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Abstract
We use structured monochromatic volume illumination with spatially varying intensity profiles, to achieve 3D intensity par-
ticle tracking velocimetry using a single video camera. The video camera records the 2D motion of a 3D particle field within 
a fluid, which is perpendicularly illuminated with depth gradients of the illumination intensity. This allows us to encode 
the depth position perpendicular to the camera, in the intensity of each particle image. The light intensity field is calibrated 
using a 3D laser-engraved glass cube containing a known spatial distribution of 1100 defects. This is used to correct for the 
distortions and divergence of the projected light. We use a sequence of changing light patterns, with numerous sub-gradients 
in the intensity, to achieve a resolution of 200 depth levels.

Graphical abstract 

1 Introduction

Tomographic PIV with four cameras is becoming one of the 
standard techniques in 3D velocimetry (Elsinga et al. 2006; 
Westerweel et al. 2013). The recent addition of shake-the-
box algorithm (Schanz et al. 2016) greatly speeds up the 
calculations and changes the basic nature from a correlation 
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technique to high-resolution particle tracking. However, this 
technique uses particle tracks over numerous time steps, thus 
requiring multiple specialized video cameras to implement 
the 3D tracking. In principle, only two cameras are needed 
to track particles in 3D, but ambiguities due to overlap of 
numerous images severely limits the total number of parti-
cles for possible reconstruction.

Efforts to reduce the cost of multi-camera systems have 
already been carried out. Aguirre-Pablo et al. (2017) pro-
duced instantaneous tomographic PIV measurements of 
a vortex ring without the need for specialized equipment 
by recording with multiple smartphone cameras and using 
high-power LEDs in a back-lit configuration. This reduced 
dramatically the cost of the hardware for these volumetric 
three-component (3D-3C) velocity measurements. Despite 
these cost-cutting efforts, the need for multiple cameras still 
makes such setups complex.

Cierpka and Kähler (2012) provide an in-depth review 
of other attempts for 3D-3C velocity measurement methods 
used in microfluidics, including multiple and single camera 
techniques. Other studies proposing to use a single camera 
for 3D-3C velocity field measurements include: using a three 
pin-hole aperture (Willert and Gharib 1992; Pereira et al. 
1998; Rohaly and Hart 2006; Tien et al. 2014), image split-
ters to produce multiple views on a single sensor (Kreizer 
and Liberzon 2011; Gao et al. 2012; Peterson et al. 2012; 
Maekawa and Sakakibara 2018), defocused PTV (Wu et al. 
2005; Toprak et al. 2007), optical aberrations (Hain and 
Kähler 2006; Cierpka et al. 2010), scanning laser sheets 
or scanning laser volumes (Hoyer et al. 2005; Casey et al. 
2013), plenoptic (light-field) cameras (Cenedese et al. 2012; 
Rice et al. 2018; Shi et al. 2018; Skupsch and Brücker 2013) 
or color-coded illumination (Murai et al. 2015; Ido et al. 
2003; Malfara et al. 2007; McGregor et al. 2007, 2008; Den-
nis and Siddiqui 2017; Ruck 2011; Watamura et al. 2013; 
Xiong et al. 2017; Zibret et al. 2004).

However, such techniques reduce the effective camera 
sensor resolution or have a low aspect ratio between the 
x, y and z direction of the reconstructed volume, resulting 
in relatively low depth resolution or low temporal resolution. 
The majority of these techniques have an error in the depth 
position estimation between 3 and 15% with respect to the 
total reconstructed depth, and the ones with the smallest 
error sacrifice the size of the volume reconstruction, e.g., 
using image splitting.

Herein we describe a simple technique using one 
monochromatic camera and structured illumination to 
track in time numerous particles in a fully 3D volume of 
60 × 60 × 50 mm3 , achieving 200 levels of depth resolu-
tion with a depth position error estimation of approximately 
0.5% with respect to the total reconstructed depth in z. This 
proposed technique does not have the drawback of ghost 
particles, inherent to actual tomographic PIV reconstruction 

algorithms. Distortions and light divergence are herein cor-
rected for with a calibration using a 3D laser-engraved glass 
cube.

