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Abstract—Computer vision methods for depth estimation usually use simple camera models with idealized optics. For modern
machine learning approaches, this creates an issue when attempting to train deep networks with simulated data, especially for
focus-sensitive tasks like Depth-from-Focus. In this work, we investigate the domain gap caused by off-axis aberrations that will affect
the decision of the best-focused frame in a focal stack. We then explore bridging this domain gap through aberration-aware training
(AAT). Our approach involves a lightweight network that models lens aberrations at different positions and focus distances, which is
then integrated into the conventional network training pipeline. We evaluate the generality of network models on both synthetic and
real-world data. The experimental results demonstrate that the proposed AAT scheme can improve depth estimation accuracy without
fine-tuning the model for different datasets. The code will be available in github.com/vccimaging/Aberration-Aware-Depth-from-Focus.

Index Terms—Depth from Focus, Optical Aberration, Ray Tracing, Point Spread Function
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1 INTRODUCTION

MODERN deep-learning techniques have made signif-
icant progress in understanding 3D scenes from 2D

RGB images, including depth estimation [1], [2], [3], [4],
object detection [5], [6], multiple views [7], [8], and cam-
era tracking and mapping [9], [10], [11]. However, these
methods assume that 2D training images are aberration-
free, relying on an idealized pinhole camera model that fails
to account for out-of-focus effects and optical aberrations
present in real camera lenses. This inaccuracy leads to a
domain gap between experimental and real-world images,
particularly given that modern lenses possess large aper-
tures resulting in shallow depth-of-field (DoF), as well as
a large field-of-view resulting in off-axis aberrations. The
domain gap undermines the generalizability of trained deep
learning models [12], necessitating engineers to fine-tune
models with real data for each end device.

Recent studies in depth-from-focus (DfF) [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22] have recognized the
impact of out-of-focus effects and explored using defocus
cues for depth estimation and all-in-focus image estimation.
DfF methods estimate the probability that a pixel is the
sharpest in a focal stack and then interpolate the input
focus distances based on the probability, assuming that the
sharpest frame is the best-focused frame. The probability
can also be used to interpolate focused images for all-in-
focus image synthesis [20], [23], [24], [25]. Although some
of these methods [18], [19], [20], [21], [22] have claimed
to bridge the domain gap between experimental and real-
world images by considering that the sharpest pixel in the
focal stack is independent of semantic information, their
experiments have relied on a thin lens model that neglects
off-axis optical aberrations commonly present in real lenses.
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Such aberrations, including field curvature, can cause the
focus distance to vary across the image plane or result in
asymmetric blurs that make it difficult to measure the most
in-focus accurately frame. Moreover, studies [26], [27], [28],
[29] have highlighted the impact of optical aberrations in
depth estimation. Therefore, another domain gap arises due
to the presence of optical aberrations.

To overcome the domain gap resulting from optical aber-
rations, we introduce aberration-aware training (AAT) that
enables the network to learn these optical aberrations dur-
ing the training. Our AAT method consists of a lightweight
point spread function (PSF) network and a re-rendering pro-
cess to simulate aberrated training images. First, we com-
pute the spatially-varying PSF of an optical lens using ray
tracing [30], [31], and train a multilayer perceptron (MLP)
to represent it. Once trained, the network can efficiently
estimate the PSF for different object positions and focus
distances. Next, we render training images to apply off-axis
aberrations. Given the depth map for each image, we select
a group of focus distances and determine the PSF for each
pixel. Then we perform local convolution with all-in-focus
images to create a focal stack containing both depth-of-field
and off-axis aberrations. During the training of the depth
estimation network, the network learns to determine the
best-focused frame for each pixel under optical aberrations,
thereby enhancing the generalizability. Furthermore, the
depth estimation accuracy can be improved as long as the
training and testing images are captured/simulated using
the same lens.

To assess the effectiveness of our proposed AAT scheme,
we conduct experiments to test the generalizability of the
pre-trained DfF model on various datasets, including both
simulated and real-world datasets. First, we simulate focal
stacks using a real lens and a thin lens and train the
corresponding DfF models. Then we test two models on
focal stacks simulated/captured by the same lens without
any fine-tuning. The experimental results demonstrate that
the AAT model generalizes better than the non-AAT model
in terms of depth estimation accuracy. Specifically, the AAT
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model successfully resolves small depth differences between
adjacent objects, whereas the non-AAT model fails to do
so. Moreover, the AAT model proves more successful at
suppressing the transfer of color texture detail into the depth
geometry. We demonstrate results on two recent state-of-
the-art architectures [20], [22], and the results show that our
training approach is agnostic to the specific DfF network
architecture.

