
Vision, Modeling, and Visualization (2010)
Reinhard Koch, Andreas Kolb, Christof Rezk-Salama (Eds.)

CALTag: High Precision Fiducial Markers for Camera
Calibration

B. Atcheson1 and F. Heide2 and W. Heidrich1

1University of British Columbia, Canada
2University of Siegen, Germany

Abstract
We present a self-identifying marker pattern for camera calibration, together with the associated detection algo-
rithm. The pattern is designed to support high-precision, fully-automatic localization of calibration points, as well
as identification of individual markers in the presence of significant occlusions, uneven illumination, and observa-
tions under extremely acute angles. The detection algorithm is efficient and free of parameters. After calibration
we obtain reprojection errors significantly lower than with state-of-the art self-identifying reference patterns.

1. Introduction

The typical process for calibrating cameras involves pho-
tographing a calibration target from multiple viewpoints, and
then identifying calibration points in the image that cor-
respond to known points on the target. One of the most
frequently-used targets is a black and white planar checker-
board, where the calibration points are the corner points be-
tween squares. This pattern is simple to produce and allows
for high accuracy because the corner points can be detected
to subpixel precision [Bou08].

The problem in using checkerboards for camera calibra-
tion applications lies in how each corner point is detected
and identified. The left and center of Figure 1 show common
failure cases for automatic checker detection: partial visibil-
ity due to clipping against the image boundary, and due to
occlusion. It would be useful if we could just place a scan
target directly on top of a calibration pattern for stereo ac-
quisition with a handheld camera. This is not possible with
checkers due to occlusion and shadows. Instead, the check-
ers would have to be geometrically well separated from the
scan object, thus reducing both the calibration accuracy and
the useful image resolution for the actual target object. Man-
ual intervention and labeling can overcome this limitation
to some degree, but is cumbersome for multi-camera arrays,
videos or large image sequences.

An alternative to the common checker board are indi-
vidually identifiable (fiducial) markers that allow for detec-
tion and thus calibration, even if only a small percentage of

Figure 1: Partial visibility due to clipping (left image) or
occlusion (center) are common failure points of calibration
methods involving a checker pattern. By comparison, a cal-
ibration system using fiducial markers such as ours (right)
can easily deal with partial visibility.

tags are visible. Unfortunately for our purpose, most fiducial
markers are designed with AR-style applications in mind,
where it is important to create isolated markers at a low spa-
tial density. As we will see later, this design compromises
the precision of the marker localization. In our work, we fo-
cus on the development of a fiducial marker system, which
we dub CALTag (“CALibration Tags”) that provides

• accurate localization of calibration points using subpixel
saddle point finders,

• high area density of both calibration points and markers,
• robustness under occlusion, uneven illumination, radial

distortion and observation under acute angles,
• minimization of false positives and false negatives

through use of checksums, and
• automatic processing without parameter tweaking for

convenient handling of videos and large image sequences.

c© The Eurographics Association 2010.



B. Atcheson & F. Heide & W. Heidrich / CALTag: High Precision Fiducial Markers for Camera Calibration

As a result, our method also supports fully automatic cal-
ibration of complex multi-camera configurations where it is
difficult or impossible to obtain "nice" views in which each
camera sees the entire calibration pattern.

We are presenting two slightly different pattern layouts,
using the same fiducial markers as building blocks, which
can be detected with the same algorithm. The first layout ex-
hibits a somewhat higher marker density, while the second
can be detected more robustly at steep viewing angles. Al-
though our discussion in this paper focuses on dense, planar
calibration grids, our method extends naturally to non-planar
configurations. The use of individual markers in AR-style
settings is possible through a separation of the marker iden-
tification and the point localization method (Section 3).

2. Related work

Checker boards. As mentioned above, checker boards are
among the most commonly used calibration patterns. For ex-
ample, the popular OpenCV library [Ope10] contains func-
tionality to automatically locate plain checkerboards. Since
the corners of the squares in a checker board are touching, a
saddle point finder can be used to find the sub-pixel location
of the calibration points with high accuracy and robustness.
As mentioned above, the downside of checkers is that it is
next to impossible to automatically identify which calibra-
tion point is which, unless the full pattern is visible.

