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Abstract: Diffractive optical elements (DOEs) have widespread applications in optics, ranging
from point spread function engineering to holographic display. Conventionally, DOE design
relies on Cartesian simulation grids, resulting in square features in the final design. Unfortunately,
Cartesian grids provide an anisotropic sampling of the plane, and the resulting square features
can be challenging to fabricate with high fidelity using methods such as photolithography. To
address these limitations, we explore the use of hexagonal grids as a new grid structure for
DOE design and fabrication. In this study, we demonstrate wave propagation simulation using
an efficient hexagonal coordinate system and compare simulation accuracy with the standard
Cartesian sampling scheme. Additionally, we have implemented algorithms for the inverse DOE
design. The resulting hexagonal DOEs, encoded with wavefront information for holograms, are
fabricated and experimentally compared to their Cartesian counterparts. Our findings indicate
that employing hexagonal grids enhances holographic imaging quality. The exploration of
new grid structures holds significant potential for advancing optical technology across various
domains, including imaging, microscopy, photography, lighting, and virtual reality.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Diffractive optical elements (DOEs) are versatile optical components that enable applications
such as point spread function (PSF) engineering [1–3], end-to-end design of computational
imaging systems [4–6], and holography [7,8]. Typically, DOEs are designed on Cartesian grids
using iterative methods such as the Gerchberg-Saxton (GS) algorithm [9,10]. In this context, the
Cartesian grid enables fast light propagation simulations using Fourier-based operators, such as
Fresnel propagation [11].

Unfortunately, Cartesian grids have several practical disadvantages. First, they exhibit a high
degree of anisotropy in the plane, with diagonal frequencies represented more poorly than axially
aligned frequencies [12,13]. For this reason, deformable mirrors and other phase modulators
intended for adaptive optics often opt for a hexagonal packing of the actuators. Due to its six-fold
symmetry, this hexagonal arrangement exhibits better isotropy [14].

In recent years, hexagonal pixel arrangements have shown potential for achieving better
resolution and efficiency in fields such as image processing and computer graphics [14–16]. In
the field of sensing techniques, hexagonal sampling gives wider spectra than rectangular with
the same pixel density [12]. Thanks to its six-fold symmetry, the hexagonal lattice offers more
isotropy in representing complex elements than Cartesian grids.

Another disadvantage of using Cartesian grids for DOE design is that they yield square-shaped
features, placing a significant burden on the accuracy of the fabrication process. For instance,
when using photolithography, it is common to experience some corner rounding on the features
[17], leading to deviations between the fabricated DOE and its intended design. Moreover, in
Cartesian grids, features may touch on a corner, which results in topological changes during
fabrication, particularly when using equipment with limited resolution capabilities. As an
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example, Fig. 1 shows the pattern produced by a mask writer (Heidelberg DWL2000), exhibiting
corner rounding and topology artifacts. In contrast, hexagonal features closely approximate the
diffraction-limited spot of common lithography equipment such as mask writers, and adjacent
features in a hexagonal grid always share an edge, which preserves the topology of the design.
These advantages potentially allow us to design for smaller feature sizes, and corresponding
stronger diffraction or higher diffraction efficiency using the same lithography equipment. In
optics, the use of hexagon arrays has been studied in the field of integral imaging, lens arrays
[17–19], image display [20], sensors [21], and phase modulators [22,23].

20 μm

5 μm

Fig. 1. Fabricated masks with hexagonal and square patterns by laser direct writing
(Heidelberg DW2000). Square features are more affected by corner rounding artifacts (areas
shaded in green) and touching corners (areas shaded in red), while hexagonal features better
preserve the geometry. Microscopic images are taken by a Nikon Eclipse L200N microscope.

In this work, we explore the utilization of hexagonal grids for DOE design, which combines
the rapid Fourier-based simulation of light propagation from Cartesian grids with the sampling
and fabrication advantages of hexagonal grids. This combination is made possible through
the use of a hexagonal Fast Fourier Transform (HFFT), which can be considered a drop-in
replacement for the Fast Fourier Transform (FFT) in any existing DOE optimization framework,
be it GS or a more recent gradient back-propagation method. While our approach is applicable to
various DOE design tasks, our primary focus lies in holography applications. Holography offers
a straightforward means of characterizing the quality disparities, both in terms of simulation
accuracy and direct measurements of fabricated DOEs.

