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Abstract Fig. 1. It is obvious that both, classical Schlieren
measurement setups, and the BOS method are only

capable of qualitative measurements, because vol-

We present a method that allows for reconstructing” " . - L
e present a method that allows for reconstructi %metrlc effects are visible only as projections to a

non-stationary, time-varying gas flows around mov- .
. . . plane. Recently, a method for tomographic recon-
ing objects. Our work extends the background ori- ; .
ented Schlieren tomography (3D-BOS) acquisitionStrUCtlon of gas flows using the BOS method was

introduced [4]. With this so-calleBD-BOSmethod

technlquz_a to C"’Fpt“re gas flow_s als_o in the Presenceis possible to perform a quantitative measurement
of occluding objects. An algorithm is presented that f the underlying refractive index field of the gas

exploits the unique properties of BOS backgrouncﬁow under observation
patterns to robustly segment occluding objects. Nu- )
merical issues in the refractive index field recon-While this method is capable of reconstructing gas
struction are addressed and successfully solved tjows accurately, it is currently not possible to mea-
the new method. sure interactions between gas flows and objects in
the flow. Measuring such interactions yields inter-
esting insight into the behavior of gas flows and the
1 Introduction evolution of e.g. turbulent flow structures around
object boundaries as occurring for instance in tur-
) . ) bine blades. Our contribution is the extension of
In past decades gas flows were visualized with thg,e 3p-B0S method to robustly handle occlusions
so-calledSchlierertechnique. Itis based on a colli- i grder to quantitatively measure the surrounding
mated light source shining light through a gas flow,gas flow. After reviewing related work and giv-

and a spatial filter to attenuate non-parallel light be-Ing a brief introduction into the 3D-BOS technique
fore projection onto an image plane. Due to refrac

o o i " 9in Sect. 2, in Sect. 3, the necessary changes for
tive index variations in the gas flow, deflected light o5 step of the existing method [4] are described.

rays result in darker streaks in the image plane. A, gect. 4, the alterations are integrated into the

good overview of classical S,chlleren measurementethod and its performance in reconstructing inter-
setups can be found in Settle’s book [17]. actions with occluders is examined.

Schlieren imaging is quite difficult to set up and
calibrate. In recent years, another method base

on image processing techniques, the so-calleg Related Work and Background
Background-Oriented SchlierdBOS) method has

been developed to simplify these measurementé/hile previous methods have only been able to
[7, 13, 14]. For BOS acquisition, it is sufficient to reconstruct rotationally symmetric [2] or station-
place a textured background pattern behind the geary gas flows [16], Atcheson et al. [4] describe a
flow and record with a camera. A still image of method, that is capable of tomographically recon-
the scene without the refractive index field is cap-structing time-varying and non-stationary gas flows.
tured and used as a reference image. Recordinbheir method is based on the BOS technique, where
the gas flow, every newly captured frame is com-a high-frequency background pattern is placed be-
pared with the reference image by computing théhind the gas flow under observation and recorded
optical flow for every pixel [9, 3]. The physical with a camera. A wavelet noise pattern [6] has been
principle causing the apparent flow is depicted inshown to increase BOS performance compared to
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compute the refractive index field from the 3D vec-

Ay tor field. This refractive index field is the best-fitting
P‘ solution for the measured 2D deflection vectors in
b Bi the input images of the camera and is a tomographic

H U U\A_Hi ®  reconstruction of the captured gas flow.

Figure 1: Virtual displacement caused by ray de-
flection. Under normal circumstances, poinis
and By, on the background are imaged 4t and B;
respectively. However, when refraction takes plac
By appears atd; and we see a virtual displacement
of 6.

S1 S2

previously used patterns [3]. The image of the cur
rent frame is then compared with a previously cap
tured reference image of the background pattern
without the gas flow. Between these two images the
per-pixeloptical flowis computed [9, 11, 5]. The
measured optical flow corresponds to the 2D pro-
jection of the deflections caused by the gas flow. I
has been experimentally shown, that Horn-Schunc
[9] optical flow is the best method to measure the
2D deflections [3].

Based on these 2D deflection vectors the method i
[4] aims to reconstruct the 3D refractive index field

that causes the measured 2D deflections. Ther‘?—igure 2: The main stages of the reconstruction

fore, the volume under observation has to be CaPmethod of Atcheson et al. [4]. At first the 2D de-
tured from multiple views. In Fig. 2 the process- faction vectors

. L . . ) oflow are computed for each cam-
ing pipeline of this method is shown. At first, the .o using optical flow 1, color-coded flow vec-

2D vectorsl,sio,, are computed. Afterwards, the 15 gverlayed on captured image). Then, the flow
method generates silhouettés,.; around the Sig-  yectors are used to determine consistent silhouettes
nificant vectors in the image to mark the prOJectedMgas for computing a visual hullyq (S2). Within
area of the gas plume in stage 2. Based on these stig hy|| an equation system is solved for 3D gra-
houettes a visual hull [10]y.. of the gas volume is  gient vectors $3), which are finally integrated to

computed by backprojecting the silhouetfesas  retrieve the refractive index volumed).
into a voxelized grid.

