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ABSTRACT

End-to-end Optics Design for Computational Cameras

Qilin Sun

Imaging systems have long been designed in separated steps: the experience-driven

optical design followed by sophisticated image processing. Such a general-propose

approach achieves success in the past but left the question open for specific tasks and

the best compromise between optics and post-processing, as well as minimizing costs.

Driven from this, a series of works are proposed to bring the imaging system design

into end-to-end fashion step by step, from joint optics design, point spread function

(PSF) optimization, phase map optimization to a general end-to-end complex lens

camera.

To demonstrate the joint optics application with image recovery, we applied it to

flat lens imaging with a large field of view (LFOV). In applying a super-resolution

single-photon avalanche diode (SPAD) camera, the PSF encoded by diffractive op-

tical element (DOE) is optimized together with the post-processing, which brings

the optics design into the end-to-end stage. Expanding to color imaging, optimizing

PSF to achieve DOE fails to find the best compromise between different wavelengths.

Snapshot HDR imaging is achieved by optimizing a phase map directly. All works

are demonstrated with prototypes and experiments in the real world.

To further compete for the blueprint of end-to-end camera design and break the

limits of a simple wave optics model and a single lens surface. Finally, we propose

a general end-to-end complex lens design framework enabled by a differentiable ray

tracing image formation model. All works are demonstrated with prototypes and

experiments in the real world. Our frameworks offer competitive alternatives for the

design of modern imaging systems and several challenging imaging applications.
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Chapter 1

Introduction

Cameras are designed with a complicated trade-off between image quality (e.g., sharp-

ness, contrast, color fidelity), and practical considerations such as cost, form factor,

and weight. High-quality imaging systems require a stack of multiple optical elements

to combat aberrations of all kinds. At the heart of the design process are tools like

ZEMAX and Code V, which rely on merit functions to trade off the shape of the

PSF over different image regions, depth, or zoom settings. Such a design process

requires significant user knowledge and experience and the emphasis on PSF shaping

neglects any subsequent image processing operations, specific application scenarios,

or the desire to encode extra information in the image.

Therefore, domain-specific computational imaging has attracted researchers’ at-

tention in the past several decades. Enabling the co-design of optics with post-

processing, computational cameras have achieved impressive results in extended depth

of field (EDOF) [1, 2, 3, 4], high dynamic range (HDR) [5, 6, 7, 8], and image res-

olution [9, 10, 11]. Nevertheless, all those older methods are either heuristic or use

some proxy metric on the PSF rather than considering the imaging quality after post-

processing. Therefore, finding a joint optimal solution for both imaging optics and

image reconstruction for a given task remains an unsolved problem in general.

Over the past few years, co-design of optics and image processing [12, 13], or

even data-driven end-to-end design [14] have emerged to bridge the gap between

optical design and algorithm development. Co-design of optics and post-processing

algorithms has achieved a superior performance for domain specific tasks such as
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depth estimation [15], LFOV imaging [13], EDOF [16], optimal sampling [17], and

HDR imaging [18, 19].

Data-driven optimization of all the parameters in a complex lens assembly is chal-

lenging. On the one hand, the optical surfaces’ varying parameters cause scaling and

distortion during the optimization process. On the other hand, a naive implemen-

tation will consume enormous computational resources due to the differentiable ray

tracing engine [20]. Recently, an end-to-end differentiable compound lens design [21]

through building a PSF dictionary using Zemax has been investigated. In the mean-

time, we proposed a fully differentiable complex lens model [22] based on differentiable

rendering, which achieved the milestone of the end-to-end computational camera de-

sign that considers aberrations of all kinds and supports complex lens design using

data-driven methods.

This dissertation introduces the story of how we realized the end-to-end designing

of optics and post-processing step by step. Inspired by the insight that the filters of

early layers of recent deep models have a striking similarity, the joint design of optics

and image recovery network is investigated firstly. To build a direct relationship

between optics design and post-processing bottle-necked by the image sensor, the

PSF is optimized according to the sensor property. The optical element is optimized

according to the optimal PSF. To compromise between different wavelengths, directly

optimizing the phase profile of optics is investigated, and it is applied to snap-shot

HDR imaging. Unfortunately, these works’ differentiable lens models have been too

limited to describe complex optical assemblies and have only been allowed to optimize

a single optical with a single material. Finally, we seek to build an optics model that

can support complex lens design and optimize off-axis aberrations to meet the scope

of consumer-level cameras.
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1.1 Overview

This dissertation focuses on how to realize end-to-end optics design step by step and

corresponding applications.