2  Experimental setup

We use a common consumer LCD projector (Epson EX9200 
Pro) for illuminating particles seeded in a transparent acrylic 
tank, containing a BK7 glass refractive index-matched liq-
uid. A mixture of silicone-based heat transfer fluids number 
510 and 710 is used as the working fluid. The motion of 
the illuminated particles is recorded by a 5.5 Mpx s-CMOS 
B/W video camera (pco.edge 5.5) with high quantum effi-
ciency, capable of recording images at 16-bits. This camera 
is placed perpendicularly to the projected illumination, as 
sketched in Fig. 1. We use a Nikkor 25–85 mm macro-lens 
with the focal length set at 35 mm and the aperture set at F# 
16, to bring the entire illuminated volume into focus. We use 
green light of different intensities from the projector, to min-
imize possible chromatic aberrations due to diffraction from 
the particle or through the walls of the acrylic container. The 
illuminated volume for the actual experiments was approxi-
mately 60 × 60 × 50 mm3 . One of the main advantages of 
using a projector for the illumination, is the flexibility of 
the structured light, making it simple to modify and adjust 
the illuminated volume size, as well as controlling the pro-
jected frame rate and intensity patterns. There is however a 
trade-off between the size of the illuminated volume vs. the 
brightness recorded from the particles.

2.1  Illumination sequence

The illumination sequence used is shown in Fig. 2. The basic 
principle is to change the illumination to refine the location 
of the particles in subsequent video images. Each illumina-
tion cycle starts with projecting a single frame of uniform 
lighting to calibrate the intrinsic brightness of each particle, 
see Fig. 2a. Subsequently, we include a step-like structured 
lighting, or linear discrete gradient over the entire depth, 
to get an approximate depth location ( L10 ) (ten sectors in 
this experiment), see Fig. 2b. The following frame is a mir-
rored image of the previous one to minimize any error, see 
Fig. 2c. To finish, this is followed by a stack of multiple 
intensity gradients, to refine these locations ( L20 ) (20 levels 
for each sector), see Fig. 2d. This image is projected for 
five subsequent frames. Thus, the projected image sequence 
allow us to obtain 200 digital depth levels of resolution in z, 
the direction not visible by the camera. The total length of 
the projected video sequence is eight frames, allowing for a 
sequence of five separate accurate depth estimates to follow 
particle motion. This illumination cycle is repeated in a loop 
and allows us to continuously track particles with time. We 
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use white polyethylene spherical particles (Cospheric) of 
size 125–150 μ m and density of 1.25 g/cm3. This material 
has a matte surface and allows the particle to scatter enough 
light to be detected by the camera sensor, while minimiz-
ing the contamination to the signal intensity of neighboring 
particles.

We have not attempted to optimize the illumination 
sequence and the intensity-gradient structure. There are 
obviously a plethora of possibilities. Perhaps, it is not nec-
essary to repeat the uniform and coarse illumination as often 
after the first sequence, using larger number of subsequent 
fine-gradient structures. The depth resolution of particles 
which loiter around the peaks and troughs of the profiles in 
Fig. 2d, is likely to be less precise, than the particles in the 
sharp gradients. This could be addressed by shifting these 
gradients by half a wavelength in the z-direction, between 
some of the adjacent frames.

3  Calibration

3.1  Light intensity calibration with glass cube 
and particles

This technique relies on the intensity of light scattered by 
the particles. Thus, it is crucial to minimize any noise or 

fluctuation in the observed intensity due to size dispersion, 
surface roughness or imperfections of the particles. A test 
of the temporal consistency of the projected light intensity 
profile is carried out by placing a white matte target at 45◦ 
between the camera and a projected static continuous inten-
sity gradient (see Figs. S1 and S2). Temporal statistics of the 
intensity presented in Fig. S1b, show very constant illumina-
tion values in time, with a standard deviation < ±1 % of the 
total range of intensities within each gradient. The spatial 
variations in illumination intensity due to proximity to the 
projector are taken into consideration when we calibrate the 
intrinsic light intensity of each particle and study the inten-
sity parameters proposed in Sect. 4.1.