In summary, our contributions are two-fold:

• We propose a lightweight network that can represent
the PSF of a real lens at different focus distances and
object positions. This PSF network can then simulate
aberrated and realistic images for aberration-aware
training.

• We reveal the domain gap between real-world and
simulated data arising from off-axis aberrations,
which impacts the determination of the best-focused
frame in a focus stack and reduces the accuracy of
depth estimation. We propose an AAT scheme to
address the problem, the DfF models trained with
the AAT scheme can better generalize to test focal
stacks captured or simulated by the same lens.

2 RELATED WORKS

2.1 Depth from Focus

Depth estimation is a fundamental task in computer vision,
and can be tackled using different cues, such as semantic
information [2], [4], stereo [32], [33], [34], and defocus [19],
[20], [22]. Among these cues, the defocus cue is considered
domain invariant, as the defocus pattern is only related to
the optical properties of the imaging lens. The depth-from-
focus problem learns the depth map from the focus stack,
using the idea that each pixel must have one frame that is
best in focus.

Conventional approaches solve the depth-from-focus
(DfF) problem as an optimization task [13], [35]. Learning-
based approaches then use 2D convolutional neural net-
works (CNNs) to improve the accuracy of feature extrac-
tion and depth estimation [15], [16], [18], [19]. To allow
for communication between different 2D CNNs, a shared
pooling layer is used, and an intermediate defocus map [19]
is learned during training to aid the depth estimation. Later,
3D CNNs [20], [21] started to replace 2D architectures, as
they perform better in extracting shared information from
an image stack. While the idea of the intermediate defocus
map is kept, it is replaced by a 3D cost volume [20], [21],
[22].

The training and testing datasets are obtained through
various methods, including real-world captures and image
simulation. For real-world captures, focal swap [13], [15]
and light-field camera rendering [16] are two common
methods used to obtain focused images, and additional
Lidar or ToF cameras are used to get the depth map of the
scene. Capturing real-world focal stacks with ground truth
depth is quite expensive. Thus, image simulation methods,
including PSF convolution [18], stereo image rendering [20],
and software rendering [19], are also used to generate simu-
lated focal stacks for training data augmentation. However,
existing simulated focal stacks all rely on the idealized thin

lens model and thus lack optical aberrations. Moreover, the
real-world captured focal stacks lack focus distance infor-
mation and lens data. In this work, we simulate aberrated
focal stacks with the real lens model and capture real-
world focal stacks with the necessary information. We use
simulated focal stacks for training, and after training, we test
the models on both simulated and real-world focal stacks
without fine-tuning.

2.2 PSF Estimation

Multiple approaches have been introduced to calculate the
PSF of an optical lens/system. The commonly used ideal-
ized optical model [18], [36] calculates the PSF under parax-
ial principles, resulting in a truncated Gaussian function
called the “Circle-of-Confusion” (CoC). The diameter of the
CoC is computed by

CoC =
f

N

|z − fd|
z

f

fd − f
, (1)

where fd is the focal distance, z is the distance between
an object to the lens, f is the focal length, and N is the F-
number of the camera lens. However, due to the paraxial
approximation, this approach can not represent spatially
varying PSF and off-axis aberrations like field curvature,
coma, and astigmatism in actual optical lenses.

Ray tracing through optical lenses [30], [37], [38] can
provide a more accurate spatially-varying PSF and has been
widely utilized in commercial software such as ZEMAX and
CodeV. This approach involves shooting rays from each ob-
ject point source and calculating the distribution of each ray
on the sensor plane to obtain the PSF. However, tracing rays
through a sequence of optical elements is computationally
expensive as it requires finding the intersection points of
each ray using iterative algorithms. Recently, researchers
have started exploring the use of neural networks to rep-
resent the PSF [39], which has shown promising results in
both accuracy and speed. However, nobody has explored
representing a lens with both varying focus distances and
spatial positions. In this work, we extend the network
estimation approach to represent the PSF for varying focus
distances and spatial positions.

Another widely used method, especially when the de-
sign space of optical lenses is unavailable, is PSF calibra-
tion [40], [41]. PSF calibration approaches measure the lens
response to the given point light source and then estimate
the PSF at unmeasured positions [42], [43], [44], [45], [46].
Among all the PSF estimation works, the recently proposed
low-rank model [43], [47] is an efficient and accurate way
to estimate unmeasured PSF with only a few measure-
ments. However, PSF calibration also comes with its own
challenges, such as noise and quantization (especially for
long tails), since PSF estimation requires either the direct
measurement of (weak) point sources or the solution of a
deconvolution problem.

