
EUROGRAPHICS 2002 / N.N. Short Presentations

Real Time Animated Grass

Brook Bakay1 � 2, Paul Lalonde2, Wolfgang Heidrich1

1) The University of British Columbia
2) Electronic Arts Canada�

bbakay,heidrich � @cs.ubc.ca,lalonde@ea.com

Abstract
We present a simple method to render fields of grass, animated in the wind, in real time. The technique employs
vertex shaders to render displacement maps with Russian doll style transparent shells. Animation is achieved by
translating the surface according to a local wind vector while preserving the length of the blades of grass. This
technique achieves convincing results on current consumer graphics hardware and can be applied to other similar
surfaces such as hair and fur.
I.3.7Computer GraphicsThree-Dimensional Graphics and Realism

1. Introduction

The realistic representation of outdoor scenes is a continuing
problem in computer graphics. Real-time computer graphics
have often relied on being "indoors" - using large occluding
walls to facilitate detailed renderings. Outdoor applications
have traditionally used very sparse geometry to describe the
landscape, often greatly impacting its believability. In these
systems, a field of grass could be reduced to a single texture.

High performance consumer computer graphics hardware
has allowed for the display of complex detailed natural phe-
nomena, such as the fur on a bunny4, at interactive fram-
erates. However, this work has not yet been able to effec-
tively animate the hair or grass displayed. Our work con-
tinues in this tradition, while using displacement maps and
vertex shaders to leverage current consumer level computer
graphics hardware for the animation of complex natural phe-
nomena.

Our grass is composed of transparent shells, layered above
the landscape. The vertices of these shells are moved in real
time to create the animation. Control of the animation di-
rection, in response to a simulated wind field, is maintained
at the vertex level. At each time step, each vertex is moved
in accordance with the local wind direction a distance de-
termined by a global intensity function. The wind direction
is stored at the vertex level allowing for arbitrarily accurate
wind movement over a landscape, and arbitrarily complex
wind patterns. Vertices are divided into groups that use dif-
ferent intensity values facilitating advanced global wind ef-

Figure 1: A grassy knoll.

fects such as waves across the landscape, attenuation in wind
intensity or even whirlwinds.

2. Related Work

Volume rendering techniques have been applied to the prob-
lem of displaying finely detailed surfaces for many years.
Kajiya and Kay1 proposed using volumetric textures to ren-
der furry surfaces. Adding complex geometries such as grass
or fur to a scene can greatly improve its visual impact, but

c
�

The Eurographics Association 2002.



Bakay, Lalonde, Heidrich / Real Time Animated Grass

much realism is lost if these geometries do not move in an
appropriate way. Neyret6 produced excellent results by ani-
mating the texture volumes, instead of the geometries them-
selves. This work was aimed at improving the performance
of ray-tracing programs, and not directly applicable to inter-
active applications.

Now that hardware exists to render volumetric textures in
real time, even at a consumer level, work has been done with
respect to rendering complex phenomena such as grass or
fur in real time. Lengyel4 produced a very convincing furry
bunny using several levels of detail, some of which included
volumetric textures. However, this technique was very mem-
ory intensive and not suitable to for animation. Subsequent
work5 alleviated the memory requirements somewhat, but
animation has not been addressed.

The displacement maps we use are patterned after Kautz2.
This technique is extremely memory efficient because it gen-
erates a texture volume from a single two-dimensional tex-
ture. Regrettably, Kautz’ technique to generate shells in ar-
bitrary slicing directions is not applicable here due to the
high frequency data contained in the grass textures. We are
limited to shells parallel to the model’s surface. Shells per-
pendicular to the surface sample the base texture in one pixel
wide strips and would miss a large proportion of the blades
of grass. Kautz does not address the animation of the vol-
ume.