First, a master light curve is produced from the statistics 
of thousands of particles in the field of view of the camera, 
with no motion applied to the fluid. A sequence of uniform 
intensity 8-bit images are projected, to illuminate all the 
particles. The response signal is recorded with the PCO cam-
era. This is repeated for 20 different intensity levels start-
ing from 84 counts to 255, the maximum counts of a 8-bit 
monochromatic image. The lower illumination limit is set by 
the darkest particle which is still visible, since tracking will 
fail if particles become as dark as the background. The digi-
tal 2D planar pixel-coordinates ( x′, y′ ) of the particles are 
obtained using an open source software for Particle Tracking 
available in Fiji, Trackmate (Tinevez et al. 2017). The origi-
nal intended use for Trackmate was for cell detection and 

PCO sCMOS
 camera

Projector 

Collimating
 lens

Particle 
seeds

Intensity gradients

Fig. 1  Experimental setup, showing the orientation of the camera and the illuminating projector. Note the intensity-gradient direction is in the 
depth direction with respect to the camera
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tracking, among other biomedical and biological applica-
tions. However, the flexibility and robustness of this program 
make it a very good choice for 2D particle tracking in a flow 
field. The main detection algorithm is based on the Laplacian 
of Gaussian segmentation. The particle-linking algorithm is 
based on the linear assignment problem created by Jaqaman 
et al. (2008). In this way, many of the features of every single 
particle can be measured, such as the effective particle inten-
sity ( Io ) and the value of the maximum intensity pixel ( Imax ) 
within each particle, for every illumination intensity level. 
Such parameters are described in further detail in Sect. 3.2. 
The response signal for each individual particle at all levels 
is then normalized by the value obtained when the image 
of 255 counts is projected. The mean response signal (see 
Sect. 3.2) and a second-degree polynomial fit are presented 

in Fig. 3, as well as their standard deviation dispersion. This 
curve serves primarily to calibrate the projector intensity 
response, thereby allowing us to determine the depth level 
( z′ ) in which the particle is contained using the algorithm 
described in Sect. 4.1.

The particle image density (particles per pixel) in our 
technique is limited by the capability of the 2D particle 
tracking algorithm used to distinguish individual particles, 
since we are using single camera images. The recorded 
images herein, have a relatively low particle image density 
(0.002 ppp) to minimize errors for the particle tracking algo-
rithm initially. However, the image density can be increased 
substantially when using advanced 2D PTV algorithms such 
as the one proposed by Fuchs et al. (2017). In their study, 
experimental results show an image density of 0.02 ppp for 
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Fig. 2  Projected images with their corresponding intensity plot. a Constant intensity. b Ten sectors of different intensities. c Ten sectors mir-
rored. d 10 sub-gradients with 20 intensity levels each
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a near-wall turbulent boundary layer. Cowen and Monismith 
(1997) state that the optimal particle concentration for 2D 
PTV is between 0.005 and 0.02 ppp. Keep in mind that for 
the PIV correlation technique ∼6–10 particles are recom-
mended for each interrogation window, which in principle 
give similar number of vectors per volume for PIV and PTV.

With a particle image density of 0.002 ppp, we can get 
approximately 1200 particles (vectors) at every time step 
in the whole volume, representing approximately 0.01 vec-
tors/mm3 in the current setup. There is clearly scope for 
increasing the particle image density, which will increase 
proportionally the number of tracks.

3.2  Intensity of isolated particle images

To test the potential of this technique, we first illuminate 
a slowly moving field of a few particles with a uniform 
volume illumination. This is used to quantify how con-
stant the scattered light from individual particles remains 
as their images are shifted over pixel boundaries on the 
CMOS sensor. Figure 4 shows a sequence of real pixel 
intensities for a typical particle. It shows clearly how 
the distribution of intensities spreads among the pixels, 
making them vary strongly from frame to frame. For this 
randomly selected particle in Fig. 4, the peak 8-bit pixel 

intensities take the following values: 176, 188, 170, 183, 
187, 175, 187, 186 and 190 varying over a min–max range 
of ≃ 11 %. The effective particle intensity must therefore be 
estimated from a weighted integral over the particle area, 
thereby incorporating both its intensity C and its width �.

