Camera API Reference
The deeplens.camera module provides the end-to-end camera model that couples an optical lens with an image sensor for differentiable image simulation.
deeplens.camera.Renderer
Abstract base class for image simulation renderers.
Defines the render(data_dict) interface shared by all concrete
renderers (e.g. :class:Camera).
Attributes:
| Name | Type | Description |
|---|---|---|
device |
str
|
Compute device used for rendering. |
Initialize the renderer.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
device
|
str or None
|
Compute device. If |
None
|
Source code in deeplens/camera.py
__call__
set_device
Set the compute device.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
device
|
str
|
Target device (e.g. |
required |
move_to_device
Move all tensor values in a dictionary to the configured device.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data_dict
|
dict
|
Dictionary whose tensor values will be transferred. |
required |
Returns:
| Name | Type | Description |
|---|---|---|
dict |
The same dictionary with tensors moved in-place. |
Source code in deeplens/camera.py
render
Render an image from the input data dictionary.
Subclasses must override this method with their specific rendering pipeline.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data_dict
|
dict
|
Input data for rendering. |
required |
Raises:
| Type | Description |
|---|---|
NotImplementedError
|
Always, unless overridden by a subclass. |
Source code in deeplens/camera.py
deeplens.camera.Camera
Bases: Renderer
End-to-end camera model coupling an optical lens with an image sensor.
Simulates the full image-capture pipeline used in computational imaging research:
- Unprocess: convert input sRGB to linear RGB via the invertible ISP.
- Lens simulation: convolve with the lens PSF (or ray-trace) to produce a degraded linear-RGB image at the sensor plane.
- Sensor simulation: add shot + read noise, apply the ISP forward pipeline (Bayer mosaic, demosaicing, gamma) to yield an sRGB output.
Attributes:
| Name | Type | Description |
|---|---|---|
lens |
Optical lens object ( |
|
sensor |
Image sensor object ( |
Initialize a camera from lens and sensor configuration files.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
lens_file
|
str
|
Path to the lens configuration file. The
accepted format depends on lens_type: JSON for all lens
types; additionally |
required |
sensor_file
|
str
|
Path to a JSON sensor configuration file. |
required |
lens_type
|
str
|
Lens model. One of |
'geolens'
|
sensor_type
|
str
|
Sensor model. One of |
'rgb'
|
device
|
str or None
|
Compute device. Defaults to
|
None
|
Raises:
| Type | Description |
|---|---|
NotImplementedError
|
If lens_type or sensor_type is not recognised. |
Example
cam = Camera( ... lens_file="datasets/lenses/camera/ef50mm.json", ... sensor_file="test.json", ... lens_type="geolens", ... sensor_type="rgb", ... )
Source code in deeplens/camera.py
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 | |
__call__
render
Simulate camera-captured images with lens aberrations and sensor noise.
This method performs the complete imaging pipeline: converts input to linear RGB, applies lens aberrations, converts to Bayer format, adds sensor noise, and prepares output for network training or testing.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
data_dict
|
dict
|
Dictionary containing essential imaging parameters: - "img": sRGB image (torch.Tensor), shape (B, 3, H, W), range [0, 1] - "iso": ISO value (int), shape (B,) - "field_center": Field center coordinates (torch.Tensor), shape (B, 2), range [-1, 1] - "depth": Depth map (torch.Tensor), required for "psf_pixel" and "psf_patch_depth_interp" |
required |
render_mode
|
str
|
Rendering method for lens aberration simulation. Options: - "psf_patch": Per-patch PSF convolution (default) - "psf_map": Spatially-varying PSF map convolution - "psf_pixel": Pixel-wise PSF rendering - "ray_tracing": Full ray tracing simulation - "psf_patch_depth_interp": PSF patch with depth interpolation |
'psf_patch'
|
output_type
|
str
|
Output format type. Defaults to "rggbif". |
'rggbif'
|
Returns:
| Name | Type | Description |
|---|---|---|
tuple |
(data_lq, data_gt) - data_lq: Low-quality network input with degradations - data_gt: Ground-truth data for training |
References
[1] "Unprocessing Images for Learned Raw Denoising", CVPR 2018. [2] "Optical Aberration Correction in Postprocessing using Imaging Simulation", SIGGRAPH 2021. [3] "Efficient Depth- and Spatially-Varying Image Simulation for Defocus Deblur", ICCV Workshop 2025.
Source code in deeplens/camera.py
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 | |
pack_output
Pack Bayer data into network-ready inputs and targets.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
bayer_lq
|
Tensor
|
Noisy Bayer image, shape (B, 1, H, W), range [~black_level, 2**bit - 1] |
required |
bayer_gt
|
Tensor
|
Clean Bayer image, shape (B, 1, H, W), range [~black_level, 2**bit - 1] |
required |
iso
|
Tensor
|
ISO values, shape (B,) |
required |
iso_scale
|
int
|
Normalization factor for ISO values. Defaults to 1000. |
1000
|
output_type
|
str
|
Output format specification. Options: - "rgb": Standard RGB format - "rggbi": RGGB channels + ISO channel (5 channels) - "rggbif": RGGB channels + ISO + field position (6 channels) Defaults to "rggbi". |
'rggbi'
|
**kwargs
|
Additional data required for specific output types (e.g., field_center). |
{}
|
Returns:
| Name | Type | Description |
|---|---|---|
tuple |
(data_lq, data_gt) where: - data_lq (Tensor): Low-quality network input, shape (B, C, H/2, W/2). - data_gt (Tensor): Ground-truth target, shape (B, C, H/2, W/2). |
Source code in deeplens/camera.py
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 | |