Joint optics design with image recovery (Chapter 3) is the first step that in-

vestigated to build the relationship between the imaging optics and image recovery

network. This work is motivated by a large body of work on computational photog-

raphy with PSF engineering–designing PSFs variant to a target characteristic instead

of minimizing spot size and computation to remove the non-compact aberrations.

To achieve a LFOV with thin plate optics, the PSFs of our lens are constrained to

be shift-invariant for the incident angle during the optimization process. Although

such PSFs exhibit large spot sizes, the aberrations are engineered to preserve residual

contrast and are well-suited for learned image reconstruction. A learned generative

reconstruction model, a lens design tailored to this model, and a lab data acquisition

approach that does not require the painful acquisition of real training images in the

wild are realized in this work.

End-to-end encoding through optimizing PSF (Chapter 4) can support di-

rectly optimize the optics together with post-processing. This chapter takes one more

step to bring optics design into end-to-end fashion.

SPAD sensor suffers from both low resolution and low fill-factor. An optical

low-pass filter (OLPF) is introduced to suppress aliasing while preserving as much

information as possible for super-resolution image reconstruction. In our framework,

this filter and the matching reconstruction network are jointly learned in an end-to-

end pipeline. After training, we extract the optimal PSF and then apply a Gerchberg-

Saxton (GS)-based phase retrieval algorithm to derive the phase mask, which acts as

an optical coder installed at the front focal plane of a regular lens to generate the
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optimal PSF for later implementations.

End-to-end encoding through optimizing phase mask (Chapter 5) overcomes

the limitation of single wavelength for the application of SR SPAD camera. It avoids

relying on GS based phase retravel method. This chapter takes one more step to

end-to-end camera design and considers color information as refractive index varies

with the wavelength.

HDR imaging is an essential imaging modality for a wide range of applications,

especially in uncontrolled environments like autonomous, robotics, and mobile phone

cameras. However, existing HDR techniques struggle with dynamic scenes due to

multi-shot acquisition and post-processing time. This chapter introduces a snapshot

HDR imaging method that learns an optical encoding mask that maps saturated

highlights into neighboring unsaturated areas. Novelly, a rank-1 parameterization of

the DOEs drastically reduces the optical search space while allowing high-frequency

encoding. Followed with stagelized recovery networks, this method can effectively

recover HDR images in the real world. In addition, the recovery method is demon-

strated to be effective in removing glare from in-the-wild automotive optics with

windshield-induced streaks.

Differentiable complex lens design (Chapter 6) breaks the limitation of simple

wave optics models such as Fourier transform or similar paraxial models. Previous

models only support the optimization of a single lens surface, which limits the achiev-

able image quality.

In this chapter, a general end-to-end complex lens design framework enabled by

a differentiable ray tracing image formation model is proposed. A novel configurable

and differentiable complex lens model that can simulate aberrations of all kinds is

given, and it offers greater design freedom than the previous optics models. The dif-

ferentiable complex lens model relies on the differentiable ray-tracing engine to render
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optical images in the full field by considering all on/off-axis aberrations governed by

the theory of geometric optics. This model supports the end-to-end optimization

of optics with the image recovery algorithm for a specific imaging task and reaches

the scope of consumer-level image quality. Finally, we demonstrate the effective-

ness of the proposed method on two typical applications, including LFOV imaging

and EDOF imaging. This framework offers a competition for the design of modern

imaging systems.

1.2 Dissertation structure

In the remainder of this dissertation, Chapter 2 gives the basic concepts, diffrac-

tive and refractive optics model, aberrations and PSFs, imaging model, and post-

processing model. Then, Chapter 3 presents the first step to end-to-end optics design,

which jointly optimize the optics and image recovery network to realize LFOV imaging

with thin plate optics. In Chapter 4, the story steps into a new chapter that enables a

directly end-to-end PSF optimization with the recovery network. The optimal optics

is then obtained through GS based phase retrieval algorithm to achieve a phase mask

that can be fabricated. The fabricated phase mask success in the scenario of the SR

of a low fill factor and low pixel counts SPAD array camera. Next, Chapter 4 further

release the designing freedom of optics that allows direct optimize of the height map

of the optics and find the best compromise between color channels. Followed with

more advanced stagelized image recovery networks, it can effectively recover HDR

images in the real world. To further release the designing freedom, we expand the

optics model to the differentiable complex lens design, which not only breaks the

limitation of a single optics surface but also considers off-axis aberrations. Beyond

the optics model, we introduce a novel configurable and differentiable complex lens

model based on differentiable ray-tracing, and this model can simulate aberrations of

all kinds. Our framework offers a competitive alternative for the design of modern
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imaging systems.