The use of a 2D Gaussian profile when studying particle 
image properties reduces random noise in the sensor, as 
studied in detail by Massing et al. (2016). Therefore, we 
fit the intensity profile of each particle in every frame with 
a 2D Gaussian shape,

This profile is fit by shifting the subpixel peak location 
(xo, yo) and adjusting the magnitude C and width � . The 
least-square best fit only uses pixels around the peak, where 
the intensity exceeds a certain threshold. Figure 5 shows 
these best fits for C and � following this particle over a num-
ber of subsequent video frames. As expected, the peak inten-
sity and the width are anti-correlated. However, empirically 
we find the best intensity estimate by combining the central 
intensity and the image width as

Repeated tests show that the variation of this quantity is 
within bounds of ±2%. This parameter helps us to determine 
the intrinsic brightness of every particle, regardless of their 
location or size which produces variation in the intensity of 
the recorded pixels at identical illumination intensities (more 
details on this process are presented in Sect. 4.1). Theoreti-
cally, with ten sub-gradients of the illumination intensity, 
we should therefore be able to distinguish 250 depth levels 
for the particles.

(1)I(x, y) = C exp [−(x2 + y2)∕�2].

(2)Io = C �
3∕2.
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Fig. 3  Typical projector light calibration curve

Fig. 4  Intensity signature of a typical particle image, shown over nine 
consecutive video frames, using uniform illumination. The radial 
width of the particle is here � = 1.77 px
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Fig. 5  The best fit values of C, � and C�3∕2 for the particle in Fig. 4 
over nine consecutive frames with uniform illumination. The values 
are normalized by their corresponding averages
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3.3  The 3D calibration cube

Here we describe the correction for the projector light 
divergence and perspective distortion. To calibrate the real 
space coordinates ( x, y, z ) from the projected frames and 
correct lens distortions, a 3D laser-engraved calibration 
cube of 80 × 80 × 80  mm3 is designed in-house. The 3D 
laser engraving process in glass is a well-known industrial 
process used for the production of trophies, awards and 
souvenirs. It consists of a high-power laser that produces 
micro-cracks in a structured way inside the glass where 
the focal point of the laser is placed. The material of the 
cube used herein is BK7 optical glass, which has a refrac-
tive index of 1.519 at 20 ◦C and a wavelength of 527 nm 
(SCHOTT glass AG). We take advantage of this feature to 
produce a 3D array of micro-cracks in ten different planes, 
containing 110 micro-cracks each. Each plane is rotated 

with respect to the previous one by 32.7◦ to ensure that no 
other crack will block the illumination from the projector, 
nor block it from the camera. This allows us to simulate a 
static particle field of 1100 particles, as shown in Fig. 6.

A light-intensity calibration (described in the Sect. 3.1) 
is applied using the same 20 intensity levels to obtain the 
digital depth position ( z′ ) implementing the algorithm 
described in Sect. 4.1. The digital coordinates ( x′, y′ ) 
with subpixel accuracy of the particles in the cube are 
obtained using Trackmate. Subsequently, the video 
sequence with multiple frames and gradients (see Fig. 2) 
is projected in the static cube the same way as it is done 
for the real particle field. Both calibrations (light inten-
sity and spatial calibration) allow us to reconstruct the 
3D pattern of the cube simulated particles, see Fig. 7. 
Subsequently, a 3D mapping function is obtained to cor-
rect distortions and connect the digital space coordinates 

Fig. 6  a Design planes of the calibration glass cube. b Side-view pattern which is visible to the camera. c Real cube illuminated by the projector. 
d Top view of the cube showing the multiple planes present in the cube
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( x′

, y′, z′ ) to real space coordinates ( x, y, z) as described 
in Sect. 4.2.

The 3D calibration glass cube used herein, represents a 
simple approach for spatial mapping and correcting illu-
mination and imaging distortions, i.e., achieving a “set-
and-shoot” solution. However, the need for a refractive 
index-matched liquid can be a severe hindrance. Never-
theless, when such a liquid cannot be used, one can use a 
planar dotted calibration target placed at 45◦ between the 
projector and the camera, translating it across the recon-
structed volume to produce the 3D mapping functions. 
This process and algorithm will be more complex and 
could be a representative source of errors.

4  Computational algorithm

4.1  Obtaining the depth position z′

To obtain the depth position z′ for every particle, it is nec-
essary to analyze its recorded intensity in space and time. 
For the current setup, the particles are not of uniform size, 
having a range ∼ 4–8 pixels in diameter. Therefore, we 
compare three different parameters within each particle: 
maximum pixel intensity ( Imax ), Gaussian-weighted aver-
age intensity ( Iw ) and the effective particle intensity ( Io ) 
defined in Sect. 3.2.