3 METHODOLOGY

As shown in Fig. 1(c), a classical DfF network takes the
focus stack and corresponding focus distances as input and
outputs a depth map. However, in the existing training
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Fig. 1. Aberration-Aware Training pipeline. (a) all-in-focus RGB images and corresponding depth maps are given as the input. (b) different focus
distances are selected to simulate the focal swap process. The PSF network estimates PSF for different object positions and focus distances
(orange path). Then the PSF is convolved with the all-in-focus image to get the focal stack (blue path). (c) the DfF network takes the focal stack and
focus distances to estimate the depth map (black path).

pipeline, the focal stacks are pre-given and the network
is blind to the optical system during training. Therefore,
the pre-trained model is hard to generalize to real-world
data, and computer vision engineers are required to fine-
tune the model for different end devices. With the idea of
embedding optical characteristics into the network training,
the AAT scheme integrates the data simulation module into
the network training pipeline, as illustrated in Fig. 1(b).
All-in-focus images and their corresponding depth maps
are used as input during the training process (Fig. 1(a)). A
series of focus distances are selected, and the PSF estimation
network is applied to estimate the PSF for each pixel, which
is then used to render the focal stack. The entire pipeline
can be executed end-to-end, and the AAT scheme allows
the network to learn the estimation of depth maps in the
presence of complex optical aberrations.

3.1 Depth-from-Focus Network

We do not modify the architecture of the DfF network but
instead use existing architectures such as AiFNet [20] and
DFVNet [22]. Here we use AiFNet for illustration. Given
a batch of focal stacks with shapes (B, S, C, H, W), where
B is the batch size, S is the stack size, C is the number
of channels, and H, W are the image height and width,
a 3D convolutional encoder is used to extract multilayer
image features and create an intermediate attention map.
This attention map functions as an in-focus probability map,
which is then used to interpolate focus distances for the final
depth estimation. The loss function for the DfF task typically
consists of a depth estimation loss and a regularization term:

L = Ldepth + ωLreg, (2)

where Ldepth denotes the supervision loss function designed
directly on the estimated depth map, and Lreg denotes the
regularization term (e.g., one that encourages the depth
map to be locally smooth using an edge-aware weighting as
in [32]). ω is the weight coefficient balancing the two parts,
and we adopt the hyperparameter settings from the original
paper.

3.2 Aberration Simulator

Our contribution lies in the accurate simulation of aber-
rations for the training data to improve on the classical

thin lens model. The PSF characterizes the optical lens
response to a point source of light. We can convolve the
per-pixel PSF with the object image to simulate the image
captured by a camera. The Gaussian PSF (Eq. 1) assumes
shift-invariance across the same depth plane. However, this
idealized optical model does not accurately account for off-
axis optical aberrations in a real camera lens. In Fig. 2(b),
we show the field curvature aberration, which is common
in real lenses. Due to the field curvature, the pixel at the
edge (P1) is blurry, but the pixel on the axis (P2) is sharp,
although this image is well-focused to depth d1.

Ray tracing through optical lenses is a well-established
technique for obtaining a more accurate point spread func-
tion (PSF) [30], [37]. This involves tracing a group of rays
from a point source through the lens group to the sensor
plane, resulting in a spot diagram. We can then convert the
spot diagram into sensor pixels and obtain the PSF [36], [48],
[49] by:

PSF(op) =

spp∑
k=1

uk · σ(|(op − ok) · êx|/L)

· σ(|(op − ok) · êy|/L),
(3)

where op denotes the coordinate of the pixel, and ok repre-
sents the intersection point of the kth ray with the sensor
plane. The variable spp stands for “samples per pixel”,
corresponding to the number of rays emitted from each
point source, which is set to 2048 in our experiments. We
assume that the energy of each ray, denoted by uk, is equal
to 1. êx and êy are unit vectors in the sensor plane, and L
denotes the physical width of a sensor pixel. The σ function
is defined as:

