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Abstract

Despite the impressive performance of Computed To-
mography (CT) hardware, there is still a need to push the
boundaries of the CT spatial resolution. Super-resolution
techniques have been widely used in computer vision to en-
hance the resolution of 2D and 3D images. They have also
been introduced to improve the CT volume resolution. In
this work, we propose a flexible framework that produces a
higher-resolution 3D volume from low-resolution 2D pro-
jections. This framework can be applied to any CT data
regardless of the original physical scale and regardless of
the target application. It is based on regularization by de-
noising (RED) approach, where a Non-Linear Anisotropic
Diffusion filter is used as the denoiser. We demonstrate our
framework on both simulated and captured data, and show
good quality reconstruction and a huge memory-footprint
improvement in comparison to the state-of-the-art algo-
rithm.

1. Introduction
X-ray computed tomography (CT) is a non-destructive

imaging tool that reveals the internal structure of the
scanned objects. It is based on reconstructing 3D density
volumes representing the objects from a set of 2D projection
images, acquired from different angles. X-ray CT has ap-
plications in numerous fields such as medicine and biology,
security , and material and geosciences [49, 22, 36, 6, 11].
In computer vision, several algorithms and techniques have
been proposed to reconstruct the density volumes under dif-
ferent acquisition scenarios including sparse views, discrete
tomography, and dynamic tomography [2, 48, 3, 61, 62, 5].
In addition, several contributions have been made to bet-
ter exploit the CT output in many computer vision tasks
like segmentation, denoising, detection, rendering or super-
resolution [12, 45, 17, 64, 60].

*Both authors contributed equally.

Figure 1: Our super-resolution CT reconstruction method
tackles thin structures beyond the Nyquist limit of the im-
age sensor, including thin fibrous features such as the tooth-
brush (top) and jute ball (middle), as well as thin surface
features such as the folding paper fan (bottom). From left
to right: camera photo, x-ray image, and 3D reconstruction.

Since the first clinical CT device invented by Hounsfield
in the early 1970s, CT hardware capabilities have seen huge
improvements. Synchrotron facilities are now able to reach
temporal resolutions of up to 1 ms, and spatial resolu-
tions of 20 nm or better [13]. Even lab-based CT facili-
ties can be as fast as 12 s per scan and reach resolutions of
≈ 10 µm [8]. However, despite these drastic improvements
in peak resolution, the overall bandwidth in the acquisition
system has seen much more modest improvements, which
requires a delicate tradeoff between spatial resolution, tem-
poral resolution, and field, or volume size (i.e. the physi-



cal dimensions of the reconstructed volume). For example,
while some slower X-ray sensors may have 10 megapixels,
high-speed sensors may only have one megapixel or less.
If such a sensor is used to investigate objects with feature
sizes of 20 nm, the total reconstruction volume would only
have a diameter of ca. 20 µm. Besides this bandwidth limi-
tation, the hardware costs also grow disproportionately with
increasing spatial and temporal resolution.

Due to these tradeoffs, it is still of vital interest to extract
the most detailed information possible from any given cap-
tured tomography dataset. Super-resolution methods help
maximize spatial and temporal resolution for a given vol-
ume size while keeping the hardware costs under control.
CT super-resolution methods can be classified into pre-
processing, post-processing, and joint reconstruction ap-
proaches (see next section for a more detailed discussion).
Of these, only joint reconstruction approaches can guaran-
tee a strict consistency of the reconstructed volume with
the raw projection data. However, joint optimization ap-
proaches come at a high cost in compute time and espe-
cially memory consumption. For example, the state-of-the-
art method [60] is simply not feasible for large volumes due
to excessive memory usage.

In this paper, we propose a flexible framework for the
super-resolution tomographic reconstruction of 3D volumes
from lower resolution projections. This new variational
framework adopts the Regularization by Denoising (RED)
scheme solved with the Alternating Direction Method of
Multipliers (ADMM) [42]. We use the proximal SART [3]
as a solver for the tomographic reconstruction term, and the
Non-Linear Anisotropic Diffusion (NLAD) method as the
denoiser in the regularization step. The aim of using this de-
noiser is to preserve the 1D and 2D features in the 3D recon-
structed volumes, since the denoising directions are aligned
with thin 1D structures such as the fibers in the toothbrush
or jute ball (Fig. 1 top, middle), or with thin 2D structures
like the paper folds in a folding fan (Fig 1, bottom). In sum-
mary, the main features of our approach are:

• A joint super-resolution reconstruction for general ob-
jects, with significantly improved memory consump-
tion at a reconstruction quality at least on par with the
state-of-the-art super-resolution CT approaches.