Perbet and Cani7 do discuss animation of volumetric tex-
tures to produce realistic grass in the wind. Their slices are
perpendicular to the ground’s surface, and thus their system
is better suited to low views, close to the ground. They pre-
compute a number of postures for each type of grass and
send information to each blade regarding which direction to
face, and which posture to assume. The two dimensional tex-
tures for the slices are then computed from this information.
Having data to control the motion of each blade of grass al-
lows for some very detailed animations, but results in a per-
formance penalty. This algorithm is dependent on the num-
ber of blades of grass in a scene. It would seem that a large
amount of texture memory is also required, as each slice uses
a unique texture.

Our technique is suitable for viewing from above, as in
a flight simulator, or for walking in relatively short grass. It
is fast, and because animation data is interpolated between
vertices of the base mesh, fields of grass can be arbitrarily
dense. Our technique is memory efficient, as all the shell tex-
tures are generated as required from one base texture. Lastly,
our technique incorporates vertex shaders available on cur-
rent consumer grade graphics hardware to further increase
speed.

3. Approach

The grass is rendered through Russian-doll style transparent
shells. Several copies of the base terrain mesh are created

by displacing the vertices along their associated surface nor-
mals in a vertex shader. The shells are transparent except
where a blade of grass intersects them. At these points, a

Figure 2: Shells are extruded along the normals above the
base mesh.

cross section of the blade is contained within the texture. A

Figure 3: The Grass Texture Map with Alpha Channel

single texture is used to generate all the shell textures, en-
coding the "height" of the grass in the alpha channel. The
ground has no height and thus all ground texels in the texture
have an alpha value of zero. Texels representing grass have
non-zero alpha values depending on their respective heights,
up to a maximum of 255. As we see in Figure 3, the white
"dots" in the alpha channel of the texture map correspond
to the green dots representing a cross-section of a blade of
grass.

The shells are rendered in bottom to top order. We enable
the alpha test and set the alpha compare value to the shell’s
height before drawing each shell. The first shell, the base
ground mesh, is composed of all the texels in the texture, so
the alpha compare value is set to zero (with the alpha test
method set to greater than or equal). Before the rendering
of each subsequent shell the alpha compare value is set to a
higher value. For example, if 10 shells were being rendered,
the first shell above the base mesh would be rendered with
an alpha compare value of 255/10 = 25. Any blade of grass
with a height greater than one tenth of the maximum height
would have a cross section included in that shell’s texture.

c
�

The Eurographics Association 2002.



Bakay, Lalonde, Heidrich / Real Time Animated Grass

Figure 4: Close view of grass rendered with 16 shells.

Animation is implemented by moving each vertex along
its "wind vector" - a vector stored with each vertex. Wind
vectors are computed in a preprocessing step.

Figure 5: Images Representing Wind Vectors. The wind
source is roughly in the centre of the images. The original
height map is shown at left. The X,Y and Z components of
the vector are mapped to the red, green and blue compo-
nents, respectively, of the centre image. The animation frame
to which each vertex belongs, in this case representing its
distance from the wind source, is shown at right.

There are several ways of generating appropriate wind
vectors, ranging from heuristics to artist painting to a proper
fluid dynamics simulation of wind moving over a landscape.
Our actual animation algorithm will only consider the con-
tribution of this wind vector that is perpendicular to the local
surface normal. This restriction would be easy to overcome
with additional per-vertex data, which would, however, de-
grade the performance slightly.

For the examples in this paper we have used a simple point
source for the wind, and the vector from each vertex to the
wind source is projected onto the vertex normal. The wind
vector is then the vector in the resulting plane that is perpen-
dicular to the vertex normal and is given by:� �

Vw � �
W � � �

W � �
N � �

N

Where Vw is the wind vector at the vertex, W is the vector

from the vertex to the wind source and N is the normal vec-
tor. All vectors are assumed to be normalized.