The basic checker pattern can be augmented with addi-
tional markers to identify additional information. For exam-
ple, Yu and Peng [YP06] add five double-triangles to the
corners and center of a checkerboard and locate those mark-
ers using correlation. This works only when the entire board
is visible in the field of view, and the orientation cannot be
uniquely determined. One of our two proposed calibration
patterns is also an extension of a checker board, albeit with
fiducial tags inside each field.

Fiducial markers. Fiducial (i.e. individually identifiable)
markers have become increasingly popular in recent years.
Such markers can be used in a variety of settings. Individual
large-area markers are used as 2D barcodes to encode data
beyond a simple identifier (e.g. [ISO06a,ISO06b]). More in-
teresting for camera calibration are smaller fiducial markers
that only encode a unique code for identification purposes.
Even in this category, there are a large number of markers
documented in the literature.

Some of the most common fiducial marker designs
include concentric rings, where the center is the cali-
bration point, and the ring pattern identifies the marker
(e.g. [GGSC96, CN01, SBGD07]), central dots demarking
the calibration point, combined with radially arranged code
patterns (e.g. [LMH02, NF02]), and finally rectangular pat-
terns with identification codes in the interior (e.g. [ZFN02,
OXM02, Fia05, FS07]). An interesting property of the rect-
angular design is that every marker encodes four calibration

points, i.e. corners, rather just than one. These points have
been localized by fitting lines to the edges of the rectangle
and computing the intersection points. While this approach
provides better accuracy than the center-of-mass-style cal-
culations used in many circular designs, we show that it falls
short of the precision provided by saddle point finders em-
ployed in checker patterns and in our design.

Another shortcoming of many existing fiducial markers
is that they require a lot of empty (white) space between
them, and can thus not be packed tightly on a calibration pat-
tern. This is particularly true for the circular designs. How-
ever, a high density of calibration points is very desirable
for camera calibration: first, a large number of point cor-
respondences improves the fitting results for homographies
and other camera models, and second, many small markers
make detection more robust under occlusion and high fre-
quency illumination than few large markers.

Our CALTag design is based on rectangular encodings,
but they can be packed tightly so as to allow for both a high
marker density and the use of high precision saddle point
finders. Like some other recent designs (e.g. [FS07]), our
marker IDs allow for error detection. They do not, however,
provide error correction, since we anticipate CALTags will
be used in larger groups, so that not identifying a subset of
the markers is no problem as long as the corresponding cali-
bration points can still be localized.

3. CALTag design

The CALTag design involves two major components, the
marker design (Section 3.1), and the detection algorithm
(Section 3.2). For use in a calibration grid, we propose two
possible geometric layouts for the same basic markers. As
we will see in Section 3.3, the first, straightforward layout
provides a slightly higher density of markers and calibration
points, while the second layout facilitates both more robust
and more efficient detection.

3.1. Marker design and layout

Marker design. For robustness under different lighting con-
ditions and easy printing, we choose a binary marker de-
sign. Each CALTag marker consists of an M×N matrix of
black and white squares (“pixels”), surrounded by a K pixel
boundary that is either solid white or solid black. While
we have conducted experiments with other configurations,
we restrict ourselves to configurations with M = N = 4 and
K = 2 for this paper (see Figure 2). The choice of code res-
olution is a tradeoff between the size of the codebook and
the physical size of the pattern. As described shortly, not ev-
ery possible code can be used, so a small pattern limits the
number of available markers and hence the number of corner
points in a calibration grid. On the other hand, for the same
physical marker area, smaller code patterns afford a larger
printed pixel size δ.

c© The Eurographics Association 2010.



B. Atcheson & F. Heide & W. Heidrich / CALTag: High Precision Fiducial Markers for Camera Calibration

δ

√
2

2 δ

δ

Figure 2: Top left: basic CALTag marker. Top right: checker-
style layout in which touching squares provide the calibra-
tion points. Bottom left: rotated CALTag markers with addi-
tional bowtie symbols providing calibration points. Bottom
right: grid layout using the rotated markers.