σ(x) =

{
1− x 0 ≤ x ≤ 1

0 otherwise
, (4)

which assesses a ray’s impact on its surrounding pixels, with
a greater impact attributed to rays in closer proximity. The
total impact of a ray on the four surrounding pixels sums to
one. By leveraging sub-pixel information, the σ function can
more accurately represent the actual light distribution using
a limited number of samples. Since DfF is based on imaging
with large apertures, it is possible to neglect diffraction ef-
fects which would dominate in optical systems with a small
aperture. Moreover, we assume that chromatic aberrations



are well corrected compared to the other aberrations and
out-of-focus effects, which is the case for most commercial-
grade lenses. This allows us to simulate the optical system
at a single wavelength of 589nm.
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Fig. 2. (a) a MLP network is trained to represent the PSF for different
positions and focus distances. We use ray tracing to calculate accurate
PSF as the ground truth. The network takes as input the object positions
(x, y, z) and focus distance fd, and produces a 2D matrix as output. (b)
off-axis optical aberrations blur the pixels at the edge (P2) when the pixel
on the axis (P1) is focused. (c) the valid imaging area is a frustum, and
we normalize the x, y coordinates to [-1, 1], z and fd to [0, 1].

However, ray tracing is computationally expensive, par-
ticularly as objects may appear at different positions and
the focus distance may vary. Inspired by [39], we train a
network H with parameters θ to represent the PSF as

θ = argmin
θ

∥PSF(x, y, z; fd)−Hθ(x, y, z; fd)∥22, (5)

where (x, y, z) represent the normalized coordinates of an
object point, and fd denotes the focus distance. As depicted
in Fig. 2(a), we train the network H to fit an imaging lens by
minimizing the difference between the estimated PSF and
the ray-traced PSF. In object space, the valid imaging region
of a lens is a frustum (as shown in Fig. 2(c)) that is defined
by the field of view (FoV), sensor size, minimum depth, and
maximum depth. We then normalize the focus distance fd
and depth z to [0, 1], and normalize (x, y) to [-1, 1].

Once the optical structure and aperture size of a lens is
fixed, the PSF is solely determined by the object position
and focus distance. To map the four-parameter input into
a 2D PSF kernel, we adopt a simple MLP network. The
PSF estimation network consists of one input layer, five

hidden layers with 256 neurons each, and an output layer
with k2 neurons, where k is the width of PSF. We use ReLU
activation functions after each input and hidden layer and
a Sigmoid activation function after the output layer. The
k2-channel output is then reshaped into a k × k 2D tensor.
After training, we fix the parameters of the PSF network and
use it to estimate the PSF for various object positions and
focus distances. Then, we can use the per-pixel PSF to render
aberrated images for the subsequent depth estimation task.

4 PSF ESTIMATION RESULTS

4.1 Implementation Details

We train the PSF network for 400,000 iterations to overfit
the lens. In each iteration, we randomly focus the lens to
a distance of fd, and uniformly select 256 points in object
space for training. The ground-truth PSFs are computed by
tracing 1024 rays from each object point, and (x, y, z, fd)
coordinates are provided to the network as input. We use
a wavelength of 589 nm and set the PSF size to 11 × 11
sensor pixels. AdamW optimizer [50] and CosineAnnealing
learning rate scheduler [51] with default parameters are
used to train the PSF network. The initial learning rate is
set to 1 × 10−3. The lens has a minimum imaging depth
of 20cm and a maximum depth of 20m, beyond which
no relevant depth information can be recovered due to
the small baseline of the DfF approach. We use the same
depth range for the focus distance. We employ the DeepLens
framework [30], [31] for ray tracing computation. The train-
ing process is run on a single A100 80G GPU and completed
in approximately 6 hours. The network consists of 0.28
million parameters, with a storage size of approximately 1.5
MB.

4.2 Evaluation

We use the Canon EOS RF50mm F/1.8 lens [52] for evalu-
ation. The image sensor is simulated with physical dimen-
sions of 24mm × 32mm and a resolution of 640 × 960 to
match the resolution of the RGBD data used for training
the DfF network. While this image resolution is much lower
than that of modern cameras, our experiments show that off-
axis aberrations are still visible in the out-of-focus regime.