Given a wind direction, every vertex is moved along its
normal vector and its wind vector (perpendicular to the nor-
mal vector) every frame. The amount moved along these
two vectors preserves the inter-shell distance, and thus the
length of each blade of grass. In the absence of wind, the
distance between shell vertices (along the normal) is a con-
stant equal to the maximum height of the grass divided by
the number of shells rendered. With the addition of wind,
and thus vertex movement in a direction perpendicular to the

θθ

θθ

θθ

Wind Vector

N
or

m
al

 V
ec

to
r

Figure 6: The Length-Preserving Function to Bend a Blade
of Grass.

normal, we must preserve this constant inter-shell distance
or blades of grass will appear to grow and shrink as they
animate. Each blade of grass is composed of segments of
this constant length that are tilted appropriately in the wind.
A windless moment would have all the segments "tilted" at
zero degrees, and a moment of maximum wind would have
the final segment tilted at 90 degrees. As we move along the
blade from bottom to top, the tilt angle increases from zero
degrees to a maximum of 90 degrees representing a segment
moved into alignment with the wind - parallel to the sur-
face of the landscape. As we see in Figure 6, each segment
forms the hypotenuse of a right angle triangle. Therefore, the
amount to move each vertex along its normal is given by:

N

∑
i � 0

cos � i � I � π � S
2 � N 	

where i is the current shell, I is the current wind intensity
at this vertex, S is the inter-shell distance and N is the total
number of shells being rendered.

c
�

The Eurographics Association 2002.



Bakay, Lalonde, Heidrich / Real Time Animated Grass

Similarly the amount to move each vertex along its wind
vector is:

N

∑
i � 0

sin � i � I � π � S
2 � N 	

Each blade of grass, then, is the sum of its segments.

The wind intensity can be represented by any function the
user chooses. For best results it should be periodic, continu-
ous and vary between -1.0 and 1.0. Values outside this range
would cause "over-bending" in the grass, which may actually
be a desired effect.

The final piece of data sent along with each vertex is an
integer representing its animation "frame". We divide the
world into segments based on their distance from the wind
source. Blades of grass close to the source will experience
the effects of a sudden spike in wind intensity before distant
blades. This allows for a more realistic animation - includ-
ing "waves" moving across the field, or attenuation of wind
intensity.

The vertices are moved in a vertex shader. Values repre-
senting the amount of movement along the wind vector and
the normal are stored in registers for each of the animation
frames present. The shader references the values using the
integer sent with each vertex, multiplies the appropriate vec-
tor with each value and and adds the result to the vertex po-
sition. This process is repeated for every shell rendered. The
movement values must change as we travel up a blade of
grass - the tip will be affected by the wind more than the
base near the root.

4. Results

The test machine for the following results has a 1.7 Ghz In-
tel Pentium processor with 512 Megabytes of memory. The
video card is a 32 Megabyte NVidia Geforce3. All tests were
done in 32 bit colour with a 16 bit Z-buffer. For the render-
ing, we used EAGL, a proprietary graphics API of Electronic
Arts, Inc., as described by Lalonde and Schenk3.

Framerates in this application vary depending on the cov-
erage of the landscape on the screen. These numbers repre-
sent near worst-case values. Framerate increases as one pulls
away from the landscape, indicating a fill-rate limitation to
the method. However, when close to the landscape, framer-
ate also increases when some geometry can be culled. The
screen coverage of the landscape for the tests can be seen in
Figure 7.

Even at this stage, results are very encouraging. Although
we have made no attempt at optimization, we are achieving
real time framerates with convincing animation and visual
quality. This technique has already proven itself useful for
its target market - consumer games.

Not surprisingly, this technique is limited by the fill rate

Figure 7: Screen Coverage for Benchmarking

Resolution
Shells Polygons 640 x 480 1024 x 768

0 512 293.5 130.8
8 4608 47.0 22.8

16 8704 25.6 12.4
32 16896 13.4 6.5
64 33280 6.9 3.3

Table 1: Results in Frames Per Second

of the graphics hardware. Adding shells, or increasing res-
olution has a larger negative impact on performance than
adding geometry to the scene. Adding shells, does, of course,
add geometry as well, and we note framerate increases when
some of the geometry can be culled. As Lengyel noted4, a
covering of grass allows for a much less detailed base mesh
than would otherwise be needed.