Finally, we conclude this dissertation with further research points in Chapter 7.
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Chapter 2

Background and Related Work

In this chapter, we review the background techniques and the recent work related

to the end-to-end optics model and the imaging model of the camera design and

present the research background on which the work presented in this proposal has

been based. In particular, it introduces the reader fundamental Optics terms, followed

by introducing imaging models and image processing pipelines. We will refer to these

concepts when we discuss algorithms and methods in the following chapters.

2.1 Luminance

The physical light measurement most suitable for images are photometric luminance

units, and we will define it based on [23]. Luminance is an integrated spectral radiance

across the range of visible wavelengths with the weighting function W (λ):

Y =

∫ 770 nm

380 nm

L(λ)W (λ)dλ. (2.1)

Function W (λ), called the spectral luminous efficiency curve [24], gives more

weight to the wavelengths that are more sensitive to the human visual system(HVS).

The function W (λ) is different for daylight vision (photopic) and night vision (sco-

topic), and it is linked to our perception of brightness. Luminance, Y, is generally

given in cd/m2 or nit equivalent units.
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2.2 Differentiable Optics

2.2.1 Ray Optics

The lens model based on ray optics are usually spherical and aspherical. Given a

Cartesian coordinate system (x, y, z), the z-axis coincides with the optical axis, while

(x, y) forms the transverse plane. Let r =
√
x2 + y2 and ρ = r2. Then the height of

the aspheric surface and its derivative are defined as:

h(ρ) =
cρ

1 +
√

1− αρ
+

n∑
i=2

a2iρ
i, (2.2)

h′(ρ) = c
1 +
√

1− αρ− αρ/2
√

1− αρ
(
1 +
√

1− αρ
)2 +

n∑
i=2

a2iiρ
i−1, (2.3)

where c is the curvature, α = (1 + κ)c2 with κ being the conic coefficient, and a2i’s

are higher-order coefficients. The implicit form f(x, y, z) and its spatial derivatives

∇f are:

f(x, y, z) = h(ρ)− z, (2.4)

∇f =
(
2h′(ρ)x, 2h′(ρ)y,−1

)
. (2.5)

Note that spherical surfaces are special cases of asperical surfaces when κ = 0 and

a2i = 0 (i = 2, · · · , n).

2.2.2 Diffractive Optics

Despite using refractive optics as the imaging or projection lens, diffractive optical ele-

ment (DOE) is a flexible alternative. DOEs bring new image posiblities such as depth

estimation [15] large field-of-view imaging [13], EDOF [16], optimal sampling [17] and

high dynamic range (HDR) imaging [18, 19].

DOEs are operated by means of interference and diffraction to produce arbitrary



22

distributions of light , and have the following inherent advantages. First, DOE can

be fabricated on a thin sheet; second, a single DOE can perform multiple optical

operations simultaneously to act as an efficient light modulation platform; third,

DOE is easily to be easily written as a differentiable model as when DOE plays as

the role of the aperture of the optical system , the relationship of the DOE and the

PSF can be simplied as a Fourier Transform.

To design a DOE in an end-to-end fashion, the optical model usually contains the

following parts.

Point Light Source. The optical model begins with a point light source placed a

certain distance in front of the DOE plane. Like most camera systems, the PSF for

our optical model is depth-dependent. We chose a 5 m focal point as a compromise

for near-infinite scene depths.

The point source generates a spherical wave. Upon the arrival of the wavefront to

the DOE plane, the phase of the wavefront can be expressed as

u− = A0e
jk
√
x′2+y′2+z2

, (2.6)

where A0 is the amplitude, k = 2π/λ is the wavenumber, and z is the distance from

the point source and DOE center. When the pint light source is far enough from the

camera, the wave can be approximated as a plane wave.

DOE Layer. We then use a DOE layer to modulate the incident wave and set the

DOE plane as the aperture A(x′, y′) of the whole optical system. The modulated field

can be expressed as

u+ = A(x′, y′)u−e
jk(nλ−1)h(x′,y′), (2.7)

where nλ is the wavelength-dependent refractive index of the DOE and h(x′, y′) is

the height map of the DOE.
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Figure 2.1: The optical forward model consists of a point light source which gener-
ates a spherical wave that is modulated by the DOE and focusing lens before being
captured by the sensor. The corresponding PSF is used to simulate images.