After training the PSF network, we focus the lens to a
distance of 1.5m and evaluate the PSF at depths of 1.2m,
1.5m, and 2m, and three different view angles, as shown
in Fig. 3. At the focused depth (1.5m), the PSF is small,
but when the lens is out of focus (1.2m and 2m), the PSF
becomes larger. At 0◦, both the network and the Gaussian
model accurately predict the ground truth PSF. However,
as the viewing angle increases, the Gaussian PSF becomes
increasingly inaccurate due to off-axis aberrations, and a
clear difference can be observed between the Gaussian PSF
and the ground truth at 23.5◦. In contrast, the PSF network
estimated accurate results at all depths and view angles.
Furthermore, at 23.5◦, the ground truth PSF at a depth of 2m
is the smallest among the three depths, caused by the field
curvature aberration (also illustrated in Fig. 2(b)). However,
the Gaussian model can not capture this phenomenon. Com-
paring the network estimation and the ray tracing results,
we find that the network-estimated PSF exhibits less noise
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Fig. 3. PSF estimation results. We focus the lens to a distance of 1.5m and evaluate the PSF of the four methods at three depths and three view
angles. Both our PSF network and low-rank model produce a PSF that is close to the ground truth (ray tracing). In contrast, the Gaussian PSF
exhibits significant differences, particularly at large view angles. The PSF of a real lens varies with different view angles due to the presence of
off-axis optical aberrations, while the Gaussian PSF model neglects this aberration.

and holds better symmetry, which is more in line with the
physical situation.

TABLE 1
Quantitative comparison of difference PSF estimation methods.

Method ℓ1 error ℓ2 error time (min)

Ours 4.68e−3 8.23e−5 2.5

Tseng, et, al. [39] 7.35e−3 2.94e−4 1.5

Kyrollos, et, al. [47] 7.33e−3 1.43e−3 87

For comparison purposes, we also tested the low-rank
PSF estimation model described in [43], [47]. In this model,
we use ray tracing to calculate the PSF of the surrounding
8 positions and employ trilinear interpolation to obtain the
center PSF. We divide the object space into 20 depths, with
64 grids in each depth plane. The PSFs of these positions
are calculated and used for querying. As depicted in Fig. 3,
the low-rank PSF model can estimate PSFs similar to the
ground truth. Since the PSF is slowly varying in the object
space, using enough sampled PSFs for querying can yield
promising results.

For a more detailed evaluation, we selected 20 focus
distances, 40 depths, and 8 (height) × 10 (width) positions
per depth as the testing dataset to quantify PSF estimation
accuracy. Additionally, we compare our proposed network
model with the model proposed by Tseng et al. [39]. The
evaluation metrics used are the ℓ1 and ℓ2 errors. As shown
in Table 1, our MLP network achieves the most accurate
PSF estimation among the three methods. Furthermore, our
PSF network can estimate the PSF given discrete spatial
points and focus distances without requiring the querying
of external data or processing the network output. This

advantage makes our network model suitable for aberrated
and focused image simulation.

5 ABERRATION-AWARE TRAINING RESULTS

After evaluating the fitting accuracy of the PSF network, we
now turn to evaluate the impact of using this network for
aberration-aware training of the DfF network. To this end,
we conduct experiments on both simulated and real-world
data. In the first experiment, we train and test the model
on simulated focal stacks. In the second experiment, we
train the model on simulated focal stacks and test it on real-
world focal stacks. Following the AAT scheme, we simulate
the training focal stacks with the same lens that is used to
simulate/capture the test data.

For comparison, we simulate training focal stacks using
the Gaussian PSF calculated by the thin lens model (“non-
AAT”). This serves as the baseline, as used in the existing
works. To ensure a fair comparison, the thin lens is set to
have the same focal length, F-number, and sensor size as
the objective real lens, with the only variable being the off-
axis optical aberrations. In the experiment, we select two
DfF networks: AiFNet [20] and DFVNet [22], and train them
with the same settings as described in the original papers.
For each network, we train two models, one with the AAT
scheme and one without it, and evaluate their performance
on the testing focal stacks without fine-tuning.

5.1 Implementation Details
In the first experiment, we use a 50mm F/2.8 lens1 (see
Fig. 2(a)), which has significant off-axis aberrations. The
image sensor has a physical size of 24mm × 32mm and a

1. The lens data comes from lensnet.com [53], the actual F-number
we calculate is F/1.86

http://lensnet.herokuapp.com/


TABLE 2
Quantitative depth estimation results on simulated focal stacks. Two DfF networks, AiFNet [20] and DFVNet [22], are chosen for depth

estimation. The testing focal stacks are rendered by real lens PSF, while we use Gaussian PSF (“Baseline”) and real lens PSF (“Ours”) to render
training focal stacks. Models trained with our AAT scheme deliver better depth estimation accuracy.