Fig. 7  a Typical frame from the PCO camera of the calibration cube 
illuminated by a uniform intensity frame. Note the different intensity 
levels for each particle. b XY view of the cube reconstruction. c XZ 

(top view) of the cube reconstruction. Note the volume distortion due 
to the projection divergence. d 3D view of the reconstructed cube, 
particles are colored by their depth position ( z′)
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First, these parameters are normalized with the maximum 
value of each illumination cycle. This allows us to quantify 
the intrinsic intensity for every single particle during multi-
ple illumination cycles and thereby deduce the correspond-
ing depth position. A plot comparing the statistical disper-
sion as mean absolute deviation (MAD) in a light intensity 
calibration of the above parameters is presented in Fig. 8. 
The MAD is defined as

where N is the number of sampled particles, I is the param-
eter being studied ( Imax , Iw or Io ) and I is the mean of that 
parameter. This measure of variability is used since it is 
more robust in identifying the parameter that produces the 
smallest error deviation, thereby being more resilient to out-
lier data points and assigning more weight to the data points 
closer to the fit.

From Fig. 8, we can clearly see that Io presents the lowest 
dispersion values. Therefore, Io is the parameter of choice 
to continue, providing a low error reconstruction. Hence, 
a master light curve using Io is obtained as described in 
Sect. 3.1

We now describe the general algorithm used to determine 
the depth z′ of each particle. A flowchart summarizing the 
process is provided in the Supplemental materials.

Each particle is assigned to a bin depending on its Io 
value at every projected frame. Such bins are created based 
on the theoretical camera response obtained by the light 
calibration curve shown in Fig. 3. In the first video frame 
(Fig. 2a), a solid green color is projected to calibrate the 
intrinsic intensity of the particle, thus, it does not require a 

(3)MAD = 1∕N

N∑

i=1

∣ Ii − I ∣,

bin. For the second video frame (Fig. 2b), ten equally dis-
tributed bins are created with their midpoints ( I mid ) starting 
from 84 to 255 intensity counts in steps ( 2�s ) of 18 counts, 
after normalization by the maximum intensity of an 8-bit 
image (255 counts). The upper and lower limits are defined 
by Lim = Imid ± �s . The third projected frame (Fig. 2c) is a 
mirrored version of frame 2. Frames 4–8 (Fig. 2d) consist of 
20 bins (84–255 counts) with 2�s = 9 counts.

Every particle is then allocated to the corresponding 
depth bin ( L10 for projected frames 2 and 3 and L20 for pro-
jected frames 4–8) at every recorded video frame by evaluat-
ing the master light curve (see Sect. 3.1) with the detected Io.

It is important to mention that LCD projectors have a 
transition time between projected frames. Therefore due to 
the unsynchronized camera projector system, one can notice 
a periodical single transition frame recorded with the PCO 
camera for every projected frame. This frame is neglected 
for the depth estimation, however, 2D information of the 
particles in those frames is evaluated. In future implementa-
tions, this transition frame can be eliminated with appropri-
ate synchronization and exposure timing.

One of the main advantages of oversampling the pro-
jected video frames (four frames in the recorded video at, 60 
fps, represent one projected frame at 15 fps for this iteration) 
is that we can use temporal statistics for correcting spuri-
ous depth estimations in L10 and L20 . These spurious depth 
estimations are mainly due to overlapping particles, as seen 
in Fig. 9, where clear deviations occur intermittently, when 
the tracking jumps to erroneous particles. To fully define the 
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digital depth position z′ at any time, it is necessary to define 
L10 and L20 for every particle at every time. Therefore, if the 
statistical mode frequency of L10 from projected frames 2 
and 3 is Mo(L10) ≥ 4 , L10 is defined during that illumination 
cycle. Additionally, if max(L20) −min(L20) < 10 , i.e., when 
the particle stays in the same L10 bin, L20 is defined and the 
digital depth ( z′ ) can be initially estimated for that particle 
and illumination cycle. This is valid for particles which do 
not have very high velocities in the depth direction ( z′).

However, if max(L20) −min(L20) ≥ 10 for a single illumi-
nation cycle, it is assumed that the particle has crossed the 
boundary of a bin in L10 . Therefore, to establish the depth 
in those cases, it is necessary to look into the last and first 
few frame levels ( L10 and L20 ) from the previous and next 
illumination cycle, respectively. The linkage of temporal 
information allows us to define most of the remaining depth 
positions for every particle.