Of the total 16 bits, we use the first p = 10 bits to rep-
resent the identifier, and the remaining MN− p = 6 bits for
a checksum (CRC-6-ITU). The binary string is then rear-
ranged into a 2D matrix for form the code. This allows for
2p potential codes with a minimum Hamming distance of
3, meaning that all possible one- or two-bit flips can be de-
tected in a 1D code vector. However, not all of these codes
can be used, for two reasons. The first is that, in order to
avoid inter-marker confusion under bit flips in our 2D grid
arrangement, we must ensure that all rotated versions of
marker codes have a minimum Hamming distance of 2 from
all other used marker codes. The second reason is that pat-
terns that are mostly white or mostly black are more likely
to occur as textures or random patterns in normal images.
For this reason, we choose only those codes with between
25% and 75% of their total pixels “on”. This second cri-
terion eliminates a relatively small percentage of codes in
which both the data portion and the CRC portion has a very
one-sided intensity distribution.

We used a greedy search algorithm to find a set of valid
codes. The net effect of the two constraints was that, out of
1024 codes for our 4×4 grid layout, 30 codes were rejected
due to the bit count constraint, and 302 codes due to the sym-
metry constraint. In total, 692 codes remain to be used as
valid calibration patterns. Enforcing a minimum Hamming
distance of 3 under all rotations would reduce the number of
codes to 280. When assembling a calibration pattern, we use
all valid codes in numerical order, without further attempts
to maximize Hamming distance. Due to the minimum Ham-
ming distance of 2, these codes allow for the detection of any
single bit flip under any rotation. However, the CRC codes
are more powerful than that. In 1D, they can also detect any
“burst” errors (flips of subsequent bits) with burst lengths
of up to 6 bits. Although our 2D layout reduces the useful-

ness of this property, there are situations where this feature
of CRC codes is helpful. For example, if a whole row of
code pixels is occluded, the resulting pattern change can be
detected. In all our experiments with CALTag patterns, we
have never observed a false positive marker identification of
random scene structure.

Pattern layouts. Once the markers have been defined, they
need to be arranged into a calibration pattern. As outlined
in Section 2, we desire a dense packing of the markers to
maximize the number of markers and calibration points per
unit area. Also, we would like to derive a layout in which the
calibration points are given by local “bowtie” image topolo-
gies, in which black and white image portions touch like the
corners in a checker board. With this kind of layout, calibra-
tion points can be localized with very high accuracy using a
saddle point finder (also see Section 4).

A straightforward layout that achieves these goals is to
pack markers with a black border and markers with a white
border like the squares in a checker board (Figure 2, top
right). This first layout optimizes marker density, but its de-
tection may suffer from merging of different marker regions
under difficult photometric conditions. These issues are dis-
cussed in detail in Section 3.3.

Our second layout overcomes these merging problems
by spatially separating the markers from each other. The
calibration points in this layout are provided by additional
bowtie shapes, as shown in Figure 2, bottom right. Note that,
in this second layout, the corners of the markers are bound-
ary are clipped slightly (Figure 2, right). This does not affect
the detection algorithm, which we discuss next.

3.2. Detection algorithm

The stages of the detection algorithm are depicted in Fig-
ure 3. Beginning with the recorded image, we first find the
potential markers using simple image processing techniques
and some carefully chosen filtering criteria. The true mark-
ers are then confirmed by reading their binary codes. Finally,
any missed calibration points are located using prior knowl-
edge of the checkerboard layout. The output is a set of or-
dered 2D image coordinates corresponding to the calibration
points.

3.2.1. Connected components

This first stage of the algorithm is the only one that differs
slightly between the two pattern layouts. For the first lay-
out, the input image is converted to grayscale, and its edges
are detected using a Sobel filter. After thresholding, but be-
fore thinning the filter response, we clean the data by in-
verting any zero pixels that have two nonzero unconnected
neighbors and then apply a 3× 3 median filter. Next, a bi-
nary thinning operation is applied, after which we remove
any isolated pixels that remain. Finally, we invert the edge

c© The Eurographics Association 2010.



B. Atcheson & F. Heide & W. Heidrich / CALTag: High Precision Fiducial Markers for Camera Calibration

Figure 3: Flowchart of the detection process. Numbered blocks correspond to the subsections 3.2.1 through 3.2.7 below.

image and extract the connected components. We experi-
mented with many different variations of this image process-
ing pipeline in search of one that would work well across
a variety of resolutions and image quality settings. Gaps in
marker edges should be closed to prevent merging of mark-
ers (see Section 3.3) but at the same time it is important to
not connect the marker edges to the edge pixels of the code
dots. Since the marker shapes are not touching in the second
case, we can skip the edge detection and morphological fil-
tering steps and directly compute the connected components
after adaptive thresholding of the grayscale image.