Method MAE ↓ MSE ↓ RMSE ↓ Abs. rel. ↓ Sqr. rel. ↓ δ = 1.25 ↑ δ = 1.252 ↑ δ = 1.253 ↑

Baseline (AiFNet) 0.4706 0.4805 0.6229 0.2759 0.4906 0.8098 0.9587 0.9713

Ours (AiFNet) 0.2095 0.1536 0.3475 0.1613 0.2982 0.9683 0.9852 0.9895

Baseline (DFVNet) 0.5900 0.8452 0.8025 0.2885 0.5065 0.7390 0.8903 0.9277

Ours (DFVNet) 0.1977 0.1582 0.3446 0.1563 0.2992 0.9669 0.9830 0.9876

GT Ours (AiFNet) Baseline (AiFNet) Ours (DFVNet) Baseline (DFVNet)

Fig. 4. Qualitative results on simulated focal stacks. With the AAT scheme, both network models predict more accurate and finer depth maps,
while the non-AAT models fail to distinguish between adjacent objects and also mispredict the depth of some edge objects.

resolution of 480 × 640, and we train a new PSF network
to model this lens. The FlyingThings3D dataset [20], [54]
is used as the training dataset, which contains 800 pairs of
synthetic RGBD images. The Middlebury2014 dataset [55]
is used as the testing dataset, which contains 23 real-world
RGBD images. There is a significant domain gap between
the synthetic and real-world images, making it suitable
for evaluating the generalizability of the DfF models. We
simulate focal stacks with the RGBD images for training
and testing, using a stack size of 10. The focus distances
are chosen linearly from the minimum (20 cm) and max-
imum (20 m) depth range of each image, with a random
perturbation.

We utilize the AdamW optimizer [50] and the CosineAn-
nealing learning rate scheduler [51] with their default pa-
rameters. The training batch size is set to 16, and the initial
learning rate is set to 1e−4. Each DfF model is trained for
400 epochs on a single A100 80G GPU which is enough for
convergence. After training, we evaluate each model on the
testing dataset without fine-tuning.

In the second experiment, we use the Canon EOS R
camera and the RF 50mm F/1.8 lens, discussed in Sec-

tion 4. The DfF training procedure remains the same as
the previous experiment. We use the Matterport3D dataset
preprocessed by Zhang et al. [56], which comprises 117,516
pairs of indoor RGBD images as additional training data and
train each model for an additional 20 epochs, followed by
an evaluation of real-world captured focal stacks. The real-
world captured focal stacks consist of 24 outdoor scenes and
1 indoor scene.

5.2 Evaluation on Simulated Focal Stacks
5.2.1 Depth estimation
In Fig. 4, we present the qualitative results of the estimated
depth maps. Despite the significant domain gap between the
original synthetic training data and the real-world test data,
both DfF models can estimate promising depth maps with
the AAT scheme. This is because we simulate both training
and testing focal stacks with the same lens model, and the
optical aberrations are independent of semantic information
in the images. We observe that small depth differences
between adjacent objects are preserved in the estimated
depth maps. Furthermore, the absolute depth values of the
objects are precisely estimated without significant errors.
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Fig. 5. All-in-focus image synthesis results on simulated focal stacks. The all-in-focus images synthesized without the AAT scheme exhibit
significant estimation errors at the edge of the objects, and the continuous image regions show inconsistent sharpness and blurriness. In contrast,
the AAT scheme results in clear and continuous estimated edges.

However, the depth maps estimated by the non-AAT
models fail to distinguish between adjacent objects, and
also there are errors at the corner of the depth maps.
This inaccuracy is caused by the off-axis aberrations, which
is the only variable in the experiment. As illustrated in
the previous section, the off-axis aberrations, such as field
curvature, affects the decision of the best in-focus frame
in the focus stack and degrade the performance of pre-
trained models. These off-axis aberrations have a dominant
effect at smaller out-of-focus depths, leading to the non-AAT
model’s inability to discriminate between adjacent objects.

In Table. 2, we evaluate quantitative results with the fol-
lowing metrics: mean-absolute error (MAE), mean-squared
error (MSE), root-mean-squared error (RMSE), relative-
absolute error (Abs.rel.), relative-squared error (Sqr.rel.),
accuracy with δ = 1.25. For MAE, MSE, RMSE, Abs.rel.
and Sqr.rel., lower values indicate better results, while for
the three accuracy metrics, higher values represent better
results. As shown in the table, both AiFNet and DFVNet
models greatly improve with the AAT compared to the non-
AAT results.