In stage 3, an equation system is set up which is
solved for each voxel inside the visual hull by stan-
dard numerical algebra techniques. The equation

system is solved for the best-fitting set of 3D refrac- '€ acquisition method [4], however, is only capa-

tive index gradients which causes the measured ZBk:e of recons.tructl?ghgabs fliws frocrin SetUpS’hWherf]
deflection vectors in every captured image insigd"e camera view of the background pattern throug

the silhouette. After solving the equation system,the gas volume is not occluded by objects. In the

each voxel inside the visual hull of the gas volumePrésence of occluders, on the other hand, the opti-

is assigned a 3D vector, which is the gradient of thé’aI ﬂQW computgtion in s_tage 1 res_,ults in erroneous
unknown refractive index function at this voxel. per pixel deflection data in the projected area of the
occluding object, so that the following stages can-

In stage 4, a Poisson-Integration [1] is performed tanot be performed correctly.



3 Obstruction 3D-BOS

As the method presented in [4] is not capable o
handling objects inside the gas flow which partially
occlude the background pattern, certain modifica-
tions to the method have to be implemented to enfigure 3: High-Pass-Filtering an image containing

able measurement setups with occluding objects igccluders. The high-frequency areas of the back-
the gas flow: ground pattern exhibit many edges while the oc-
cluder is out of focus and appears as one blurred
: . . rea (eft). High-pass filtering the image results in

the defiection vectors outside the projecte igh values in background areas and low values in

area of the occ]uder are used for the optica he occluded areas (marshmallomijddle). The fi-
flow reconstruction. This is necessary, becausgal maskM,.. is shown in theight image

the flow between occluded pixels and back-
ground pixels from the reference image would
resultinincorrectinformation. We discussthis 1. The background pattern always consists of
in more detail in Sect. 3.1. high-frequency noise, e.g. wavelet noise,

e In stage 1, the method has to ensure that onl

e Instage 2, having masked out the occluder, the 2. The occluding object is out of focus and thus
silhouettes of the gas flow contain only pixels low-pass filtered,
outside the projected area of the occluding ob-
ject. However, the refractive index volume has
to be fitted tightly around the volume of the
occluder. We discuss this in Sect. 3.2.

3. The background pattern has a well-defined in-
tensity distribution, e.g. a normal distribution,
and

4. The occluder moves consistently over time in

e In stage 3, the 3D gradients can .only be com- the input images. Sudden topological changes
puted in the voxels which are projected to pix- of the mask are unlikely.

els containing 2D deflection information in the

input images. Hence, gradient information is The first and second property can be exploited by
missing in the voxels inside the visual hull of @PPlying a high-pass filter to the current image,
the occluding volume. Since the final integra-Which results in high values in the area of the back-

tion is a global operation over the voxelized 9round pattern, Fig. 3. In the occluder area , low
grid, the missing information in the voxel vol- values dominate because the occluder is out of fo-
ume of the occluder corrupts the refractive in-Cus. We blur the resulting values and apply a thresh-

dex estimates of the surrounding voxels. Weold to obtain an occluder masRZ,... We employ
discuss this in Sect. 3.3. a search for connected components [15] to clean up

the resulting mask.

The third property suggests that the background pat-

3.1 Masking Occluders tern has a consistent intensity histogram, Fig. 4.
Comparing the histograms of small patches of the

i ) ) ) image with this intensity histogram and measuring

At the first stage, the occluding objects in they,o qistance with a suitable distance function (e.g.

recorded camera image have to be segmented. Trﬂﬁahalanobis-distance [12]) results in a likelihood

is necessitated by the fact that in the image regionﬁ,nage Tiikery- The higher a pixel value iffiro:
1kely- tkelys

occluded by an object no sensible optical flow be'the more likely a patch is belonging to the back-

tween the camera image and the refer_ence 'maggfround pattern. Thresholding the image results in
can be computed. Furthermore, the pixel region

. . F\ similar occluder maskM;CC to filter out the oc-
comprised by the occluder can corrupt the optical
; ) . cluder area .
flow values of neighboring pixels. In the case of
BOS imaging we can state several properties usefilhe fourth property can be utilized after having
for image segmentation: computed the occluder masks for a full image se-