Our contributions encompass several key aspects. Firstly, we adopt a novel 2D hexagonal
arrangement for DOE geometries, opting to utilize the Array Set Addressing (ASA) coordinate
system [15] for data storage and processing. This innovative approach forms the basis for our
subsequent work. Secondly, we implement hexagonal scalar diffraction with differentiable
functions, facilitating the back-propagation of gradients. This capability enables us to perform
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hexagonal Fresnel diffraction simulations and conduct inverse design. To validate our methodol-
ogy, we compare the simulation accuracy between hexagonal and rectangular sampling schemes.
Furthermore, we apply our techniques practically by converting images, serving as holograms,
into hexagonal-sampled images. We utilize back-propagation and GS to inversely derive their
wavefront, demonstrating the real-world applicability of our approach. The DOEs are fabricated
using a combination of photolithography and reactive ion-etching (RIE) techniques, and subjected
to comprehensive testing, with comparisons made against DOEs featuring Cartesian grids. As
a result, practical holographic examples empirically validate the correctness and effectiveness
of our implementation. To facilitate further research in the community, we will release the
associated code online at https://github.com/vccimaging/HexDOE.

2. Methods

To demonstrate the benefits of the hexagonal grid in DOE design, we first introduce general
data processing operations and fast Fourier transforms for the hexagonal grids in the ASA
format following [15]. Next, we illustrate how to implement the Fresnel diffraction method in
the hexagonal grids for general wave propagation. Last, for the purpose of demonstration, we
implement the classic GS algorithm [9] as well as a differentiable back-propagation method for
the inverse design of a holographic hexagonal DOE.

2.1. Hexagonal coordinate system and HFFTs

Among multiple choices for hexagonal grid representation [24–28], the ASA coordinate system
[15] is best suited for data storage and allows easy implementation of algorithms. As shown
in Fig. 2, two rectangular grids are employed to represent a hexagonal grid. The hexagons are
identified using three coordinates,

(a, r, c) ∈ {0, 1} × Z × Z, (1)

where the coordinates represent the array (a), row (r), and column (c), respectively.

Fig. 2. Hexagonal coordinate system: Array Set Addressing. The data on hexagonal grids
are stored as two interleaved rectangular arrays. Each hexagon pixel in the 2D space can
be uniquely represented by (a, r, c) coordinates, where a is either 0 or 1 to address which
rectangular array the pixel is stored in. r and c address the row and column respectively. sh
is the horizontal spacing of the hexagonal grids, and e is the edge length of a single hexagon.

https://github.com/vccimaging/HexDOE
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Note that we adopt the pointy-top-orientated [29] regular hexagon layout in the ASA coordinate.
The horizontal spacing between neighboring hexagons sh measures the sampling density of the
hexagonal grids, and it follows that sh =

√
3e, where e is the edge of the hexagon.

The forward and inverse hexagonal discrete Fourier transforms in ASA coordinates [30] can
be expressed as ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

F(b, s, d) =
∑︂

a

∑︂
r
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c

f (a, r, c)E(a, r, c, b, s, d),
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1
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b
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s
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d

F(b, s, d)E−1(a, r, c, b, s, d),
(2)

where f (a, r, c) is the spatial signal, F(b, s, d) is its Fourier transform, and

E(a, r, c, b, s, d) = exp
(︃
−jπ

[︃
(a + 2c)(b + 2d)

2m
+
(a + 2r)(b + 2s)

n

]︃ )︃
. (3)

Throughout the equations, both spatial and frequency dimensions are 2 × n × m (n is vertical
and m is horizontal), and a, b ∈ [0, 1], r, s ∈ [0, . . . , n − 1], and c, d ∈ [0, . . . , m − 1].

Notice that Eq. (2) is separable and can be further expressed in the form of 1D fast Fourier
transforms,
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where ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
la(b, s, d) =

∑︂
r

ga(b, r, d)exp
[︃
−j2π

r(b + 2s)
n

]︃
,

ga(b, r, d) =
∑︂

c
f (a, r, c)exp

[︃
−j2π

c(b + 2d)
2m

]︃
.

(5)

These expressions can be realized using standard 1D fast Fourier transforms. We implement
the HFFT using PyTorch [31] to support hardware acceleration and automatic differentiation.