5.2.2 All-in-Focus Image Synthesis
We also evaluated the results of all-in-focus image syn-
thesis, which utilized the same predicted probability maps
but instead interpolated RGB values of focused images for
the final output. The synthesized all-in-focus images are
presented in Fig. 5, with zoomed image patches in the
top-right corner. As observed, the edges of the objects in
the synthesized images without the AAT scheme exhibit a
fuzzy effect. Furthermore, there are noticeable estimation
errors that the continuous image regions exhibit inconsistent
sharpness and blurriness. PSNR and SSIM scores of esti-
mated all-in-focus images are presented in Table 3, the AAT
scheme leads to higher all-in-focus image synthesis quality
compared to the baseline.

TABLE 3
Quantitative evaluation of AAT scheme on all-in-focus image synthesis.

AiFNet PSNR SSIM
Baseline 33.55 0.970
Ours 34.65 0.976

5.3 Evaluation on Real-World Focal Stacks

We capture real-world focal stacks using the Canon RF
50 mm F/1.8 lens and test pre-trained DfF models. We select
24 outdoor scenes and one indoor scene for evaluation.

5.3.1 Outdoor Scenes Evaluation
The qualitative results of outdoor scenes are presented in
Fig. 6, where we obtain the focus distance from the photo’s
EXIF data. We observe that all models estimate good depth
maps, but the AAT-trained models provide finer details and
smoother results. Moreover, the AAT-trained models give
a more hierarchical depth map and can distinguish depth
differences between neighboring objects better. In contrast,
the non-AAT models estimate less accurate depth maps, and
the depth maps tend to confuse objects with little difference
in depth, as indicated by the objects marked by boxes in
the images. The two models exhibit significant differences
at the corner of the estimated depth maps because off-axis
lens aberrations are more pronounced at the image edge
than at the center.

5.3.2 Indoor Scene Evaluation
In Fig. 7, we present an indoor scene with objects at different
positions and depths. We focus the camera on various
objects to form the focal stack and measure more accurate
focus distances with a ruler. Furthermore, we use the Lidar
sensor from the iPhone14 Pro to scan the 3D scene, load the
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Fig. 6. Qualitative results on real-world outdoor focal stacks. We capture real-world focal stacks using the same camera lens that is used
for training and test pretrained models on them. The depth map predicted by AAT models is more hierarchical and can better distinguish depth
differences between neighboring objects, as labeled by boxes.

TABLE 4
Quantitative results on real-world indoor focal stacks.

AiFNet MAE ↓ MSE ↓ Abs.Rel. ↓ δ = 1.25 ↑

Baseline 0.1775 0.0836 0.1736 0.7978

Ours 0.1526 0.0770 0.1486 0.9029

meshes into Blender software, and calibrate the camera’s
position and view. After calibration, we render the depth
map as the ground truth and calculate the score metrics.
In Table. 4, the quantitative scores indicate that the AAT
pre-trained model performs better than the baseline (“non-
AAT”). We also observe from the zoomed image patches
in Fig. 7 that the non-AAT model incorrectly treats texture
information in RGB images as depth information and loses
edge information. For more results on the evaluation, please
refer to the Supplementary.

5.4 Efficiency Evaluation of AAT Scheme
In an optical lens, aberrations typically become more severe
as the off-axis angle increases. Therefore, in this section, we
evaluate the effectiveness of the AAT scheme for across the
FoV. We calculate the relevant error map for the estimated
depth maps and average the results, as shown in Fig. 8. In
the figure, the red color represents a large estimation error,
while the blue color represents a small estimation error.
When trained without the AAT scheme, the network model
produces depth maps with significant errors in the corners
of the image. These errors are caused by optical aberrations,
which affect the determination of the best in-focus frame in
a focal stack. In contrast, our proposed AAT scheme takes
optical aberrations into account during the training of the
DfF models. As a result, the final estimated depth map is
virtually unaffected by off-axis optical aberrations and is
more uniform compared to the baseline results.

5.5 Training Time
We also analyze the extra time introduced by the AAT
scheme, which results from the image re-rendering process.
We use DFVNet to evaluate the training speed with varying

Fig. 7. Qualitative results on real-world indoor focal stacks. We set
up an indoor scene with objects placed at different positions. The non-
AAT model incorrectly treats texture information in RGB images as depth
information and also loses edge details in the estimated depth map.

numbers of stacks. In Fig. 9, we report the average number
of batches per second during training. The image resolution
is 480×640. For AAT, we render the focus stack for each
batch during the training. For comparison, we render all
focused images before the experiment and only load them
to form focus stacks during the training. The average speed
is calculated over 200 batches within a training epoch, and
we run the model for 5 epochs to reduce the variance. When
the stack size is small (≤ 4), the AAT training scheme re-
duces the training speed. However, in DfF applications, we
typically use a stack size larger than 5 in our experiments,
and the speed difference is negligible. Particularly, when the
number of stacks is large (≥ 8), AAT training is faster since
it reduces the overhead of image loading.
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Fig. 8. Depth estimation error map. The baseline model incorrectly
estimates depth information in the corners of the image. In contrast,
the AAT scheme eliminates the effect of optical aberrations in depth
estimation and leads to a uniform error map.