Furthermore, the initial estimation of the z′ component of 
the particle trajectories is refined by a bisquared weighted 
least-squared fitting z� = f (t) . This iterative fitting method 
assigns smaller weights to the positions that are far away 
from the original fit. The quadratic polynomial fit is obtained 
for every single particle. A comparison of a few particle 
trajectories vs the quadratic polynomial fit are shown in 
Fig. 9. The few outliers do not significantly distort the true 
trajectory.

Particles moving into the test volume, during the frames 
with the finest intensity gradients, can be dealt with by track-
ing them backwards in time, starting from subsequent uni-
form lighting.

4.2  Mapping functions

Here we describe the mapping from digital space ( x′, y′, z′ ) 
to real space coordinates ( x, y, z ). Using the data collected 
in Sect. 3.3, it is observed that the reconstructed cube has 
distortions due to the divergence of the illumination and lens 
aberrations (see Fig. 7c). Therefore, we can link the digital 
coordinates with the real space using the known coordinates 
of the particle field of the cube. It is assumed that the real 
space coordinate z = f (x�, z�) , since the projected light is 
vertical and the pattern projected does not vary in the verti-
cal axis y. The mapping function is obtained by a bisquared 
weighted polynomial 3D surface fit of degree 2 in x′ and z′ . 
The polynomial model is presented in Eq. S4 presented in 
Supplementary Information. A 4D non-linear regression fit 
is used for mapping x = f (x�, y�, z) and y = f (x�, y�, z) as 
specified in the Supplementary Information Eqs. S5 and S6.

The polynomial coefficients and the fidelity of fit informa-
tion of the mapping functions are summarized in Table S1 in 
Supplementary Information. A flowchart summarizing the 
algorithm process for the 3D reconstruction is presented in 
Online Supplemental Materials Fig. S3.

After applying the mapping functions in the cube (see 
Fig. 10), we find that the error in the 3D reconstruction 
of the cube has an |RMSe| = 0.273 mm, where the depth 
component of the error ( ez ) is the greatest component with 
RMSez = 0.271 mm. These error estimation values are 
obtained from the goodness of fit of the mapping functions, 
where the function z(x�, z�) is obtained from the known 
coordinates of 1000 detected particles from the calibration 
cube. This provides simultaneously an error estimation of 
the detected depth ( z′ ). This value represents approximately 
0.5% of the 50 mm depth from the reconstructed volume.

5  Tracking results

5.1  Experiments in a rotational flow

We produce a rotational flow in a tank full of the heat transfer 
fluid mix with a disk attached to a controllable speed motor, 
as depicted in Fig. 11. This flow field is usually referred to as 
the von Kármán pump. The liquid is seeded with white poly-
ethylene particles. The acrylic tank of 120 × 120 × 250 mm3 
is filled with a mixture of heat transfer fluid 510 and 710. 
The refractive index of the mixture is 1.515 measured at 22 
◦ C. This is to match the refractive index of the BK7 glass 
cube used in the calibration.

First, the light intensity calibration is carried out as 
described in Sect. 3.1. The motion of the particles is then 
tracked using Trackmate software, providing us with the 2D 
digital coordinates ( x′, y′ ) with subpixel accuracy, as shown 
in Fig. 12. Spatial calibration using the crystal cube is car-
ried out as described in Sect. 3.3.

The disk is rotated at 60 rpm and the 2D trajectories in 
time allow us to obtain the intensity profile for every particle 
in each recorded frame. Thus, using the algorithm described 
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Fig. 10  Corrected reconstruction (red) of the calibration cube after 
applying the mapping functions. Real coordinates of the recon-
structed cube (cyan)
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in Sect. 4.1, we can obtain the corresponding depth position 
z′ . The 3D spurious reconstructions are filtered to the ones 
that have a z�(t) polynomial fit with R2

> 0.9 , described at the 
end of Sect. 4.1. Subsequently, the mapping function defined 

in Sect. 4.2 is applied to the digital coordinates ( x′, y′, z′ ) 
to transform them to the real world coordinates ( x, y, z ). 
Pathlines of 960 unique particles colored by their velocity 
magnitude are presented in Fig. 13a–d. The corresponding 
velocity histograms for u, v and w are presented in Fig. 14, 
showing the statistical “smoothness” of the results in light 
of the multi-scale reconstruction steps. An animated video 
of the 3D pathlines is presented in Supplemental Material.