3.2.2. Identification of potential markers

The previous stage outputs more connected components than
there are markers in the image; random background objects,
as well as small segments of highly textured regions all result
in components. The following two criteria are used to reject
components that cannot possibly be markers:

(a) Area. We assume that each code pixel must cover an
area of at least 2× 2 image pixels in order to be reliably re-
solvable. By design our markers are 8×8 units, so each one
must cover at least 162 pixels. This lower bound often helps
to remove thousands of tiny regions that can occur in highly
textured regions, such as grass or carpet. For an upper bound
we use 1/8th of the input image size, since having fewer than
8 points would typically be insufficient for calibration.

(b) Euler number. The Euler number of an image is de-
fined as the total number of objects in the image, minus
the number of holes in those objects. Computing the Euler
number for an individual connected component gives us a
measure of how many interior holes there are. This calcu-
lation can be performed very efficiently [Gra71]. The maxi-
mum possible number of holes would arise in the case of a
marker with alternating black and white code dots, so we use
a threshold of −(MN/2), although in practice most mark-
ers have between 1 and 3 holes. Nested holes do not pose a
problem – the entire internal code region would be consid-
ered as a separate marker, fully enclosed by the surround-
ing checkerboard square, and then rejected due to it having

either too small an area, or an invalid binary code. The ad-
vantage of filtering based on Euler numbers is that they are
resolution independent and require no parameter tweaking.

Approximate convexity was also investigated as a filtering
criterion (markers are often not truly convex, due to image
noise, edge detection errors and aliasing), but we found it to
be expensive to compute and unnecessary given the success
of the above two criteria.

3.2.3. Quadrilateral fitting

We next attempt to fit quadrilaterals to the remaining com-
ponents. While the checkerboard as a whole may be dis-
torted, the individual squares should be small enough that
their boundaries can be well approximated by four linear
segments. As Figure 8 shows, patterns in images with high
radial distortion can still be detected.

The first step is to trace the outline of the region, in any
direction, to obtain image coordinates for the region’s edge
pixels. For each sample point on this boundary we com-
pute the approximate gradient using central differences and
then smooth these gradients. The smoothing kernel size is set
based on the size of the component so as to remove spurs and
holes in the boundary. These gradients are fed into Lloyd’s
K-Means clustering algorithm [Llo82], with K = 4, to obtain
the four dominant edge orientations. A least-squares line fit
through each of these clusters is then used as the initial guess
in finding the four boundary lines, again via Lloyd’s algo-
rithm. At this point we have the four best fitting boundary
lines (regardless of what shape the region is and how many
edges it actually has) without any ordering. To extract a quad
we therefore find the two most parallel lines, taking these to
be opposite edges. This is sufficient to obtain a cyclic order-
ing of the corner points, which are themselves obtained via
intersections with the other pair of lines.

Note that the quadrilateral fitting is not affected by the
fact that the markers are technically octagons in the second
pattern layout, since the four additional edges are less than
one quarter of the length of the long edges, and are therefore
dominated by those in the clustering steps.

c© The Eurographics Association 2010.



B. Atcheson & F. Heide & W. Heidrich / CALTag: High Precision Fiducial Markers for Camera Calibration

3.2.4. Saddle points

We now find subpixel-accurate saddle points in the greyscale
image I using the same algorithm as that used by
OpenCV [Ope10]. It considers all points p within a small
window around an approximate saddle point x. Nonzero im-
age gradients only occur along edges, where they are or-
thogonal to the edge itself. Hence, if x is a saddle point,
∇I(p) · (p− x) = 0 for all p near x. This leads to a system
of linear equations that can be iteratively solved for succes-
sively more accurate saddle point positions. The initial guess
is given by the quadrilateral fit, as well as the known loca-
tion of calibration points with respect to the markers in the
two layouts (Figure 2). For the checker-style layout, initial
guesses are provided by the intersections of the four fitted
corner lines. For the rotated layout, the initial guesses are
given as the columns of H ·

(
−0.5

0.5
0.5
1.5

1.5
0.5

0.5
−0.5

)
, where H is

the homography between the marker square and the detected
quadrilateral (also see the next step in the pipeline).