• A RED-based super-resolution method that uses an
anisotropic diffusion denoiser rather than a standard
Gaussian denoiser like traditional RED frameworks
(we empirically show that this denoiser respects local
homogeneity and strong passivity conditions required
for the convergence of RED).

• A joint optimization approach that guarantees close
adherence of the reconstructed volume to the measured
projection images.

2. Related work
Computed tomography is a well-known technique for

reconstructing 3D density volumes of scanned objects, us-
ing a set of 2D projection images. There are two main fam-
ilies of tomographic reconstruction methods: transform-
based approaches such as filtered back-projection [15], use
the Radon transform and its inverse to provide an analytic
reconstruction. These methods are fast and yield satisfy-
ing results when the tomography problem is well-posed.
This is why they are still widely used by commercial CT
scanners [41]. The second category are iterative methods,
which are based on solving an optimization problem to ob-
tain a solution to the reconstruction problem. The Alge-
braic Reconstruction Technique (ART) [21] and its variants
such as the Simultaneous Algebraic Reconstruction Tech-
nique (SART) [4] are the most famous iterative reconstruc-
tion methods. They iteratively update the 3D reconstructed
volume using a Kaczmarz projection scheme. The main ad-
vantage of these methods is that they may be easily com-
bined with data regularization terms. Such framework pro-
duce better results in several ill-posed tomographic prob-
lems like sparse views [51, 27, 39], limited angles [30, 10]
or dynamic tomography [61, 38, 25, 62].

With the recent rise of the deep learning, some works in-
troduced learning-based approaches to the CT reconstruc-
tion to deal with ill-posed CT problems [9, 5, 7, 26, 34].
However, compared to regular images or video, CT vol-
umes exhibit a much larger degree of domain-specific statis-
tics, for example when comparing medical CT scans to ge-
ological rock samples or synchrotron images of fuel cells.
This has so far made it impossible to find general deep net-
work approaches that easily transfer between different ap-
plication domains. For general-purpose applications model-
based iterative optimization approaches still constitute the
state of the art at this time.

Super-resolution (SR) imaging is a set of algorithms
that generate a higher-resolution (HR) output from lower-
resolution (LR) input(s) [46, 37]. The main objective of
these techniques is to overcome the limitations of the ac-
quisition hardware, in order to improve the visualization
and the post-processing of the data. Since the pioneering
works [20, 14], SR has been widely used in various appli-
cations, such as medical imaging, satellite and aerial imag-
ing, and security applications [63, 40, 58, 43, 1]. The SR
approaches can be classified according to different criteria:
The number of LR inputs (i.e. single or multiple), the ap-
plication domain (i.e. spatial or frequency) and the type of
the approach (i.e. interpolation-based, regularization-based
or learning-based). For a comprehensive overview of the
SR techniques, we invite the reader to refer to some of the
numerous review papers [37, 54].

Super-resolution CT In the context of CT, the purpose
of the SR techniques is to provide an HR 3D volume from



LR 2D projections. Ideally, SR aims to resolve fine fea-
tures below the Nyquist limit of the individual projections.
There are three strategies of the CT SR techniques: The
first strategy consists of applying the SR algorithms on the
2D projections as a pre-processing step of the CT recon-
struction [44]. The second strategy is a post-processing
step applied after the reconstruction of the 3D volume. For
this strategy, the SR techniques can either be applied on
the 2D slices of the volume [59, 53, 24], or on the 3D
volume itself [47, 28, 23, 19]. Both of these approaches
are pipelined frameworks, where errors can accumulate be-
tween the CT reconstruction stage and the super-resolution
stage, so that the final volume may actually be inconsistent
with the original projection data, which may not be accept-
able in some situations. Most of the recent approaches fol-
lowing the pre/post-processing strategies are learning-based
approaches. They suffer from two main drawbacks: (1)
These methods require a large database of known LR and
HR image/volume pairs, which is hard to obtain even in the
medical field, where the CT data are the most available. (2)
To avoid this issue, the majority of these SR methods artifi-
cially construct the LR data by blurring and downsampling
the captured HR data. This leads to a risk of oversimplifi-
cation of the SR problem [29].