The DOE layer brings a huge design space, but this model is based on paraxial

approximation. In other words, the field of view (FOV) of the final optical system is

limited. In addition, researchers usually take the DOE plane as a pixelwised variable

map [14, 15, 25, 26, 27]. However, such kind of scenario has a huge variable map that

is hard to train and converge to a good local minimum.

Focusing-Lens Layer. To free the design space of DOE, a focusing lens can be

added. This lens is responsible for focusing the image, and allows the DOE to be

purely optimized for the HDR encoding without also requiring the focusing operation

for broadband illumination. The wave field ul can be expressed as

ul = u+e
jk(f−
√
x′2+y′2+f2). (2.8)

Fresnel Propagation Layer. We use the Fresnel approximation here to describe

the field propagation from the focusing-lens to sensor. Specifically, the field us at the
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sensor plane can be expressed as

us = F−1{F{ul}H}, (2.9)

where H(fx, fy) = ejkLe−jπλL(f2
x+f2

y ), with fx = 1/2∆x′ and fy = 1/2∆y′, is the

Fresnel propagation kernel and L is the distance between the normal lens and sensor

plane. Finally, the PSF corresponding to the entire image formation model is given

by p ∝ |us|2.

2.3 Optical Aberrations and PSF

Optical systems suffer from both monochromatic and chromatic aberrations [28],

which are derived from the optical path deviations when light travels through different

regions of an objective lens (i.e., having a certain aperture size and thickness) from

different incident angles.

Monochromatic aberrations. Monochromatic aberrations describe the devia-

tions from the idealized linear Gaussian optics [29] occur even for a single wavelength.

Five primary aberrations are classified into this type, including spherical aberration,

coma, astigmatism, field curvature, and distortion. The aberrations of a real lens are

interpreted as the fact that the beam emitted from a point source may be focused at

many points that vary in the spatial domain.

Chromatic aberrations. Chromatic aberrations result from the wavelength-dependency

of the refractive index of the material. When imaging a white point light source, the

shift or spread of the imaged spot along the optical axis is denoted as axial chromatic

aberration. The remaining component in the image plane is denoted as lateral chro-

matic aberration [30]. Chromatic aberrations present one of the critical contributions

for preserving color fidelity in image signal processing.
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All these aberrations, including both monochromatic and chromatic aberrations,

are visualized as the unwanted spatial and spectral variant blur of the image that

may become more severe for a lens having a relatively large numerical aperture or a

small f-number. The aberration theory was firstly introduced by Seidel in 1857 [31].

From this, lens design in optics attempts to eliminate aberrations by designing in-

creasingly complex lens structures stacked with many elements [32]. This involves

designing aspherical surfaces as well as finding materials with better optical proper-

ties. Therefore, lens design is a heuristic compromise among various optical evaluation

criteria [33, 34]. Accordingly, state-of-the-art commercial optical design toolbox, like

Zemax, Code-V, etc., has been intensively used in designing refractive lens profiles

for a wide range of applications. Intuitively, a high-level insight in the design space

is to enforce the focusing contribution to be as clear as possible subject to field-

of-views and wavelengths. Researchers recognized that optical aberrations could be

deliberately minimized until recent decades but designed to exhibit other behavior

for obtaining extra information of the scene.

Our physical world is a 3D world, with multiple different light sources which vary

with wavelengths, polarization state, and intensity distributions. Objects in our world

have their shapes and materials. Each material has its reflectance property which

can be described as Bidirectional Reflectance Distribution Function and spectrum

reflectance. Our camera, with the assistance of optimized illumination, optimized

optics, optimized sensors, optimized post-processing, and optimized visualization. It

is possible to rebuild a virtual physical world through computational photography!

2.4 Ditital Cameras, Imaging Model and Key Trade-off

Most modern digital cameras use CCD (charge-coupled device) or CMOS (comple-

mentary metal-oxide-semiconductor) chips to record radiant energy. Their role is to

convert incident radiant energy into readable digital numbers. Each photodetector
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is called a pixel, which has a p–n junction that converts light photons into the cur-

rent. The ratio of the number of emitted photoelectrons and absorbed photons are

quantum efficiency (QE), which is related to the photon energy of the light.

The shutter is a photographic device that administers the exposure by limiting

the time T over which light is admitted. For the usual digital sensor, the accumulated

photoelectrons are read out as an amplified analog signal through an analog-to-digital

converter (ADC). As a result, the unprocessed raw image can be expressed as:

Ic(x
′, y′) =

∫
Qc(λ) · [p(x′, y′, d, λ, sc) ∗ sc(x′, y′, d)]dλ+ n(x′, y′), (2.10)

where the PSF p(x′, y′, d, λ, sc) is a function with spatial position (x′, y′) on the

sensor, the depth d of scene, and the incident spectral distribution λ. Qc is the color

response of the sensor, and sc(x
′, y′, d) and n(x′, y′) represent the latent scene and

measurement noise (white Gaussian noise), respectively. The PSF p(x′, y′, d, λ, sc) is

controllable by optics design and is the key trade-off in end-to-end camera design. .