Similar to the 2D Cartesian data, the HFFT assumes that the signal is periodic. To perform the
Fourier transform properly, it is necessary to apply a Fourier shift before FFT. We exploit the
periodic property of the hexagonal data as shown in Fig. 3(a) to derive proper shift operation.
The illustrated hexagonal Fourier shift is used to align the 2D signal correctly. The periodic
hexagon sampling domain can be shifted to an interlocking rectangular periodic domain.

To ensure isotropy in the frequency domain, we let 3n = 2m. Otherwise, the hexagonal grid in
the frequency domain will be scaled unequally along vertical and horizontal directions. This also
gives the spatial sampling region to be regular hexagon.

In Fig. 3(b), we show the whole hexagonal Fourier transform process of a square signal that
uses the HFFT. In the spatial domain, we first sample and shift the data according to the (a, r, c)
coordinates. The HFFT is then applied to compute the discrete Fourier transform, followed by an
inverse hexagonal Fourier shift to restore to the original order.

2.2. Hexagonal scalar diffraction

Wave propagation is commonly expressed by the Fresnel diffraction [11] in the Cartesian
coordinates. Similarly, we can employ the forward and inverse HFFTs to rewrite the Fresnel
diffraction in the hexagonal coordinates,

uz(r) = Fz {u0(r)} = F−1{F {u0(r)}F {hz(r)}}, (6)

where Fz {·} is the Fresnel propagation, z is the propagation distance, r is a 2D vector that
represents the position at the source and observation plane, u0(r) and uz(r) are complex fields at
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Fig. 3. Illustration of Hexagonal Fourier shift and Fourier transform. (a) Fourier shifts in
the spatial domain and frequency domain. (b) Workflow of hexagonal Fourier transform by
HFFT.

the source plane and image plane respectively, and hz(r) is the impulse response given by

hz(r) =
ejkz

jkz
exp

(︃
jk
2z

|r|2
)︃

, (7)

where k = 2π/λ is the wave number, and |r| is the distance to the z-axis at the observation plane.
For the hexagonally-sampled field with the ASA representation and a spacing of sh, we have

|r| = sh

√︃(︂a
2
+ c

)︂2
+ 3

(︂a
2
+ r

)︂2
. (8)

The scalar diffraction for a DOE can be mathematically modeled as a complex linear system.
This system takes a plane wave as input and generates the diffraction field at a given propagation
distance z as output. The DOE phase diagram disrupts the input wave by adding a phase shift
to it. Our objective is to extract the phase information from the output intensity of the system.
This can be accomplished by minimizing the squared error between the reconstructed and target
intensities.

2.3. Inverse hexagonal DOE design

The process of inverse design of the DOE is illustrated in Fig. 4. The first step in this process is
to retrieve the phase distribution from the desired image by reversing the forward simulation of
Fresnel diffraction. This phase distribution is then used to create the wavefront of the DOE with
some fabrication constraints. With this, we can design the DOE to produce the desired hologram.

The problem we are trying to solve can be expressed as follows:

ϕ∗=arg min
φ

∥ |Fz {u0 (r) · exp (jϕ)}|2 − Itarget∥
2
2 , (9)
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Fig. 4. Inverse design of a hexagonal DOE. (a) The phase distribution of a target image is
retrieved by iterative forward and backward propagation. (b) The optimized phase profile
is quantized into 4 bits (16 levels) for fabrication. Finally, the fabricated DOE is used to
produce the desired hologram.

where ϕ is the phase of the DOE to be optimized, u0 (r) is the incident plane wave, and Itarget is
the intensity of the hologram we wish to reconstruct.

With the basic arithmetic operations and Fourier transforms for the ASA system, any algorithms
developed for Cartesian coordinates can readily be modified as their hexagonal counterparts
to solve the DOE optimization problem. In this work, we implement two algorithms, GS and
back-propagation, for the purpose of demonstration. Other methods can be implemented similarly.

The GS algorithm is an iterative phase retrieval algorithm composed of forward and backward
calculations. With the hexagonal Fourier transform and its inverse, we are able to realize the
update of phase by replacing the amplitude of backward calculation with the target amplitude.

The other algorithm is back-propagation. The inverse problem in Eq. (9) can be efficiently
solved using advanced iterative algorithms, such as stochastic gradient descent [32] or Adam [33].
The optimization algorithm is straightforward and can be implemented using state-of-the-art
deep learning modules.

