approximates
the optimal displacement of v and avoids the mismatch of
high-frequency features that would occur if a simple orthog-
onal displacement was performed (see Figure 7).

At each refinement step, the mesh is maintained hole-free
since we only translate its vertices. In order to avoid the sur-
face aliasing effect that could occur when many vertices are
projected toward the same leaf, we do not displace v when
no more leaf remains unlocked in the quadtree built on s.
After each displacement pass, newly inserted vertices that
have not been displaced are smoothed out according to the
final position of neighbor vertices, using a simple tangential
smoothing. Since the PN-refinement performs a 1-to-4 sub-
division, each vertex v has at least two neighbors that have
already been processed at a previous refinement step, and
thus have reached their final position.

Adaptivity to curvature variation: In the case of point
clouds sampled from a surface that exhibits large varia-
tions of curvature, one may think that an adaptive refinement
scheme [ZSS97] would allow a better capture of the global
shape. However, both the efficiency of vertex insertion, as
well as the final semi-regular topology of the mesh, would
be lost by such an adaptive refinement. Efficient adaptivity
to curvature variation can be easily included in our scheme
by letting the user tune the §, and J, thresholds used in the
height field indicator k. Indeed, increasing §, and decreas-
ing 8§, induces a deeper T-layer in high-curvature areas and
thus, a larger number of T-Nodes. Since, My is generated
by T-Node clustering, M is itself denser, leading to a final
mesh with higher resolution in high-curvature areas (see Fig-
ure 10(a)). Although this solution may break down for some
pathological cases, it remains far less expensive than, for in-
stance, the optimization of the L™ error [MKO04]. Figure 5,
8,9 and 11 shows some examples of surface reconstruction
obtained with our algorithm.

) Vs e /V
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Figure 8: Reconstruction of the ball-joint model (137062
points, 1.758 sec). (a) Input point set (b) Coarse mesh gen-
erated at the T-layer of the VS-Tree. (c) Final refined mesh.
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5.3. Performance

Table 2 provides some reconstruction timings for various
models. The timing presented includes the VS-tree decom-
position, the coarse mesh generation and the mesh refine-
ment loop. Globally, this new algorithm is one order of mag-
nitude faster than state-of-the-art fast surface reconstruction
methods [OBA*03, GKS00], while directly providing a final
mesh with semi-regular connectivity without any additional
remeshing steps. For large point clouds, the VS-Tree con-
struction becomes the bottleneck, since this is a non-linear
operation. Figure 10(b) compares the final mesh quality of
[OBA™*03] to ours. In our implementation, the intensive use
of pointers limits the size of in-core reconstruction. We are
currently exploring out-of-core methods for performing the
reconstruction with a constant and small amount of memory.

The mesh quality obtained by our technique is much higher
as the one obtained by applying some octree-based tessel-
lation on a reconstructed implicit surface (see Figure 10(b))
and approaches the quality obtained by mesh beautification
techniques. However, they exhibit a few more extraordinary
vertices, resulting from the initial clustering at the T-Layer
level of the My (see Figure 9). Nonetheless, it should be
noted that the refinement process does not generate addi-
tional extraordinary vertices. So, if limiting the number of
such vertices really matters for some specific application,
one easy solution would be to apply mesh beautification on
the coarse mesh M, which of course is dramatically faster
than applying remeshing on the final dense mesh.

As said previously, even if our reconstruction technique gen-
erates high-quality meshes in almost every tested examples,
we have biased each speed vs. quality tradeoff of our al-
gorithm towards computation efficiency. Consequently, for
difficult examples that exhibit poorly sampled areas with
high curvature, slower reconstruction techniques based on
implicit surfaces [OBA*03, TRS04], usually offer better re-
covering of thin features.

(©)

Figure 9: Reconstruction of the Igea model. (a) Input point
set. (b) Reconstructed surface (c) Close-up on the semi-
regular mesh produced by our algorithm. Note, in the red cir-
cle, the limit of our technique which propagates high-degree
vertices generated on M.
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Models Samples | Our method. MPU.
Bunny 35949 0.852s. 4.272s.
Dino 56195 1.026s. 5.010s.
Santa 75783 1.067s. 7.135s.
Igea 134346 1.813s. 6.890s.
Male 303382 2.798s. 55.008s.
Dragon 437647 5.400s. 60.176s.
Happy Buddha 543652 6.384s. 80.866s.
Youthful 1728305 20.621s. | 200.527s.
XYZ Dragon 3609601 41.844s. | 480.693s.
XYZ Statue 5000000 53.298s. | 475.551s.

Table 2: Timing for VS-Tree surface reconstruction (with er-
ror set to 5.10~%) and MPU (with error set accordingly).

6. Conclusion

Hierarchical space subdivision schemes are the key ingre-
dient to make efficient geometric processing methods in a
large number of situations. In this paper, we have proposed
the VS-Tree, a surface-based partitioning structure combin-
ing an octree with local quadtrees. This simple structure im-
proves the quality of simplified meshes generated by vertex-
clustering, while maintaining similar computation time com-
pared to conventional octrees. We have also proposed an ef-
ficient point-to-mesh surface reconstruction algorithm based
on the VS-Tree data structure. This algorithm recovers the
global topology of the surface using the upper levels of the
VS-Tree, while local geometric features are retrieved by a
simple and efficient local displacement scheme induced by
the lower levels of the VS-Tree.

Future research directions include quad-remeshing of very
large meshes — a situation where parameterization methods
are challenging. We also plan to further investigate the place-
ment of expensive geometric processing at the T-layer level
by, for instance, remeshing it before the refinement process
in order to better handle sharp features and to upper bound
the degree of extraordinary vertices. Finally, we believe that
the VS-Tree has other applications in computer graphics.
For example, it might be possible to use it in ray-tracing.

(b)
Figure 10: (a) Adaptivity by T-Layer contraint. (b) Close-
up of the mesh obtained when reconstructing the ball-joint
model with the Multiple Partition of Unity (top) method with
our VS-Tree based method (bottom).
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