2.5 Image Recovery Model

Image reconstruction is another critical stage for an end-to-end computational camera.

Usually, the reconstruction is formulated as an optimization problem of a data fidelity

term with an additional regularization term:

I = arg minI

1

2
‖p ∗ I − Is‖2

2 + β‖Φ(I)‖1, (2.11)

where Φ(·) denotes the transform coefficients of the ground truth I with respect to

some transform Φ that can be either linear or optimized non-linear. Sparsity in the

transform space Φ(I) is encouraged by the `1 norm with β being a regularization

parameter.

Usually, natural images are non-stationary in classic domains like DCT, gradients,
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and wavelets, which may result in an ill-posed problem under such an imaging model.

If the image degeneration model is fixed, the image reconstruction can be directly

solved by optimizing the cost function 4.2. For example, with a fixed PSF p like a

gaussian kernel, the transform Φ represents the gradient operator. Then we can solve

this cost function through the well-known alternating direction method of multipliers

(ADMM) method or some other optimization methods such as the proximal operator.

Another condition is that the PSF varies with the scene, like the incident spectral

distribution, spatial position, etc. Such kind of situation becomes hard to solve as

the degeneration model is not fixed. With the development of deep learning, image

recovery for the scene-dependent condition become possible. The key to solving this

inverse problem is to simulate the corruption well to train the image recovery network

mapping to the target result. The image recovery network can be tailored to a specific

application.
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Chapter 3

Joint Optics Design with Image Recovery: Learned Large

FOV Imaging

Figure 3.1: Results of LFOV imaging with thin-plate optics. We design a lens
with compact form factor using one (or two) optimized refractive surfaces on a thin
substrate (left). This optimization results in a dual-mixture point spread function
(center-left insets), which is almost shift-invariant to the incident angle, exhibiting a
high-intensity peak and a large, almost constant, tail. We show the sensor measure-
ment (center) and image reconstruction (right) in natural lighting conditions, which
demonstrate that the proposed deep image recovery effectively removes aberrations
and haze resulting from the proposed thin-plate optics. Our prototype single element
lens achieves a large field-of-view of 53◦ with a clear aperture of F1.8 and effective
aperture of F5.4, see text.

This chapter initializes the joint optics design through the application of large FOV

imaging. Typical camera optics consist of a system of individual elements designed

to compensate for the aberrations of a single lens. Recent computational cameras

shift this correction task from optics to image signal processing, reducing the imaging

optics to only a few optical elements. However, these systems only achieve reasonable

image quality by limiting the FOV to a few degrees – effectively ignoring severe off-

axis aberrations with blur sizes of multiple hundred pixels.

In this chapter, we present a lens design and learned reconstruction architecture
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that lifts this limitation and provides an order of magnitude increase in FOV using

only a single thin-plate lens element. Specifically, we design a lens to produce spatially

shift-invariant point spread functions over the full FOV tailored to the proposed

reconstruction architecture. We achieve this with a dual-mixture PSF, consisting of

a peak and a low-frequency component, which provides residual contrast instead of

a small spot size as in traditional lens designs. To perform the reconstruction, we

train a deep network on captured data from a display lab setup, eliminating the need

for manual acquisition of training data in the field. We assess the proposed method

in simulation and experimentally with a prototype camera system. We compare

our system against existing single-element designs, including an aspherical lens and

a pinhole, and we compare against a complex multi-element lens, validating high-

quality large field-of-view (i.e., 53◦) imaging performance using only a single thin-plate

element.

3.1 Introduction

Modern imaging techniques have equipped us with powerful capabilities to record and

interact with the world – be that in our devices, assistive robotics, or self-driving ve-

hicles. Coupled with recent image processing algorithms, today’s cameras can tackle

high-dynamic range and low-light scenarios [35, 36]. However, while image process-

ing algorithms have been evolving rapidly over the last decades, commercial optical

systems are primarily still designed following aberration theory, i.e., with the design

goal of reducing deviations from Gauss’s linear model of optics [29]. Following this

approach, commercial lens systems introduce increasingly complex stacks of lens el-

ements to combat individual aberrations [30]. For example, the optical stack of the

iPhone X contains more than six aspherical elements, and professional zoom optics

can contain more than twenty individual elements.