The third strategy, which we follow in this paper, con-
sists of directly incorporating the SR module as a regular-
ization term into an iterative CT reconstruction method. For
objects containing a limited number of materials, SR can
be obtained by imposing a discrete tomography reconstruc-
tion with a limited number of grey levels [48, 50]. Re-
cently, the structure tensor prior was used in order to re-
solve 1D/2D features embedded in 3D reconstructed vol-
umes [60]. This approach managed to reconstruct features
beyond the Nyquist limit of the 2D projections and is most
closely related to our work. However, it suffers from a huge
memory consumption that makes it impractical to use on
large volumes. Our method produces similar or better re-
sults with significantly lower memory requirements.

Nonlinear Anisotropic Diffusion (NLAD) is a class of
filtering approaches that has been widely used in computer
vision to denoise images while enhancing edges and local
structures [55, 56, 57]. There are two main NLAD fil-
ters: Edge Enhancing Diffusion (EED) [55]; which is an
adaptive steered gradient-based filter that allows smooth-
ing along the edges while it inhibits the smoothing across
them. The other main filter is the Coherence Enhancing
Diffusion (CED) [56, 57]. For this second filter, the smooth-
ness is performed along coherent flow-like structures. The
NLAD filtering has been applied in several computer vi-
sion tasks like denoising [16, 35], data compression [18],
super-resolution [31, 33]. Nevertheless, to the best of our
knowledge, NLAD has never been used as a regularization
term in a super-resolution CT reconstruction framework, as

we propose in the current work.

3. Methodology
3.1. Variational formulation

For a scanned object, the N captured projections are ob-
tained from the 3D density volume x ∈ RNv representing
the object, using the following equation:

pi = Ai · x + ni, (1)

where Ai ∈ RNp×Nv and ni are respectively the Radon
transform operator and the noise distribution corresponding
to the ith projection pi. Np and Nv are respectively the
number of pixels in the projections and the number of vox-
els of the 3D volume.

The tomographic reconstruction problem is a linear in-
verse problem that consists of retrieving the 3D density vol-
ume x, from the set of N captured projections (pi)1≤i≤N .
This can be formulated as a convex optimization problem,
where the loss function is given by:

x∗ = argmin
x

N∑
i=1

‖Ai · x− pi‖22 + λ · R(x) (2)

where the first term is the data-fitting term, that penalizes
the discrepancy between the reconstructed volume and the
captured projections, R(.) is regularization term that we
will present below. λ is the weight associated with the reg-
ularization term.

3.2. Regularization by Denoising (RED)

To solve the optimization problem presented in Equation
2, we follow the Regularization by Denoising (RED) [42]
paradigm. Given a denoiser engine D(.) respecting the lo-
cal homogeneity and the strong passivity conditions (one
can refer to [42] for more details), the RED approach pro-
poses the use of a penalty term proportional to the inner-
product between the volume x and its denoising residual
(x− D(x)). This prior is expressed as:

R(x) =
1

2
· xT (x− D(x)) (3)

The optimization problem in Equation 2, then becomes:

x∗ = argmin
x

N∑
i=1

‖Ai ·x−pi‖22+
λ

2
·xT (x− D(x)) . (4)

The advantages of this approach are the explicit separation
between the data-fitting term and the prior, and the abil-
ity to introduce powerful denoisers as regularization terms
without the need to differentiate them. Moreover, RED
has shown state-of-the-art performances in several imaging
problems.



Algorithm 1 CT reconstruction using the RED-ADMM

Require: (Ai,pi ∀i = 1..N), D(.), λ, β, Nouter, Ninner,
u0, v0

1: for all k = 1 . . Nouter do
2: // x-minimization step
3: xk ← argmin

x

∑N
i=1 ‖Ai ·x−pi‖22+ β

2 ‖x−vk−1+

uk−1‖22
4: // v slack variable update
5: v̂0 ← vk−1

6: for all t = 1 . . Ninner do
7: v̂t ← λ

λ+βD(v̂t−1) + β
λ+β (xk + uk−1)