6  Concluding remarks

Herein, we have demonstrated the implementation of inten-
sity 3D PTV with a single monochromatic sCMOS video 
camera and a consumer-grade LCD projector as a light 
source. We reconstruct and track particles in 3D inside a liq-
uid by structuring the projected light, with numerous depth 
gradients in intensity. This new methodology increases dra-
matically the depth resolution of previous single camera 3D 
PTV systems, up to 200 levels with low error in the 3D 
depth position estimation ∼ 0.5% of the total depth, while 
increasing the reconstructed volume size and at the same 
time minimizing the complexity of the hardware setup.

One of the drawbacks of the proposed technique, is the 
need for optical access for whole volume illumination from 
the projector perpendicular to the camera. This may limit the 
complexity of the possible geometries to be studied. How-
ever, this might be overcome by taking advantage of the 
flexibility in the projected illumination pattern (temporally 
and spatially), and designing the structured light for specific 
problems. For example, one could adjust the incoming light 
to correct for aberrations from the container shape.

In the actual implementation, the main limitation is the 
framerate of the projected patterns (15 fps for the actual 
setup). We estimate that the maximum velocity of the par-
ticles in the depth direction z could be w ≤ 37 mm/s in the 
current configuration. This is to ensure that the particle does 
not travel through more than one complete sector L10 = 5 
mm between two frames of the early part of the illumination 
cycle. However, the projector used herein is capable of 60 
fps refresh rate. With perfect synchronization of the camera 
and the projector, we could therefore, in principle, obtain 
four times higher depth velocity ( w ≤ 150 mm/s) with the 
current hardware.

Conceptually, the present technique is very simple and 
in principle, using a fast high-sensitivity low-noise camera, 
one could achieve finer depth levels than the in-plane pixel 
spacing. This will however be more dependent on the quality 
of the structured light, than the sensor sensitivity.

It remains to optimize the projected illumination pattern 
and frame sequence. Numerous possibilities can be tested. 
In principle one only needs to project the uniform lighting 
(Fig. 2a) and course levels (Fig. 2c), when new particles 

Controllable
speed motor

Rotating
 Flat disc

Measured
volume

Fig. 11  Schematic drawing of a von Kármán pump. The studied 
region of the flow is enclosed in the magenta dashed box

Fig. 12  2D projection of the 3D particle pathlines obtained with 
Trackmate. The rotating plate is 15 mm above the top of the image. 
The colors are fixed for each particle. The width of the image spans 
∼ 60 mm inside the tank
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enter the volume. We can certainly repeat the fine gradi-
ents (Fig. 2d) over longer sequences of frames. While this 
would complicate the tracking algorithm, it might help to 
track forwards and backwards in time from the latest refer-
ence illuminations.

A reviewer has suggested the use of a typical color cam-
era with a Bayer filter array could allow us to combine 
some of the frames of the illumination sequence, shown in 
Fig. 2, in the different fields. For example, by combining a 
red frame Fig. 2a, a blue frame Fig. 2c and a green frame 
Fig. 2d, one can thereby code the intrinsic particle intensity 
and rough depth location in the red and blue, while retain-
ing a more refined depth location in the green pixels. This 
would of course reduce the in-plane spatial resolution, while 
reducing the needed number of frames in the sequence to 

only one, thereby increasing greatly the temporal resolu-
tion. However, when using chromatic illumination, one has 
to consider carefully the effects of, color cross-talk, errors 
from pixel demosaicing and chromatic aberrations (Aguirre-
Pablo et al. 2017). Even while using the RAW format, the 
disparate spatial samplings of the Gaussian particle images 
could introduce large errors. This could be overcome with 
a three-chip color camera, but would require a much more 
expensive camera and would also violate the spirit of our 
single-sensor technique.

This inexpensive technique will enable industrial, scien-
tific and educational institutions to experimentally study the 
3D structure of fluid flows for energy, biological, engineer-
ing and medical applications.

Fig. 13  Reconstructed rotating flow pathlines of 960 unique particles, colored by the velocity magnitude in mm/s. a XY view. b YZ view. c XZ 
top view. d 3D view of the pathlines. Note that b and c views are not directly visible by the camera
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