Although modern lens systems are effective in minimizing optical aberrations, the
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depth of the lens stack is a limiting factor in miniaturizing these systems and manufac-

turing high-quality lenses at low cost. Moreover, using multiple optical components

introduces secondary issues, such as lens flare and complicated optical stabilization,

e.g., in a smartphone where the whole the lens barrel is actuated. In particular, the

design goals of large field-of-view (FOV, e.g., > 50◦), high numerical aperture (NA),

and high resolution (e.g., 4k resolution) stand in stark contrast to a compact, simple

lens system.Existing approaches address this challenge using assemblies of multiple

different lenses or sensors [37, 38, 39, 40, 10], including widely deployed dual-camera

smartphones, each typically optimized for a different FOV. While providing some

reduction in footprint, such spatial multiplexing increases the number of optical ele-

ments even further and requires higher bandwidth, power, and challenging parallax

compensation post-capture [40].

In this work, we deviate from traditional lens design goals and demonstrate high-

quality, monocular large-FOV imaging using a single deep Fresnel lens, i.e., a thin lens

with a microstructure allowing for larger than 2π modulation. Specifically, we propose

a learned generative reconstruction model, a lens design tailored to this model, and

a lab data acquisition approach that does not require the painful acquisition of real

training images in the wild.

The learned reconstruction model allows us to recover high-quality images from

measurements degraded by severe aberrations. Single-lens elements, such as spherical

lenses or Fresnel phase plates [41], typically suffer from severe off-axis aberrations

that restricts the usable FOV to around 10◦ [42, 41, 43]. Instead, we propose a novel

lens design that offers spatially invariant PSFs, over the full FOV designed to allow

aberration removal by the proposed learned reconstruction model. We achieve this

by abandoning the design goal of minimal spot size and instead balance the local

contrast over the full FOV. This alternative objective allows us to build on existing

optimization tools for the optics of the proposed co-design, without requiring end-to-
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end design. The resulting thin lens allows the reconstruction network to detect some

contrast across the full FOV, invariant of the angular position, at the cost of reducing

the contrast in the on-axis region. As a consequence, the proposed computational

optics offers an order of magnitude larger FOV than traditional single lenses, even

with the same reconstruction network fine-tuned to such alternative designs.

The following technical contributions enable large FOV imaging using thin, almost

planar, optics:

• We propose a single free-form lens design tailored to learned image reconstruc-

tion methods for large FOV high-quality imaging. This design exhibits almost

invariant aberrations across the full FOV that balance the contrast detection

probability (CDP) of early network layers.

• We propose a generative adversarial model for high-resolution deconvolution for

our aberrations of size ≤ 900 pixels.

• The model is trained on data acquired with a display lab setup in an auto-

mated manner, instead of painful manual acquisition in the field. We provide

all models, training and validation data sets.

• We realize the optical design with two prototype lenses with effective thickness

of 120 µm, aperture size of 23.4 mm, and a FOV of 53◦ – one with a single

optical surface, the other with two optical surfaces (both sides of the same flat

carrier). We experimentally validate that our approach offers high image quality

for a wide range of indoor and outdoor scenes.

Overview of Limitations We note that, compared to conventional digital cam-

eras, the proposed reconstruction method requires more computational resources.

Although our thin-plate lens design reduces the form factor compared to complex

optical systems, its back focal length is comparable to conventional optics.
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3.2 Related Work

3.2.1 Aberrations and Traditional Lens Design.

Both monochromatic and chromatic aberrations are results of the differences of the

optical path length when light travels through different regions of a lens at differ-

ent incident angles [44]. These aberrations manifest themselves as unwanted blur,

which becomes more severe with increasing numerical aperture and field-of-view [45].

Conventional lens design aims at minimizing aberrations of all kinds by increasingly

complex lens stacks [32]. This includes designing aspherical surfaces and introducing

lens elements using materials with different optical properties.

State-of-the-art optical design software is a cornerstone tool for optimizing the

surface profiles of refractive lens designs. However, while hyper-parameter optimiza-

tion tools are becoming mature, the design process still relies on existing objectives,

so-called merit functions, that find a compromise across a variety of criteria [34, 46],

trading off the point spread function (PSF) shape across sensor locations, lens con-

figurations (e.g., zoom levels) and target wavelength band.

