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1. Convergence Conditions
In the Regularization by Denoising (RED) framework,

the denoiser engine (D(.)) should satisfy two conditions for
guaranteed convergence [1]:

• Local homogeneity: we should verify that

∀ 0 ≤ ε� 1 : D((1 + ε)x) = (1 + ε)D(x)

• Strong passivity: The Jacobian of the denoiser should
satisfy

η (∇xD(x)) ≤ 1,

where η(.) is the spectral radius of a matrix.

In this section we will present numerical tests that we
have performed in order to heuristically show that these two
conditions are met by the Non-Linear Anisotropic Diffusion
(NLAD) denoiser.

for our selected denoiser.

1.1. Local homogeneity

Following a similar approach to the original paper on
RED approach [1], we provide an empirical evidence of
the local homogeneity by plotting: D ((1 + ε)x) versus
(1 + ε)D (x). We used a simulated Fresnel Zone Plate of
size 256 × 256 × 256, to which Gaussian noise is added
(σ = 0.3) (Figure 1). This resulting plot is shown in Figure
2, and demonstrates the required equality of the two terms.

1.2. Strong passivity

To show strong passivity, we computed the spectral ra-
dius of the Jacobian using the power iteration method. This
is done following Algorithm 1.

*Both authors contributed equally.

Figure 1: Fresnel Zone Plate data used for proofing the local
homogeneity and the strong passivity. Simulated FZP (left
side) and The noisy FZP (right side).

Figure 2: Plotting D ((1 + ε)x) versus (1 + ε)D (x) shows
clearly the local homogeneity for this data. Different values
of ε have been chosen.

For our experiment we choose the same input data
(Noisy FZP) used for the local homogeneity experiment,
with ε = 0.001. Figure 3 shows the progression of this
algorithm over multiple iterations. We notice that the spec-
tral radius of the Jacobian of the denoiser converges to 1,
which satisfies the strong passivity condition.
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Table 1: Parameters used to run the baseline methods a for both synthetic and real datasets.

Method Parameter FZP2 FZP4 FZP8 Toothbrush Ropeball Fan
SART Main loop iterations 15 15 20 13 5 12

Momentum α 0.3 0.3 0.3 0.1 0.1 0.009
PSART-ATV Main loop iterations 15 15 15 8 6 7

Nested prior iterations 1 1 1 1 1 1
Nested SART iterations 3 3 3 2 2 3
Prior parameter λ 0.003 0.003 0.003 0.1 0.08 0.08
CP parameters µ, τ 0.15, 1.3e-4 0.15, 1.3e-4 0.15, 1.3e-4 0.1, 0.1 0.15, 0.13 0.15, 0.13

PSART-STP Main loop iterations 25 25 14 12 5 7
Nested prior iterations 1 1 1 1 1 1
Nested SART iterations 3 3 3 2 2 3
Prior parameter λ 0.3 0.03 0.03 0.5 0.3 1
CP parameters µ, τ 0.3 0.3 0.3 0.3 0.1 0.13, 0.15

Algorithm 1 Power iteration method applied on the Jaco-
bian of the denoiser NLAD
Require: D(.), ε, x, T

1: Initialization: x0 ← x
2: for all t = 0 . . T do
3: Dxt ← D(xt)
4: D(1+ε)xt ← D((1 + ε)xt)

5: Jt ←
D(1+ε)xt

−Dxt

ε

6: ηt ← ‖Jtxt‖
‖xt‖

7: xt+1 ← Jtxt
‖Jtxt‖

8: end for
return : ηT

Figure 3: The power iteration method applied on the Jaco-
bian of the denoiser shows that the spectral radius of the
latter is lower than one.

2. Parameters

In Table 1, we invite the reader to refer to the work of [2],
where the parameters used for the baselines are explained in

more details.
In Table 2, to design a super-resolution reconstruction set

up, it is important to have a ratio larger than one between
the input pixel size of the projection and the reconstructing
voxel size.

3. Additional results
We provide the results of the FZP8 reconstructions using

all methods (Figure 4). While our proposed method is pro-
viding similar results than the PSART-STP, it has 4.5 times
lower memory footprint. In the Figure 5, we show 3D ren-
dering visualization of the reconstruction of all datasets us-
ing our approach.

A visualization of the Toothbrush from the axial plane
is given in Figure 6. We can see clearly a better qualitative
reconstruction with our method, in comparison to PSART-
ATV and PSART-STP approaches.

Finally, a quantitative (PSNR and SSIM) comparison for
the real scanned data is provided in Figure 7. Note that
these metrics are computed using a reference reconstruc-
tion which is not the exact ground truth, but a PSART-ATV
reconstruction using higher resolution input projections.



Table 2: CT Parameters for each dataset.

Parameter FZP2 FZP4 FZP8 Toothbrush Ropeball Fan

SID (mm) 1000 1000 1000 243.8 331.457 705.872
SDD (mm) 1536 1536 1536 983 1009.27 1009.27

Detector pixel 1024× 1024 1024× 1024 1024× 1024 1916× 1536 1910× 1524 1910× 1524

Detector pixel size(mm) 0.4 0.4 0.4 0.127 0.127 0.127
Input pixel 128× 128 128× 128 128× 128 477× 381 159× 127 955× 762

Input pixel size (mm) 3.2 3.2 3.2 0.508 1.524 0.254
Image downsampling factor 8 8 8 4 12 2

X-ray penetration (kV) NA NA NA 32 90 90
X-ray intensity (µA) NA NA NA 421 135 100

Reconstruction volume size 256× 256× 256 512× 512× 512 1024× 1024× 1024 690× 669× 776 290× 350× 300 285× 762× 233

Voxel size (mm) 1 0.5 0.25 0.0377 0.1168 0.177
Number of projections 180 180 180 360 720 187

Figure 4: Comparison results for the reconstruction of the Fresnel Zone Plate using 2D cross-sections. (a) FZP8: reconstruc-
tion with a ×8 super-resolution. (b) 3D rendering of the FZP8 using Ours.
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Figure 5: The datasets reconstruction using our method. Toothbrush, Ropeball, Fan, FZP2, FZP4, respectively.



Figure 6: Left to right: representative slice visualization for the toothbrush in the axial plane for the volume and its close up
view for the data reconstructed by PSART-ATV, PSART-STP, Ours, and the reference volume, respectively.

Figure 7: PSNR and SSIM results for the real datasets (from left to right): Toothbrush, Ropeball, and Fan.