There are two difficulties with applying the saddle finder
to every corner point: first, it can have an impact on perfor-
mance if there are many points, and second, the guesses aris-
ing from line intersections can be so poor that the corner can-
not be found. But due to the layout of the markers, we know
that each corner point should have up to four guesses corre-
sponding to it, from each of the detected adjacent markers.
We therefore cluster together nearby guessed corner points
and consider only their average. Doing so provides us with
an improved initial guess, and eliminates the redundancy of
searching for saddle points multiple times in the same image
region. We use half of the average side length of the associ-
ated marker as a Euclidean distance threshold for grouping
nearby points.

3.2.5. Marker validation

At this point we have a collection of regions, most likely
(although not guaranteed to be) quadrilaterals, along with
four corner points for each region. Our task is to read the
binary code depicted in the middle of the marker. Given a
uniform square, the positions ci of the code dots inside this
square are known by construction of the markers. We must
therefore map a unit square to the region’s corners and then
sample the image at the points dictated by applying the same
mapping to the ci.

The corner points are ordered cyclically, clockwise
around their centroid, but we do not yet know which point
corresponds (arbitrarily) to the top left corner of the marker.
All four possible orientations must therefore be considered
in searching for a valid code (in this work we ignore mir-
ror reflections, but they could easily be accommodated by
testing the other four permutations too). A 2D homography
H from the unit square to corner points is generated, giv-
ing us the sampling points for the code pixels. Rather than
sampling the grayscale image directly, we first apply adap-
tive thresholding to it. In this case, the radius of the Gaussian

smoothing kernel is chosen to be three times the width of the
marker. The filtering neighborhood therefore should contain
enough black and white parts of the pattern that a local aver-
age can be reasonably estimated. The thresholded image is
now sampled at the supposed code dot points, and converted
in columnwise order to a string of binary characters.

The binary code is validated by computing the checksum
of the first p bits and comparing it to the sampled checksum
under all four possible rotations. Had an error-correcting
coding scheme been employed, we could also correct for
small errors in sampling the pattern, or for partially occluded
patterns, but we found the 16 bit combination to work well
enough in practice that most of the markers are detected
correctly. False negatives do not pose a problem, since the
checkerboard can be detected even when only a few (or po-
tentially just one) of the markers are correctly detected.

The markers with valid checksums are now filtered to re-
move any that have markedly different orientations to the
others, where the orientation is taken to be the angle that the
vector from the top left to the top right corner makes with
the horizontal axis.

3.2.6. Locating missed points

In this stage we attempt to find any calibration points that are
visible in the input image, but that were missed during de-
tection, for example because the surrounding markers could
not be identified. If at least one marker is correctly identi-
fied, then because we know where it lies in the checkerboard
pattern from its ID, we can guess where the remaining sad-
dle points should lie in the image. As before, we fit a ho-
mography to the detected points using RANSAC, and from
that obtain the approximate image coordinates of the miss-
ing points. At these points we run the saddle finder, and if it
converges we add that point to the collection of calibration
points.

Due to lens distortion, a homography may not adequately
describe the positions of the image points. We must therefore
estimate the amount of distortion, undistort the points before
fitting the homography, find the missing points, and then re-
distort them before looking for saddles. We chose to model
only the leading term of radial distortion since it dominates,
and because higher order terms are unlikely to be reliably
estimated with only the data available in a single image. The
distortion coefficient is estimated via nonlinear optimization,
where as an error metric we measure the collinearity i.e. the
squared sum of orthogonal distances from each image-space
point in each row and column of the checker grid to a straight
line fit through those points [WM94].

3.2.7. Saddle validation

Convergence of the saddle finder is no guarantee that a sad-
dle is actually present, since occlusions or specular high-
lights can result in false positives. We must therefore vali-
date the potential points identified in the previous stage.

c© The Eurographics Association 2010.



B. Atcheson & F. Heide & W. Heidrich / CALTag: High Precision Fiducial Markers for Camera Calibration

Figure 4: Left: motion blur causes diagonally adjacent
markers to merge together. Right: connected components
consisting of more than one marker.

We perform two tests, both of which must be passed for a
point to be considered a saddle. First, the local neighbor-
hood of pixel intensities must conform to the distribution
of intensities around the other, known, saddles. A beta dis-
tribution describes these distributions well, with parameters
0 < α≈ β < 1. The skewness is dependent upon the relative
orientation of the grid to the camera. Image blur produces
flatter distributions. We fit such a distribution to the known
saddles and then reject any potential points where the param-
eters differ by more than some threshold from the median.