3.2.2 Computational Optics.

A large body of work on computational imaging [1, 47, 48, 4] has proposed to design

optics for aberration removal in post-processing. These methods often favor diffrac-

tive optical elements (DOEs) over refractive optics [49, 50, 43, 51] because of their

large design space. Moreover, recent work proposed caustic (holographic) designs, for

projection displays or imaging lenses [52, 53, 54]. To simplify the inverse problem

in post-processing, all of the described approaches ignore off-axis aberrations by re-

stricting the FOV to a few degrees – existing approaches do not realize monocular

imaging with a large FOV.

Several approaches to end-to-end optical imaging were recently proposed, where
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parametrized optics and image processing are jointly optimized for applications in

EDOF and superresolution imaging [14], monocular depth estimation [25, 55, 16],

and image classification [56]. However, none of these approaches aim at large FOV

imaging, and all of them build on simple paraxial image formation models, which

break for large fields of view. Moreover, they are limited to a single optical surface.

We overcome these challenges by engineering PSFs over a large FOV and, relying

on existing optical design tools that support complex multi-surface/material designs,

optimize for a well-motivated dual-mixture design tailored to deep reconstruction

models.

3.2.3 Manufacturing Planar Optics.

Various manufacturing methods enable “planar” optics with the low-depth optical

surface, i.e., less than 1 mm. Commercial miniature form factor optics like the lenses

in smartphone cameras, can be manufactured using mature injection molding tech-

niques [57]. Alternative fabrication methods for thin-plate lenses include diffrac-

tive optics and metalenses [58, 59], which require nano-fabrication methods like pho-

tolithography and nano-imprinting [60, 61]. The UV-cure replication technique [62]

can facilitate manufacturing wafer-scale optical elements. Note that creating a Fresnel

lens with a clear aperture diameter of 23.5 mm and a focal length of 43 mm requires,

as in this work, a feature size smaller than 300 nm, which is beyond the capability of

the photolithography methods used in many recent DOE works [43, 51, 14]. Freeform

lenses with a larger aperture and continuous surfaces can be manufactured using di-

amond turning machining [63]. The continuous surface preserves light efficiency and

works under broadband illumination, while the lenses are usually thick and bulky

because of the local curvature constraints.

In this work, we use high-precision diamond turning machining for prototyping

the proposed lenses. Instead of fabricating a freeform lens with a continuous surface,
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e.g., as in [14], we wrap the optimized surface profile using coarse wrap-around depth

values instead of wavelength-scale wrapping in diffractive lens designs, see Fig. 4.1.

This allows us to design a Fresnel-inspired free-form lens with the advantages of both

refractive optics and diffractive optics: we achieve a thin form factor while reducing

chromatic aberrations.

3.2.4 Image Quality.

Imaging describes the signal chain of light being transported from a scene patch of

interest to the camera, focusing on the camera optics, digitization of the focused

photon flux on the sensor, and post-processing of the measured data. During each

of these individual steps, information about the scene patches of interest may be

lost or corrupted. Various hand-crafted image quality metrics exist that measure the

cumulative error of this imaging process [64, 65], with or without known ground-truth

reference [66], or allow to individually characterize components of the imaging stack

using calibration setups [67, 68]. Typical performance metrics are the signal-to-noise

ratio. (SNR) [69] and modulation transfer function (MTF) [70, 67]. While these

metrics are widely reported, and measurement setups are readily available, they are

also not free from disadvantages due to their domain-agnostic design. For example,

high SNR does not guarantee a perceptually pleasing image, which has sparked recent

work on perceptual loss functions [71]. Moreover, SNR increases in the presence of

glare and quantization, which can yield inconclusive results when used as a design

metric [72].

We design the proposed optical system in conjunction with the learned image

reconstruction methods. To this end, we analyze the behavior of the early layers in

our generator, which relate to the response of local contrast features in the scene.

Relying on a probabilistic measure [72], we assess the ability to detect or miss such

local features across the whole FOV. This insight allows us to tailor the proposed lens
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design to our network-based reconstruction method.

3.2.5 Learned Image Reconstruction.

Traditional deconvolution methods [73, 74, 42] using natural image priors are not ro-

bust when working with extremely large, spatially invariant blur kernels that exhibit

chromatic aberrations and other challenging effects. Unfortunately, the lens design

proposed in this work produces large PSFs that present a challenge to existing decon-

volution methods which suffer in image quality for large aberrations, necessitating a

custom image reconstruction approach. Note that computationally efficient forward

models for large spatially-varying convolutions have been investigated before [75].