8: end for
9: vk ← v̂Ninner

10: // scaled dual variables update
11: uk ← uk−1 + xk − vk
12: end for

return : x∗ = xNouter

In our implementation we adopt the ADMM scheme to
split and to solve the optimization problem in Equation 4. In
Algorithm 1 we provide the pseudo-code of our used frame-
work; where β is the ADMM coefficient, v is the slack vari-
able, v̂ is a temporary variable that is used to compute the
slack variable. u is the dual variable, Nouter and Ninner
are respectively the number of the outer loop and the inner
loop iterations. The inner loop illustrated in this pseudo-
code corresponds to an iterative update of the slack variable
using a fixed-point strategy. With regard to the update of
the density volume x (line 3 in Algorithm 1), we use the
proximal SART algorithm [3]. The corresponding pseudo-
code is given in the supplement material document. Con-
trary to the notation in Algorithm 1, the Proximal SART
algorithm does not require an explicit representation of the
matrix Ai. Instead, a matrix-free procedural implementa-
tion can be used to compute the projection of a given vol-
ume x.

3.3. Denoising by Non-linear Anisotropic Diffusion

In this subsection we will explain the non-linear
anisotropic diffusing-based denoiser D(.) that we use in
our framework to denoise the volume v (slack variable in
the Algorithm 1). The aim of introducing this denoiser is
to preserve 1D/2D thin features embedded in the recon-
structed volume, while smoothing the homogeneous regions
of the volume. Anisotropic diffusion relies, in essence, on
adapting the smoothing according to the gradient’s direc-
tions/orientations. The easiest structure descriptor is then
the gradient of a Gaussian-smoothed version of the volume
v. This gradient is defined as:

∇vσ = ∇ (Kσ ∗ v) , (5)

where Kσ is a 3D Gaussian kernel, σ is the standard de-
viation of the kernel, and ∗ corresponds to the convolution
operator. The gradient is a structure descriptor that provide
only a direction information, which is useful for edge de-
tection, but unsuitable for the case of parallel structures. To
deal with this limitation, the structure tensor Sρ (∇vσ) is
often used to describe the local gradient orientations:

Sρ (∇vσ) = Kρ ∗
(
∇vσ∇vTσ

)
(ρ ≥ 0) (6)

Where Kρ is another 3D Gaussian kernel with a stan-
dard deviation equals to ρ. The structure tensor is a sym-
metric positive and semidefinite matrix. Its eigenvalues
(µ1, µ2, µ3) indicate the local contrast along the corre-
sponding eigenvectors (ω1, ω2, ω3), which give the local
orientations of the structure. Thereafter, we consider that
the eigenvalues are ordered:

0 ≤ µ1 ≤ µ2 ≤ µ3 = µmax (7)

There are different structure types according to the eigen-
values. The first case (µmax � µ2 ' µ1) corresponds to a
planar structure. The second case corresponding to a tubu-
lar structure is obtained when (µmax ' µ2 � µ1). The last
case occurs when the three eigenvalues are in the same order
of magnitude, it corresponds to an isotropic structure. In the
following we will explain how the structure tensor is used
to enhance the quality of the volume v using coherence-
enhancing anisotropic diffusion filtering approach.

The non-linear anisotropic diffusion filtering of the vol-
ume v consists of solving the following partial differential
equation (PDE):

∂w

∂t
= div (Ψ∇w) (8)

wt=0 = v

Here, w is a volume that will be modified at each iteration
by applying the diffusion tensor Ψ. w is initially equal to
v, the volume that we would like to denoise. The diffusion
tensor Ψ is defined from the structure tensor (Sρ (∇wσ)) of
the volume w. The two tensors have the same eigenvectors
(ω1, ω2, ω3), and the eigenvalues of the diffusion tensor are
related to (µ1, µ2, µmax) as follows:

νi = α+ (1−α) · exp

(
−C

(µmax − µi)2

)
i = 1, 2, 3 (9)

where α > 0 and C > 0 are two parameters that control
the strength of the diffusion filtering. The parameter α en-
sures that the diffusion tensor is always uniformly positive
definite, since min {ν1, ν2, ν3} = α > 0. This enforces
a diffusion even for the isotropic structures of the volume.
The parameter C is a threshold; if C � (µmax − µi)2
then the diffusivity νi ≈ 1, and we get νi ≈ α if C �
(µmax − µi)2.