The second test counts edges. We sample a few evenly
spaced points, ordered on a small circle around the point,
in the adaptively thresholded image. The radius of the circle
can be chosen based on the homography so as not to intersect
any code dots. After smoothing the sampled signal we check
to see if it alternates between black and white exactly four
times.

3.3. Merged marker problem

The main cause of failures in detecting markers in the first
layout is when they appear to merge together, either at steep
angles, or when motion blur is present. Figure 4 illustrates
the problem, also noted by Fiala and Shu [FS07]. Instead
of having one connected component per grid square, we
see groups of diagonally connected squares which prevent
marker detection.

To solve this problem reliably, we designed the sec-
ond, rotated layout. However, for completeness sake we
would like to describe some of the algorithmic solutions that
seemed plausible and were tried, but ultimately proved too
unwieldy or not robust enough. The key difficulty of course
is to find a sequence of operations and parameters that works
across a wide range of image types and illumination condi-
tions. Changes designed to fix one particular problem can
easily create more problems elsewhere.

Morphological openings can be applied to break the con-
nection between diagonally adjacent squares. The size of the
structuring element is resolution-dependent and must be set
very carefully – too small and it will not break the bridges,
too large and it will break open the markers where the code

Figure 5: Left: ARTag calibration grid. Center: corner lo-
calization test with synthetic data, containing a white square
on black background with added noise. The true corner point
is indicated by the red circle. Green pixels indicate the out-
put of the edge detector and are used to fit straight lines.
For nearly vertical or horizontal lines, aliasing causes very
poor line fits, resulting in a large error. Right: precision ex-
periments comparing a saddle finder [Bou08] using similar
image data with a bowtie shape to ARTag’s line intersection
method for various rotation angles. The results demonstrate
that the saddle finder gives superior results while also being
insensitive to rotation angle.

dots are too close to the edge. To complicate matters fur-
ther, the appropriate size can also be spatially varying due to
perspective distortion. Linear structuring elements, orthog-
onal to the bridge direction could be employed to break
the bridges, but this requires higher level knowledge of the
checkerboard orientation, which is not available in the early
stages. We also attempted to locate the bridge points using
the method described by Sun et. al. [SYXH08] where in-
terior corners are found by sampling the image on a circle
around a particular point. These ordered samples are con-
verted into a 1D code that should alternate four times be-
tween white and black. Again, this approach works in our
final saddle validation step because we know the size of the
markers, but without the homography we cannot choose an
appropriate radius for all input images. Linking edges along
the region contour could also potentially help to locate the
bridges, but we found this to be too sensitive to the thresh-
olds used to break up line segments.

4. Analysis and results

As a primary point of reference for our approach we use the
ARTag markers [Fia05, FS07], since they represent a state-
of-the-art fiducial marker system and can (and have) been
applied for camera calibration (e.g. [BBH08,BPS∗08]). Like
our approach, ARTags consist of a binary dot-matrix, laid
out in a 2D rectangular grid (Figure 5). Various image pro-
cessing techniques are used to locate potential markers, and
then sample the interior code points to obtain a binary se-
quence. The sequence comprises 36 bits, 10 of which encode
the marker ID while the remainder are dedicated to a CRC
and a Reed-Solomon error correction code.

Although ARTags can be detected and identified reliably,

c© The Eurographics Association 2010.



B. Atcheson & F. Heide & W. Heidrich / CALTag: High Precision Fiducial Markers for Camera Calibration

they are not ideal for camera calibration, primarily because
the corner localization is comparatively poor (Figure 5).
Each ARTag marker is reported along with the positions of
the quadrilateral corners. These are found by detecting edges
in the image, linking them to make up quadrilaterals, fitting
lines through adjacent edges and computing their intersec-
tions. Localization of the corner is thus dependent on a line
fit through pixels far away from the actual point. Since this
takes place before calibration, the image edge may not be
straight due to lens distortion. In addition, edges cannot be
perfectly detected and localized, and so the choice of filter
kernel used in edge detection could compromise the accu-
racy of the point localization. Our method detects saddle
points instead.