Compared to traditional iterative methods such as GS, using back-propagation is more flexible.
The advanced optimization takes advantage of avoiding the local minimum [32] to increase the
accuracy and provides the use of regularization terms [34] to add constraints to the solution.
Regarding the phase retrieval problem, various results with different requests could be obtained
such as smoothed intensities, concentrated energy distribution, adjustable aperture size, etc.

3. Results

3.1. Simulation

We consider a holography system with a hexagonal DOE. The target image size is 4 mm × 4 mm
and the wavelength of the source plane wave is 520 nm. Zero padding is added around the DOE to
ensure the simulation accuracy [35], which gives the whole simulation area to be 8 mm × 8 mm.
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We use the same configuration for both Cartesian and hexagonal grids for a head-to-head
comparison. The horizontal and vertical Cartesian sampling spacings are both sr. To ensure
identical sampling density in the hexagonal coordinates, we must let

s2
r =

√
3

2
s2
h ≜ |∆r |2. (10)

A series of rectangular sampling spaces ranging from 1 µm to 10 µm have been used to test the
fabrication limitation. For the sake of convenience, we use the term “feature size” ∆r, which is
equal to the rectangular sample spacing sr, to represent the hexagonal and rectangular resolution
with the same sampling density. For example, for the feature size of 1 µm, the rectangular
sampling spacing sr = 1 µm, and the hexagonal sampling spacing sh ≈ 1.075 µm.

3.1.1. Forward simulation accuracy

To measure the simulation accuracy, we first compare the diffraction results of a square aperture
to the analytical solution of Fresnel diffraction [11]. Various widths for the square aperture are
used and the propagation distance is 70 mm. To test the sampling accuracy for tilted features, a
slightly rotated square beam (7°) is also used for comparison with the one without rotation. The
feature size is 5 µm and the width of the aperture ranges from 0.1 mm to 2.0 mm.

The results are illustrated in Fig. 5. The peak signal-to-noise ratios (PNSRs) of the simulations
are compared in Figs. 5(a) and 5(d). For an aperture of 1.0 mm width, the corresponding
simulation errors are shown in Figs. 5(b) and 5(c) for the hexagonal and Cartesian grids,
respectively. It is clear that hexagonal sampling can reduce the error along the x-axis due to its
interlaced geometry. However, even though hexagonal coordinates exhibit superior accuracy in
these two scenarios, the results diverge when the rotation angle surpasses approximately 30° as
in Fig. 5(d). The accuracy of Cartesian coordinates fluctuates significantly with varying rotation
angles. This observation underscores that, for this square aperture, Cartesian coordinates are
highly sensitive to their direction, whereas hexagonal coordinates demonstrate much greater
robustness. A more equitable comparison with the circular beam is presented in Fig. 5(e),
where accuracy remains uninfluenced by the sampling direction. In this context, hexagonal
coordinates outperform Cartesian coordinates across most radius values. It is also worth noticing
that oscillation occurs when the aperture size varies due to the misalignment between the aperture
and the sample grids.

3.1.2. Inverse design

To evaluate the performance, we choose various target images and inverse design the DOEs
to generate corresponding holograms. For back-propagation, we choose the Adam optimizer
with a starting learning rate of 0.01 to update the phase for each iteration. We start with a
uniform distribution to achieve a smoother phase that avoids high-resolution features that hurt
the fabrication result. The optimization ends after 100 iterations.

In Fig. 6(a), we show three examples, the KAUST logo, a photograph of Vermeer’s “Girl
with a Pearl Earring”, and a spiral pattern (from top to bottom). The corresponding simulated
intensity images, with ∆r = 10 µm, are shown in Fig. 6(b) for visual comparison.

In Fig. 7, we compare the imaging resolution of hexagonal and Cartesian designs using the
USAF 1951 resolution chart. It contains features of different sizes, which can challenge the
sampling. We first use linear interpolation to convert the original images to hexagonal-sampled
data. The source is set to be a plane wave with a square aperture of 4 mm × 4 mm, which is the
same as the image size. The propagation distance is 200 mm.