Algorithm 2 Non-Linear Anisotropic Diffusion using a ro-
tation invariant scheme (D(v))

Require: v, Kσ , Kρ, α, C, τ , NT
1: w0 ← v
2: for all t = 1 . . NT do
3: wt−1

σ ← Kσ ∗wt−1

4: Compute the gradient∇wt−1
σ using Scharr filters.

5: // Computing the structure tensor (Equation 6).
6: Sρ ← Kρ ∗

(
∇wt−1

σ ⊗∇wt−1
σ

)
7: {µ1, µ2, µ3} ← EIGENVALUES (Sρ)
8: {ω1, ω2, ω3} ← EIGENVECTORS (Sρ)
9: Compute {ν1, ν2, ν3} using Equation 9.

10: Compute Ψ using Equation 10.
11: Compute div

(
Ψ∇wt−1

σ

)
using Scharr filters.

12: wt ← wt−1
σ + τ · div

(
Ψ∇wt−1

σ

)
13: end for

return : D(v) = wNT

The diffusion tensor Ψ smoothes mainly along the direc-
tions ω1 and ω2 with a diffusivity νi that increases with the
discrepancy (µmax − µi). The diffusion tensor is defined as
follows:

Ψ =
[
ω1 ω2 ω3

] ν1 0 0
0 ν2 0
0 0 ν3

ω1
T

ω2
T

ω3
T

 (10)

To apply the NLAD filter on the target volume v, we use
a discretization version of the PDE in Equation 9. The tem-
poral derivative is discretized using a backward difference,
while the divergence term is discretized following a 3D
rotation-invariant scheme [57, 32], in order to better smooth
curved-like structure. Specifically, the spatial derivative ∂x,
∂y and ∂z are implemented using a Scharr filter, which pro-
vides similar results to using a 5× 5× 5 stencil [32].

The pseudo-code in Algorithm 2 summarizes the main
steps of the non-linear anisotropic diffusion filter that we
use as a denoiser in our RED-based framework.

The RED framework is proven to converge if denoiser
satisfies two conditions, local homogeneity and strong pas-
sivity. These conditions can be validated empirically with
numerical experiments. As we show in the supplemental
material, the NLAD filter satisfies both conditions, which
ensures convergence of our approach.

4. Results and discussion

Baselines: In this section, we compare our approach to
three baseline reconstruction techniques. The first base-
line is the Simultaneous Algebraic Reconstruction Tech-
nique (SART) [4], since this iterative tomographic recon-
struction method produces decent results even when using a

low number of projections. The second baseline is a primal-
dual proximal framework that uses the SART as a solver
for the data-fitting term and the Anisotropic Total Variation
as regularizer (PSART-ATV) [3, 52]. The last baseline is
another primal-dual proximal framework, which uses the
Structure Tensor Prior (PSART-STP) as a regularizer [60].
This approach is the state-of-the-art of the joint reconstruc-
tion approaches for super-resolution. For all the compared
methods, the volume is initialized with 0, and then is re-
constructed from downsampled cone-beam projections uni-
formly distributed over a circle. These projections are ob-
tained by downsampling the captured tomograms, with suit-
able factors for each dataset.

Parameters: The experiments are conducted on a computer
with 512 GB RAM and a 2.80 GHz Intel Xeon Gold 6242
Processor. The implementation of our framework is done in
C++, and the computations are parallelized using OpenMP
over 32 cores.
A wide range of experiment parameters are tested, and those
of the best performance were selected. We provide the pa-
rameters used for the three baseline methods in the supple-
ment material. For our method, some parameters were not
the same for all the datasets; they are shown in Table 1. The
remaining parameters specific to the denoiser were similar
for all the reconstructions: one inner iteration (Ninner) in
Algorithm 1 was good enough for the reconstructions, sim-
ilarly only one iteration in the diffusion process (NT ) in
Algorithm 2 was performed, with a time step (τ ) equal to 1.
Finally, the threshold (C) was set to 1e− 10.

Table 1: Parameters used to run our framework for the sim-
ulated and real data.