5. Future Work

We have not yet addressed proper lighting of the grass. Grass
is an anisotropic surface, and significant gains in realism
could be attained if it were lit as such. We are curently work-
ing on an extension of our algorithm that would allow us to
simulate this effect.

Currently the volume is sampled (or sliced) at regular in-
tervals, but this is an arbitrary decision. Future work will in-
clude concentrating the shells where they are needed most.
Additionally, it may be possible to adapt Kautz’ work, allow-
ing for shells perpendicular to the mesh surface for viewing
from grazing angles. Similarly, we use a linear relationship
between the alpha value in the texture and the height of the
grass and this need not necessarily be so. In fact, in the case
of a field of grass, it might make more sense to have finer
control at the upper end of the height scale.

Additionally, the two dimensional textures themselves

c
�

The Eurographics Association 2002.



Bakay, Lalonde, Heidrich / Real Time Animated Grass

warrant further consideration. Lower level MIPmaps can-
not be generated from the textures automatically, as the high
frequency details of the grass will become lost. Custom
MIPmaps, likely retaining representative blades from level
to level, should improve visual quality at a distance. Further,
in a multiple level of detail setup, it would be adventageous
to reduce the number of shells for far off portions of the land-
scape, however doing so also reduces the density of the grass
- the landscape becomes less green. This effect may be di-
minished by making the grass more dense on textures that
will use fewer shells.

6. Conclusion

Recent advances in consumer graphics hardware have al-
lowed for very realistic rendering of natural phenomena.
Computer games are starting to emerge from the sewers into
a lush, natural environment. We have presented a method
that can animate detailed, believable fields of grass in real
time on current devices. Our method is fast, memory effi-
cient and requires no special volume rendering hardware.
Fields of grass may be arbitrarily dense and wind patterns
may be arbitrarily complex.

Acknowledgements

The authors would like to gratefully acknowledge the sup-
port of the Tools and Libraries group at Electronic Arts,
Canada, especially Patrick Martin who was invaluable in
sorting out the technical details of EAGL. We would also
like to thank the Imager group at the University of British
Columbia.

References

1. Kajiya, James T. and Timothy L. Kay, “Rendering Fur
With Three Dimensional Textures”, Computer Graph-
ics 23(3), pp. 271–280 (July 1989).

2. Kautz, Jan and Hans-Peter Seidel, “Hardware Acceler-
ated Displacement Mapping for Image Based Render-
ing”, Graphics Interface 2001 pp. 61-70 (June 2001).

3. Lalonde, Paul and Eric Schenk, “Shader-Driven Com-
pilation of Rendering Assets”, SIGGRAPH 2002 To
appear.

4. Lengyel, Jerome, “Real-Time Fur”, Eurographics
Workshop On Rendering pp. 243-256 (June 2000).

5. Lengyel, Jerome, Emil Praun, Adam Finkelstein and
Hugues Hoppe, “Real-Time Fur Over Arbitrary Sur-
faces”, Proceedings of the ACM Symposium on Inter-
active 3D Graphics (March 2001).

6. Neyret, Fabrice, “Animated Texels”, Eurographics
Workshop on Rendering ’96 pp. 97–103 (September
1995).

7. Perbet, Frank and Marie-Paule Cani, “Animating
Prairies in Real-Time”, ACM Interactive 3D Graphics
Proceedings (March 2001).

1

2

4

1, 2, 4

2

2

2

c
�

The Eurographics Association 2002.



Bakay, Lalonde, Heidrich / Real Time Animated Grass

Figure 8: A gust of wind across the prairie. These frames show a wind gust originating in the top left corner of the screen and
moving toward the bottom right corner of the screen.

c
�

The Eurographics Association 2002.



Bakay, Lalonde, Heidrich / Real Time Animated Grass

c
�

The Eurographics Association 2002.