Figure 6 (left) shows that CALTag detection performance
is roughly linear in the input image size. Our implementa-
tion could certainly be optimized further (MATLAB source
code in included with our submission. We plan to post it on-
line). In comparing the density of markers between ARTag
and CALTag, we normalize the pattern scales so as to use
the same pixel size δ for the codes, since it is that pixel size
which determines if code bits can be read. ARTag uses 36
bit error-corrected codes, while CALTag uses 16 bit error
detection codes. While the larger code size and error cor-
rection ability are useful in AR applications, they do not
provide additional advantages for camera calibration and in-
stead consume space that could be used for more markers.
The requirement to separate the ARTags markers by whites-
pace further reduces the density of ARTag markers. How-
ever, each ARTag marker provides four calibration points,
whereas the calibration points are shared between adjacent
markers in the CALTag system. Figure 6 (top right) shows
that for our first, checker-like grid layout, the net effect is a
point density that is similar to that of ARTag. The horizon-
tal axis represents the side length of the entire square pat-
tern, with a code pixel being one unit long. The vertical axis
shows the total number of corner points, taking into account
all the necessary padding of each pattern. The point density
of the second layout is about half that of the first.

We performed calibrations using both ARTag and CAL-
Tag patterns, scaled and cropped to have the same printed
code pixel size and, as closely as possible, the same printed
physical area. For ARTag this meant we had 5× 6 mark-
ers (120 calibration points) whereas the first CALTag layout
had 8×9 (90 calibration points). Using a 10 megapixel SLR
camera with a 20mm lens, we captured sixteen images, two
of which are shown in Figure 7. CALTag was able to auto-
matically detect 1438 of the 1440 points across all images.
ARTag detected 1912 out of 1920 points. While ARTag’s ex-
ecution time for single image is much faster than our CAL-
Tag implementation, the difference was negated by the need
to manually mask out the background in the images (almost
10 minutes). Without masking, ARTag ran out of memory,
most likely due to the large number of connected compo-
nents in the highly textured carpet region. Using our own im-

2 4 6 8 10 12
Resolution (megapixels)

2

3

4

5

6

7

8

9

T
im

e
 (

se
co

n
d

s)

Runtime performance

Scene 1, layout 1

Scene 2, layout 1

Scene 1, layout 2

Scene 2, layout 2

0 100 200

Pattern area (units2 )

100

300

500

700

900

1100

N
u

m
b

e
r 

o
f 

p
o
in

ts

Calibration point density

ARTag

CALTag, layout 1

CALTag, layout 2

Figure 6: Top left: performance is roughly linear in the im-
age size. Timings are for our Matlab(R) implementation on
an Intel(R) Core(TM)2 6400 CPU. Scene 1 is shown below
left, scene 2 is below right. Top right: calibration point den-
sity for the various patterns.

plementation of Zhang’s calibration algorithm [Zha00], we
obtained a mean reprojection error of 1.073 pixels for the
ARTag points, versus 0.316 pixels for the CALTag points.

Figure 7: Two of the sixteen images used for the calibration
test. The left column shows the captured images, while the
right column shows the detected points overlaid on zoomed
regions. Zoom in on the PDF to examine the points more
closely.

Figure 8 shows several more results for just the CAL-
Tag detection, including calibration grids that occupy a small
percentage of the image area, radial lens distortion, and ex-
tremely acute observation angles. The pattern detection is
successful and robust even under extremely difficult condi-
tions.

c© The Eurographics Association 2010.



B. Atcheson & F. Heide & W. Heidrich / CALTag: High Precision Fiducial Markers for Camera Calibration

Figure 8: More results, under difficult conditions. Zoom into
the images for more detail. Red circles show the calibration
points. Green crosses are the sampled code locations. Ma-
genta crosses are guessed saddle locations. Magenta circles
are guessed locations deemed to be valid points. Yellow cir-
cles shows points excluded due to failing the validation tests
(dirt and scratches on the pattern cause some true saddles
to be excluded). Top row shows occlusion, where CALTag
(left) is able to detect points where the marker is partially
occluded. ARTag (right) misses those corners. Middle row
shows steep angles and strong lighting variation. Bottom
row shows harsh shadows and radial distortion on the sec-
ond layout.