When the stack size equals 1, we analyze the additional
time cost introduced in monocular image processing. The
AAT scheme reduces the training speed by approximately
30%. However, this is also highly dependent on the network
architecture. The DFVNet used for evaluation is a small
and simple network; thus, the AAT scheme introduces a
significant impact. However, we believe that this extra time
can be negligible for more complex and larger network
structures.

Fig. 9. Comparison of training speed for different stack sizes. The
AAT scheme has a significantly slower speed when the focal size is
small. But when the stack size is large, rendering focal stacks on-the-
fly shows no time delay compared to loading focused images from the
computer memory.

6 DISCUSSION

The experiments conducted in the previous section demon-
strate that optical aberrations can degrade the generalizabil-
ity of pretrained DfF models, but we can improve the results
with the proposed AAT scheme. However, there are also
some limitations that need to be considered, especially in
real-world practice.

Firstly, the impact of optical aberrations is significant
only for small defocus distances, as the PSF is dominated
by defocus phenomena when object points are far from the
focus plane. Therefore, the AAT scheme is more effective
in improving depth estimation accuracy for adjacent objects
with less significant defocus. However, in sparse scenes, the
improvement may not be as significant.

Secondly, the AAT scheme can provide more significant
improvements for lenses with larger aberrations. Current

DfF datasets contain fairly low-resolution images, in large
part, because the depth sensors used to generate ground
truth data have a limited pixel count. At these low image
resolutions, most commercial-grade lenses only exhibit very
modest aberrations. However, we believe that the AAT
scheme will be vital for extending the DfF approach to the
modern image sensor resolutions, as well as in the con-
text of end-to-end learned compact computational imaging
lenses [38], [49], [57].

Thirdly, the focus distance information obtained from
the EXIF data of photography cameras is often inaccurate,
leading to reduced depth estimation performance. However,
modern imaging and display systems typically include Li-
dar or depth cameras that can provide more accurate focus
distance information. By incorporating such information,
we believe the depth estimation performance can be further
improved, especially in scenarios where multiple cameras
are employed.

7 CONCLUSION

In this work, we address the domain gap caused by off-
axis optical aberrations, which has been overlooked by most
existing works. To this end, we propose an AAT scheme
to bridge this gap. Specifically, we develop a network to
estimate the PSF of a real camera lens for different positions
and focus distances. We then use the estimated PSF to
simulate aberrated training images, enabling the network
to learn to extract more accurate image features in the pres-
ence of optical aberrations. We evaluate the AAT scheme
on two DfF networks and demonstrate its generalizability
through both simulated and real-world experiments. The
experimental results indicate that the AAT scheme improves
the generalizability of the DfF models. The DfF models
trained with AAT can estimate more accurate depth maps
without fine-tuning compared to the baseline. Furthermore,
we believe that the AAT scheme is not limited to the DfF
task and can be applied to improve the generalizability of
other computer vision tasks.
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F. Champagnat, “Deep depth from defocus: how can defocus blur
improve 3D estimation using dense neural networks?” in Eur.
Conf. Comput. Vis., 2018, pp. 0–0. 1, 2

[16] C. Hazirbas, S. G. Soyer, M. C. Staab, L. Leal-Taixé, and D. Cre-
mers, “Deep depth from focus,” in Asian conference on computer
vision. Springer, 2018, pp. 525–541. 1, 2

[17] P. P. Srinivasan, R. Garg, N. Wadhwa, R. Ng, and J. T. Barron,
“Aperture supervision for monocular depth estimation,” in IEEE
Conf. Comput. Vis. Pattern Recog., 2018, pp. 6393–6401. 1

[18] S. Gur and L. Wolf, “Single image depth estimation trained via
depth from defocus cues,” in IEEE Conf. Comput. Vis. Pattern
Recog., 2019, pp. 7683–7692. 1, 2

[19] M. Maximov, K. Galim, and L. Leal-Taixé, “Focus on defocus:
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