The target resolution chart and a zoom-in region are shown in Fig. 7(a). The simulated
intensity images for hexagonal designs are shown in Fig. 7(b) and Cartesian designs in Fig. 7(c)
for different feature sizes, ∆r = 10 µm, ∆r = 5 µm, and ∆r = 1 µm (from left to right). The



Research Article Vol. 31, No. 26 / 18 Dec 2023 / Optics Express 43871

Hexagonal

Cartesian

0 0.11

b
Hexagonal

Cartesian

0 0.05

c

Fig. 5. Simulation accuracy comparison of Cartesian and Hexagonal grids with Fresnel
diffraction. (a) PSNR of the simulated complex field compared to the analytical results using
a square aperture. (b) Error map of the simulation result using a square beam with a width of
1.0 mm. (c) Error map of the simulation result using a rotated (7°counter-clockwise) square
beam with a width of 1.0 mm. (d) PSNR of the rotated square beam with different rotation
angles and a width of 1.0 mm. (e) PSNR of a circular beam with different aperture size

outcomes for hexagonal and Cartesian designs exhibit a high degree of similarity, attributable
to their identical sampling density. The specific nuances diverge due to the stochastic nature
of the optimization processes and variations in their sampling approaches. For example, when
considering ∆r = 10 µm, the hexagonal design demonstrates superior performance in Group 2,
whereas with ∆r = 5 µm in Group 1, the results are reversed. As for ∆r = 1 µm, the sampled
targets closely align since the features are significantly larger than the spacing, resulting in phase
retrieval outcomes that are exceptionally close.

3.2. Experimental results

The DOEs are fabricated by a 4-step workflow of consecutive photolithography and RIE steps as
employed in [1,2,8]. This yields a 16-level quantization of the DOE profile to approximate the
continuous design. A chromium aperture is added to restrict stray light from entering the sensor.

As illustrated in Fig. 8, to measure the hologram created by the DOE, a laser (Thorlabs PL201)
with a wavelength of 520 nm is used as the source. A collimator (HONC HC-550) is used to
create the plane wave. An image sensor (Lucid TRIO54S-CC) with a resolution of 2880 × 1860
and pixel size of 3.0 µm is used to collect the diffracted pattern of the DOE.
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b Simulated intensity

Fig. 6. Simulation results of target images and their reconstructed holograms using
hexagonal pixel arrangement with ∆r = 10 µm. (a) Target images after hexagonal sampling
through linear interpolation. (b) Simulated diffraction intensities solved by back-propagation.

a

100 μm

b

100 μm 100 μm

100 μm 100 μm 100 μm

c

Fig. 7. Comparison of the simulated results of inverse design between hexagonal (b)
and Cartesian (c) sampling using the same target image (a). The feature sizes are ∆r =
10 µm, 5 µm, 1 µm (left to right), respectively.

We fabricate and measure the DOEs with∆r = 5 µm and the same aperture size and propagation
distance as discussed in Section. 3.1.2. The simulation and measurements are shown in Figs. 9(a)
and 9(b). The captured intensity matches well with the simulation, which proves that the
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Laser Collimator DOE Sensor

Fig. 8. Experimental layout for the measurement of the proposed hexagonal DOE.

a

b

c

d

Fig. 9. Simulation and measurement of the diffraction field of hexagonal DOEs that
are optimized by different configurations and algorithms. ∆r = 5 µm. (a) and (b) Back-
propagation, square source with a width of 4 mm, propagation distance 200 mm. (c) GS,
square source with a width of 4 mm, propagation distance 200 mm. (d) Back-propagation,
circular source with a diameter of 2 mm, propagation distance 70 mm. The grey-scale
images are the simulation results and the zoomed-in images. The green images are the
measurements.



Research Article Vol. 31, No. 26 / 18 Dec 2023 / Optics Express 43874

implementation of phase retrieval algorithms is correct. The phase retrieval result of the GS
algorithm is also fabricated and measured in Fig. 9(c) as a baseline reference.

To further challenge the fabrication resolution and explore the advancement of hexagonal grids,
we reduce the aperture as well as the propagation distance to increase the diffraction angle. The
aperture is reduced to a circular one with 2 mm diameter. The propagation distance is reduced to
70 mm. The results are illustrated in Fig. 9(d). Different from that in Fig. 9(b), the error between
simulation and measurement is significantly increased due to the increased design difficulty.

To experimentally compare the performance of hexagonal and Cartesian designs, we show the
hexagonal design in Fig. 10(a) and rectangular design in Fig. 10(b) for the spiral pattern with
∆r = 5 µm.