(a) Munion (b) Mocc (C) Mgas

(d) Vunion (€) Voce

Figure 4. Low-frequency occluder areas exhibit
a different intensity distribution than the high- )
frequency background. While the histogram of the-igures: The Occluded/o... (b) is masked out and
background pattern is Gaussian-shapebtiom Mgas 1S computed from the remaining valid opti-
histogram), the histograms of the occludeniddle ~ ¢@l flow data €). To fit Vya (f) tightly around the

histogram) and the white walltpp histogram) have ~ 0ccluder, we comput€inion (d) from Munion (8)-
a significantly different shape. The index gradients are then computed in the voxels

in ‘/gas = Vunion\vocc (e)

guence. Randomly occurring outliers can be re-

moved by applying a temporal blur over a time-the visual hull computation from the input masks of
varying sequence of maskd_»%T" When each camera). Only these voxels project to plausi-
the temporally blurred masks are thresholded, onljple optical flow data in the inputimages. In order to
pixels remain, that are consistently marked as befit V. tightly around the occluder we compute the
longing to an occluder over a small period of time.union MaskM.nion, With

However, boundary pixels of a moving occluder

are likely to be filtered out with this approach. Munion = Mgas U Moce.

Thus, the resulting mask has to be dilated to al-

low for a reasonable speed of motion in the seiNextwe compute the union visual hul, ;0. from
quence. All three presented masking approachegy,,,,,.., with

Moee, Moy, M5 have advantages and

drawbacks, which are discussed in Sect. 4. Vunion = VH(Munion)

The union visual hullV,,;., consists of both
the gas visual hullV,,, and the occluder visual
hull V,... The 3D vector computation is then per-
formed inVyas = Viunion \Voce, Fig. 5.

3.2 Computing 3D Gradients

At this stage the occluder maska/,.. have been
computed. ApplyingM,.. to the input image and
computing the optical flow,s;.., results, after in- Note that alternatively performing a direct mask
tegration, in the non-occluded gas silhouefg,s  subtraction in image plane and a visual hull gen-
with eration of the remaining mask H (M,.,) would
Myas N Moce = 0. result in an incomplete visual hull, Fig. 6, red re-
gions. For the remaining voxel volunig,, three
n X m equation systems are set up witloeing the
number of measured 2D deflection vectors and
The index gradients can only be solved for inbeing the voxels o¥/,,s. The equation systems are
Vias = VH(Mgas), the visual hull of the gas solved for each component of the 3D gradients of
plume that surrounds the occlud&f (-) indicates  these voxels.

The computed 2D deflection vectors M, are
then used for determining the index gradient field.
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Figure7: When the 3D gradients are Poisson-integrated to obtain the final refractilexifield, the missing
gradients in the occluder volume influence the refractive index estimate ir#nbyvoxels. The refractive
index field of a test data set [8h) is compared to the resulting index field after applying a rod-shaped
occluder to the scend). Note that the estimated refractive indices of voxels near the occludéigirer

(c) than in the original data set.
Mgas - -
(a) (b)

= Mgas U Moce

I3 Mynion
Figure 8: In the volume of the occluder 3D gra-

] VH(Mgas) dients cannot not be computeg),(because no 2D

wnion deflection data is available. We diffuse the gradient

information from the boundary into the holdy.(

Vgas Voce

Figure 6: The visual hullV,. (red and gray
regions) is approximated best by computiig..
and Vinion Separately and subtracting,.. from
Vunion. Performing, instead, a mask subtraction in Voxels near the occluder differ significantly (c) from
each image plandi, I», Is and a visual hull gen- the input data set. Thus the influence of the bound-
eration afterwards results in an incomplete visual@ry has to be minimized for the voxels around the
hull, red regions. occluder. In order to solve this problem we perform
the Poisson-integration not irj,q, but in the union
visual hull V0. We fill the holes in the occluder
3.3 Handling holesin the gradient volume volume V,.. with sensible gradient data from the
boundary. This process is a 3D equivalent to image
inpainting. The gradient values b}, are diffused
After determining the integration volunié,,s and into the the voxels oV,c.. Ve acts as the mask
computing the 3D gradients for the voxels in it, wefor the diffusion process. The result is visualized in
finally have to take care of the Poisson-integratiorFig. 8. Before the diffusion step, a 2D slice of the
of the index gradients. Fig. 7 shows the problen3D vector field shows a hole in the area occupied
that occurs, when a synthetic test volume (a) withby the occluder (a). Afterwards, the data from the
a synthetic occluder positioned inside the volumeboundary are propagated into the hole (b). Note that
(b) is Poisson-integrated. After straight-forwardthe values of voxels i remain unchanged due
Poisson-integration the refractive index estimates ofo prior masking withl/;,..
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Figure 10: Masking out occluders. An input im-
age captured from a typical measurement setup con-
4 Experimentsand Results tains the high-frequency background, a gas flow and
an occluder [eft). The thresholded high-pass fil-
tered image shows a good separation of occluder
At first we tested the occluder Segmentation inand backgroundmidcue). The resumng conserva-
the first stage of the tomographic reconstructionjve mask overlaid onto the input image shows the
method. We recorded scenes similar to the meaopbustness of the segmentation methight).
surement setup in [4]: We placed a high-frequency
background pattern behind the gas volume under
observation and additionally moved small occlud-image. A typical output of the masking process is
ing objects into the gas plume. The occluding ob-shown in Fig. 10.