Parameters FZP2 FZP4 FZP8 Toothbrush Ropeball Fan

Main loop iterations: Nouter 25 25 12 12 6 7
Nested SART iterations 3 3 3 2 2 3
Prior parameter: λ 2 2 2 2 5 5
ADMM parameter: β 10 10 10 10 5 10
Diffusivity: α 1e-3 1e-3 1e-3 1e-3 1e-1 1e-3

Reference volumes: For all the dataset that we used in our
quantitative validation, we reconstruct a reference volume.
For the simulated data, the reference is a ground truth vol-
ume simulated at the super-resolution scale. For real cap-
ture data, a ground truth is hard to come by, so we recon-
struct a reference volume at the original resolution, and then
evaluate the different methods by also reconstructing from
downsampled projections. The reference volume is recon-
structed using the PSART-ATV framework to avoid a bias
towards our new method.

4.1. Synthetic results

First, we validate the super-resolution performance of
our framework using a synthetic 3D Fresnel Zone Plate



Figure 2: Comparison results for the reconstruction of the Fresnel Zone Plate using 2D cross-sections. (a) FZP2: reconstruc-
tion with a ×2 super-resolution. (b) FZP4: reconstruction with a ×4 super-resolution. (c) 3D rendering of the ground truth
FZP8.

Figure 3: Comparison of the PSNR (top row) and the SSIM (bottom row) results for FZP2, FZP4, and FZP8 respectively.

(FZP). This dataset is often used in 2D/3D super-resolution
applications, since the distance between the concentric cir-
cles/spheres is gradually decreasing until going under the
Nyquist limit. In our experiments, we generate a 3D vol-
ume with a size of 10243 (see Figure 2-(c)). Then we
simulate 180 cone-beam projection images, with an angu-
lar spacing of 2◦. We add a Gaussian noise (σ = 2) to
the projections before downsampling them by factor 8, us-
ing a bicubic interpolation. From the obtained projections
(128 × 128 × 180), we reconstruct volumes with three dif-
ferent super-resolution factors: ×2, ×4 and ×8. These vol-
umes have respectively the following sizes: FZP2 (2563),
FZP4 (5123) and FZP8 (10243). The initial simulated vol-
ume is used as the ground truth when comparing the re-
constructed volumes at the scale FZP8. For the two other
scales, we use a reference obtained by downsampling the
initial volume by 2 and 4. In Figure 2-(a) and (b), we il-

lustrate 2D cross-sections from the results of the different
reconstruction methods. The first line corresponds to the
FZP2 scenario, while the second line presents the case of
FZP4. Please refer to the supplement for the FZP8 recon-
structions. We also show in Figure 3 the obtained PSNR
and the SSIM over the iterations, for the compared methods
and for the three super-resolution scales.

From Figure 2-(a) and (b), we observe that for all meth-
ods the quality of the reconstruction gets closer towards
the center. Except for the PSART-STP, which yields
a smoother, less blocky results in the FZP2 case. For
this same scenario, we see clearly that our approach and
PSART-STP achieve better, more consistent reconstruction
of the outer rings compared to SART and PSART-ATV, es-
pecially for frequencies above the Nyquist limit (green cir-
cle). This same observation can also be made in the FZP4
case. Moreover, we notice that there are aliasing artifacts



in the middle-top region (green zoomed box) for the three
baseline approaches, while our framework manages to re-
duce these artifacts. The analysis of the PSNR and SSIM
in Figure 3 shows a better performance of our framework in
the case of FZP2, where these metrics are as follows: SART
(17.79, 0.8130), PSART-ATV (17.94, 0.8187), PSART-
STP (18.24, 0.8359), Ours (18.79, 0.8542). In the case
of FZP4 and FZP8, our approach has similar quantitative
results to the state-of-the-art approach PSART-STP. Nev-
ertheless, Table 2 illustrates a faster convergence time and
a dramatic decrease in the memory footprint of our method
in comparison to PSART-STP.

Table 2: Parameters used to run our framework for the sim-
ulated and real data: Time elapsed (hh:mm:ss) / Memory
(GB).

Method FZP2 FZP4 FZP8 Toothbrush Ropeball Fan

SART 00:10:00 01:16:00 04:58:00 03:07:51 00:23:19 00:30:36
0.53 4 32 8.47 0.88 2.12

PSART-ATV 00:30:44 03:43:30 24:14:00 03:43:52 00:55:23 00:52:58
0.71 5.5 48 12.57 1.17 2.84

PSART-STP 01:29:10 11:03:45 41:24:04 07:44:11 01:13:00 01:34:58
5.8 47 346 122.88 10.58 18.43

Ours 01:04:34 08:09:10 28:49:12 06:20:23 01:02:30 01:12:05
1.6 10.6 82 22.13 1.98 4.18