5. Conclusion

We have presented a new fiducial marker pattern targeted at
camera calibration along with an efficient and robust method
for detecting it. CALTag affords two main benefits. First, the
accuracy of calibration point localization via saddle points
is demonstrably superior to the line fits through quad edges
used in previous work. This results in much lower repro-
jection errors for camera calibration. The second, and per-
haps more important benefit, is its ease of use, particularly
in multi-camera configurations. Calibration images can eas-
ily be captured without having to carefully position the grid
in the field of view of each camera, and without having to
manually identify the points in all the images. In addition,
no paramaters need be set by the user to handle different
scene types or resolutions.

References

[BBH08] BRADLEY D., BOUBEKEUR T., HEIDRICH W.: Accu-
rate multi-view reconstruction using robust binocular stereo and
surface meshing. In Proc. CVPR (2008).

[Bou08] BOUGUET J.-Y.: Camera calibration toolbox for Matlab,
2008. http://www.vision.caltech.edu/bouguetj/calib_doc/.

[BPS∗08] BRADLEY D., POPA T., SHEFFER S., HEIDRICH W.,
BOUBEKEUR T.: Markerless garment capture. ACM Trans.
Graph. (2008).

[CN01] CHO Y., NEUMANN U.: Multi-ring color fiducial sys-
tems for scalable fiducial tracking augmented reality. Presence:
Teleoperators and Virtual Environments 10, 6 (2001), 599–612.

[Fia05] FIALA M.: ARTag, a fiducial marker system using digital
techniques. In CVPR (2005), vol. 2, IEEE, pp. 590–596.

[FS07] FIALA M., SHU C.: Self-identifying patterns for plane-
based camera calibration. Machine Vision and Applications 19,
4 (July 2007), 209–216.

[GGSC96] GORTLER S. J., GRZESZCZUK R., SZELISKI R., CO-
HEN M. F.: The lumigraph. In Proc. Siggraph ’96 (1996),
pp. 43–54.

[Gra71] GRAY S. B.: Local properties of binary images in two
dimensions. IEEE Trans. Computers 20, 5 (1971), 551–561.

[ISO06a] ISO/IEC 16022:2006: Information technology – auto-
matic identification and data capture techniques âĂŤ data matrix
bar code symbology specification, 2006.

[ISO06b] ISO/IEC 18004:2006: Information technology – au-
tomatic identification and data capture techniques – QR code
2005 bar code symbology specification, 2006.

[Llo82] LLOYD S. P.: Least squares quantization in PCM. IEEE
Trans. Inf. Theory 28, 2 (1982), 129–137.

[LMH02] LÓPEZ DE IPIÑA D., MENDONÇA P., HOPPER A.:
Trip: A low-cost vision-based location system for ubiquitous
computing. Personal Ubiquitous Computing 6, 3 (2002), 206–
219.

[NF02] NAIMARK L., FOXLIN E.: Circular data matrix fiducial
system and robust image processing for a wearable vision-inertial
self-tracker. In Proc. ISMAR (2002).

[Ope10] OPENCV: OpenCV 2.0 C++ Reference.
http://opencv.willowgarage.com/documentation, 2010.

[OXM02] OWEN C., XIAO F., MIDDLIN P.: What is the best
fiducial? In Proc. IEEE Workshop on Augmeted Reality Toolkit
(2002), pp. 98–105.

[SBGD07] SATTAR J., BOURQUE E., GIGUÈRE P., DUDEK G.:
Fourier tags: Smoothly degradable fiducial markers for use in
human-robot interaction. In Proc. Computer and Robot Vision
(2007).

[SYXH08] SUN W., YANG X., XIAO S., HU W.: Robust
checkerboard recognition for efficient nonplanar geometry regis-
tration in projector-camera systems. In Proc. PROCAMS (2008).

[WM94] WEI G.-Q., MA S. D.: Implicit and explicit camera cal-
ibration: Theory and experiments. In IEEE Trans. Pattern Analy-
sis and Machine Intelligence (May 1994), vol. 16, pp. 469–480.

[YP06] YU C., PENG Q.: Robust recognition of checkerboard
pattern for camera calibration. Optical Engineering 45, 9
(September 2006), 093201–9.

[ZFN02] ZHANG X., FONZ S., NAVAB N.: Visual marker detec-
tion and decoding in AR systems: A comparative study. In Proc.
ISMAR (2002).

[Zha00] ZHANG Z.: A flexible new technique for camera cal-
ibration. IEEE Transactions on Pattern Analysis and Machine
Intelligence 22, 11 (2000), 1330âĂŞ–1334.

c© The Eurographics Association 2010.