jects were recorded out of focus and thus appear

blurred and low-pass filtered in the image sequencé/Veé also tested the gradient diffusion process with
synthetic intensity images. We computed the gra-

We found that the histogram-based approach is calients of the images and removed information by
pable of masking out objects in the recorded seapplying different masks, Fig. 11 (far left). The

guences, which have a significantly different inten-masked out holes were filled with gradient data
sity distribution from the background. However, if from the boundary. We integrated the diffused gra-
filter patches are chosen too small, detection can belients again to retrieve an intensity image, Fig. 11
come unreliable. Fig. 9 depicts the histograms o{middle right), which we compared to the original

small patches and of a large area of the backgrounimage, Fig. 11 (middle left). In Fig. 12 the max-

The histograms of the small patches are shifted annum per pixel errors for each applied mask are
resemble narrow peaks rather than Gaussian shapédisted. We found that the amount of the absolute
This is due to variation in the average intensity beper pixel error is related to the position of the mask.
tween neighboring patches in the background patwhen the mask is positioned in a high-frequency
tern. area of the image, the absolute error is higher than

) ) . ) when it is positioned in a low frequency area.
The high-pass filter method is able to determine oc-

cluder silhouettes of objects which are out of fo-Finally we tested the Poisson integration with a vol-
cus or exhibit a homogeneous intensity. We foundime consisting both of voxels with and without a

that using this method the smallest detectable aregradient value. We used a synthetic fuel injection
size equals the average area between two detectaltlata set with known refractive indices [8] and virtu-

edges in the background pattern. A higher resoally placed a rod-shaped occluder diagonally inside
lution in the background pattern thus enables thé¢he volume. After generating the occluder masks
detection of smaller or thinner objects in the inputfor every camera, we subtracted the visual hull of

§—
Figure 9: The histograms of small patches of the
background patterntép right, bottom right) are
shifted and obtain a narrow peak shape and ar

not as similar to the average background histogral
(top left) as expected.




) Mask Maximal per | % Differ-
g\ - pixel error ence to error
‘ “ without mask
. no 0.2088 0%
(8) no mask 1 0.2091 0.14%
i 2 0.2118 1.43%

w Figure 12: The maximum per pixel error after the

‘ gradient diffusion. For every mask in Fig. 1left
row) the maximum absolute errom{ddle row) and

(b) mask 1 the percentage of difference to the maximum abso-

lute error in an integrated image without a mask

(right row) is listed.

isting 3D-BOS method [4] to allow for an index
(c) mask 2 field computation in the presence of occluders. In
the first stage we add a robust image segmentation
method to mask out the occluder silhouette. In the
second stage we define the integration volume to be
the union of the visual hulls of the gas flow and the
occluder. In the third step finally we diffuse the
computed 3D gradient data into the voxels inside
the visual hull of the occluder to provide for min-
imized artifact Poisson integration at the boundary
to these voxels.

Figure 11: Absolute per-pixel error for integrating
diffused images. A binary maska left column)
is applied to the gradients of an intensity image
(middle left column). The masked-out gradients
are filled out with diffusion. The resulting image is
obtained by Poisson-integratiom{ddle right col-
umn). The absolute per pixel error is depicted in
thefar right column.
With the presented method one can now for the first
time visualize interaction processes of heated gas

the occluder from the visual hull of the fuel injec- fiows with stationary and moving occluders in the
tion volume and computed the gradient values onlys o5 measurement setup.

in the remaining voxels.

After straight-forward integration, we found that

voxels in the neighborhood of the occluder volume6 ACknOWIedgements

are significantly over-estimated, Fig. 13 (top right).

When the occluder voxels are filled with sensibleThis work has been funded by the German Science
gradient data from the neighboring voxels by theFoundation, DFG MA2555/5-1.

diffusion process, the resulting estimates are muc
closer to the original values of the test data set
Fig.13 (bottom right).

on Ihrke was supported by a Feodor-Lynen Fellow-
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