4.2. Real world results

Toothbrush Fibers: The first dataset (Toothbrush) is a
good example for tubular structures embedded in the 3D
volume. This dataset was already used in [60] to validate
the PSART-STP method. However, we made the dataset
more challenging by downsampling the 360 projections by
factor 4. Then we apply the 4 reconstruction methods with
a super-resolution factor 4. Note that we reconstructed only
a Region Of Interest (ROI) of the scanned volume in or-
der to focus on the fibers features while reducing the com-
putational times. In Figure 4, the reference reconstruction
retrieves fibers with different intensities between the center
and the border. Our approach is the only one that reproduces
such distribution among the compared methods. Also, it has
more advantage in separating the edges of the fibers since it
smoothes along the homogeneous regions in an anisotropic
fashion, outperforming all the baseline methods.

Jute Ribbon Ropeball: The second dataset is another ex-
ample of 1D features embedded in the volume. Never-
theless, in this case the bundles of thin and twisted fibers
form short and curved cylindrical features. The 4 com-
pared methods are here challenged to retrieve the thin fibers
without being merged and also separating the bundles. For
this data 720 projections were captured at a resolution of
1910× 1524. These projections were downsampled using a

factor 12, in order to be used as input of the super-resolution
reconstructions. In this experiment, the super-resolution
factor was set to 3, and by selecting a ROI the size of the
output volumes is 290 × 350 × 300. The results shown in
Figure 5, point out that our framework has a better sepa-
ration of the fiber features than the three baselines. Thus,
the arrows in the green and blue boxes illustrate an almost
clear separation between the structures with our reconstruc-
tion, while with other methods these structures tend to be
merged together. For the red and the yellow zoomed boxes,
two fibers are merged together for all methods. However,
with our reconstruction, we can see a slightly darker line
representing the edge between the two fibers (see arrows).
Note that in the top-right side of the yellow box, the sep-
aration between the fibers is better reproduced with other
methods than ours.

Foldable Fan: Finally, the last dataset represents a foldable
Fan, which is a good example of 2D planer sheet structures
embedded in a 3D volume. This data was scanned using
3000 projections that were all used for the reconstruction
of the reference volume. However, only 187 downsampled
projections were used as input of the super-resolution re-
constructions. The results presented in Figure 6 show that
our framework obtains smoother but simultaneously sharper
results while being able to split the individual folds (see
close-up views in mid subfigures).

In summary, for both simulated and real scanned data,
our reconstruction framework gives better results than the
three baseline methods, in terms of both quantitative (PSNR
and SSIM) and qualitative comparisons (visualization of the
volume), allowing for super-resolved reconstruction of thin
structures. Moreover, Table 2 shows faster convergence
time and a significant memory consumption improvement
in comparison to the state-of-the-art PSART-STP.

5. Conclusions and future work

In this work, we present a flexible framework for joint
super-resolution CT reconstruction based on regularization-
by-denoising. A Non-Linear Anisotropic Denoiser is lever-
aged as a regularizer, alongside with the Simultaneous Al-
gebraic Reconstruction Technique (SART). Our method
moderately outperforms the general state-of-the-art super-
resolution CT reconstruction methods, in both quality and
time, while significantly reducing the memory footprint,
making it tractable to reconstruct larger volumes. These re-
sults were confirmed with both simulated and real objects.

Although our work mainly focuses on static object imag-
ing, the presented method could potentially be helpful for
various tasks such as dynamic fluid imaging, carbon fibers
composite under fluid tension, and nano X-ray tomography
reconstruction. Other future directions include a multi-scale
scheme to achieve higher reconstruction resolutions, and



Figure 4: Representative slice visualization (top row) and its close-up view (bottom row) for the Toothbrush dataset, recon-
structed respectively by SART, PSART-ATV, PSART-STP, Ours, and the reference volume.

Figure 5: Representative slice visualization and its related 4 close-up views for the Robeball dataset, reconstructed respec-
tively by SART, PSART-ATV, PSART-STP, Ours, and the reference volume.

Figure 6: Representative slices visualization for the foldable Fan, in the axial and the sagittal planes with a close-up views
for respectively: reconstruction results of SART, PSART-ATV, PSART-STP, Ours and the reference volume.

optimized implementation for the structure tensor compu-
tation through a sliding window kernel.
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