10 μm

a

10 μm

b

Fig. 10. Comparison of the hexagonal and Cartesian measurements with ∆r = 5 µm. The
same target image is used for hexagonal (a) and Cartesian (b) grids, respectively. Microscopic
images are taken by a Nikon Eclipse L200N microscope.

Microscopic images of the fabricated DOEs are shown in the first column. The measured
hologram intensities are shown in the middle column, with a zoom-in for the central region in the
right column. Note that in the middle of the spiral pattern, the hexagonal design shows more
details than the rectangular design. To quantitatively compare the performance, we employ the
PSNR as a metric. For hexagonal grids, PSNR = 6.155 and SSIM = 0.0728, and for rectangular
grids, PSNR = 5.887 and SSIM = 0.0591. Although the distinction between hexagonal and
Cartesian becomes subtle with a small diffraction angle, our findings indicate incremental
improvements both in visualization and statistical metrics for this challenging scenario.

4. Discussion

We have successfully implemented the wave propagation simulation and inverse design algorithms
on the hexagonal grids. The hexagonal sampling gives a better simulation accuracy due to its
higher degree of isotropy. The measurement of the fabricated DOEs shows that the reconstruction
quality using a hexagonal grid is superior to that of Cartesian grids.
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Although we have demonstrated that the fundamental Cartesian calculations and optimization
algorithms for diffraction simulation can be transferred to a hexagonal grid, there are still complex
design strategies that remain explored. Since traditional 2D data is mostly processed in Cartesian
coordinates, when converted to hexagonal coordinates, they often become more complicated.

In terms of computational efficiency, the 2D HFFT consists of two 1D FFT processes which
takes more time than a direct 2D FFT for Cartesian grids. Moreover, HFFT requires additional
operations that certainly consume more computational resources. This is shown in execution time.
For example, for back-propagation of a hexagonal grid with a data size of 2×462×693 = 640, 332,
it takes 31.325 seconds to finish the optimization with 100 iterations on CPU whereas for a
Cartesian grid with a size of 800 × 800 = 640, 000 it takes 7.825 seconds. To improve the
calculation efficiency, a GPU implementation of HFFT could significantly enhance efficiency in
the future.

Our experiments show the advantages of the hexagonal grid representation both in simulation
and in the final fabricated results. The improvements in simulation can be attributed to the more
isotropic sampling properties of the hexagonal grid. The additional benefits, while present, are
subtle in the fabricated hologram results, demonstrating a nuanced improvement in matching the
designed DOE and its fabricated counterpart with the hexagonal coordinate. It should be noted,
however, that these additional benefits are modest, pointing to other sources of artifacts that affect
the fabrication process, such as uneven etching rates in the RIE process, which equally affect
both methods [36]. Moreover, it’s essential to highlight that the applications of DOEs go beyond
holography, potentially capitalizing more on the advantages of hexagonal grids. For the existing
optical elements such as hexagonal-packing SLMs and deformable mirrors that employ the
hexagonal grids, the hexagonal wave propagation approach provides a more direct and efficient
way to simulate and design, compared to resampling to Cartesian grids that introduces error.
The hexagonal representation can be extended to advanced technologies, providing distinctive
benefits in applications such as microscopic imaging and laser beam shaping, where sensitivity
to fabrication intricacies is particularly pronounced.

5. Conclusion

In this work, we have introduced the design and optimization of DOEs in the hexagonal coordinates.
The scalar diffraction formula in the form of hexagonal coordinates is derived and tested with high
simulation accuracy. We show that the general algorithms used in conventional Cartesian designs
can easily be transferred to hexagonal designs with the proposed methods. As a demonstration,
we have implemented two phase retrieval algorithms, including GS and back-propagation, to
recover the target holographic images with hexagonal sampling. DOEs with hexagonal grids are
fabricated and measured to show the benefits of using hexagonal representation. Compared with
traditional Cartesian grids, hexagonal grids reduce the edge effects thanks to the 6-fold symmetry.
Due to higher uniformity along different directions, the hexagonal design has the potential to
create more detailed diffracted patterns. We envision that hexagonal DOE offers an alternative
design strategy for diffractive optics with applications that are not limited to holography, but also
beam shaping, PSF engineering, and other advanced imaging and photography techniques.
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