Over the last years, a large body of work proposed data-driven approaches for

image processing tasks [76, 77, 78]. Specifically addressing deconvolution, Nah et

al. [79] propose a fully connected convolutional network that iteratively deconvolves

in a multi-stage approach. More recently, generative adversarial networks (GANs)

have been shown to provide generative estimates with high image quality. Kupyn et

al. [80] demonstrate the practicability of applying GAN reconstruction methods to

deblurring problems.

All of these approaches have in common that they require either accurate PSF

calibration or large training data that has been manually acquired. In contrast,

we propose a lab capture process to generate a large training corpus with the PSF

encoded in the captured data. Note that the large aberrations make training on very

small image patches prohibitive. The proposed automated acquisition approach allows

for supervised training on a very large training set of full-sized images, which are

needed to encode large scene-dependent blur. The training approach, together with

the proposed model and loss function, allows us to tackle the large scene-dependent

blur, color shift, and contrast loss of our thin-plate lens design.
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3.3 Designing Optics for Learned Recovery

Figure 3.2: Computational thin-plate lens imaging with large field-of-view. Left:
learned early layers’ filters applied on input scene; Center-left: optical design that
preserves local contrast across full FOV. The designed optical element has a Fresnel
lens surface; Center-right: calibrated PSF patches for different incident angles of
our prototype lens (images gamma-tonemapped for visualization); Right: overview of
the image processing pipeline and our recovery framework, which learns a mapping
for the linear input to the recovered output. We introduce a learned reconstruction
architecture trained using data that can be efficiently acquired in a display-capture
lab setup (see details in Section 6).

In this work, we describe an optical design tailored to learned reconstruction tech-

niques for large field-of-view, thin-plate photography. The proposed optical system

is shown in Figure 3.2. In contrast to state-of-the-art compound lenses, it consists

of a single, almost flat, element. The two core ideas behind the proposed optical

design are the following: first, to achieve a large FOV, we constrain the PSFs of our

lens to be shift-invariant for the incident angle. Second, although such PSFs exhibit

large spot sizes, we engineer aberrations that preserve residual contrast and hence are

well-suited for learned image reconstruction.

Our design is motivated by a large body of work on computational photography

with PSF engineering – designing PSFs invariant to a target characteristic, instead

of minimizing spot size, and computation to remove the non-compact aberrations.

Similar to how existing work EDOF [81] or spectral range [82, 51], we are the first to

apply this idea to extending the FOV.

To this end, we rely on the insight that the filters of early layers of recent deep
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models, across applications in computer vision and imaging, have striking similarity –

these early layers are gradient-like filters and respond to local contrast as essential low-

level information content in the measurement. As many recent learned architectures

rely on common low-level backbones, which are then transferred to different higher-

level tasks [83, 84], this transfer-learning offers an interesting opportunity for the

design of imaging systems.

We engineer the PSFs of the proposed optical design, shown in Figure 3.2, to

exhibit a peaky distribution. While the peak contribution maximizes the probability

of detecting local contrast features, the low-frequency part is extremely large (∼900

pixels on the experimental sensor system covered below) and therefore leads to very

low filter responses in the early layers. In contrast to conventional spherical elements,

see Figure 3.7, this PSF exhibits the peak-preserving distribution across the full sensor

which enables large FOV imaging with this single optical element.

Given a raw measurement acquired with the proposed thin-plate lens system, we

recover a high-quality image using a generative adversarial network which is trained

to eliminate all measurement degradations and directly outputs a deblurred, denoised,

and color-corrected image, see Figure 3.2. To train the network in a semi-supervised

fashion, using labeled and unlabeled data to learn robust loss functions along with

the model parameters, we require a training dataset with ideal reference images and

corresponding blurry captures. Instead of manually acquiring such a dataset, e.g., by

sequentially swapping optics for a scene, we propose an automated lab setup which

displays known ground-truth images on a display.

In the following, we first describe the proposed optical design in Section 3.4, before

introducing the reconstruction architecture and training methodology in Section 3.5.
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3.4 Lens Design

Throughout the rest of this chapter, we consider rotationally symmetrical designs.

Although our approach can be generalized to rotationally asymmetrical profiles, ro-

tational symmetry facilitates manufacturing using turning machines.

3.4.1 Ideal Phase Profile

The phase of a lens describes the delay of the incident wave phase introduced by

the lens element, at the lens plane. The geometrical (ray) optics model, commonly

used in computer graphics, models light as rays of photon travel instead of waves.

This model ignores diffraction, e.g. for light passing through a narrow slit. Although

being an approximation to physical optics, ray optics still can provide an intuition:

the perpendiculars to the waves can be thought of as rays, and, vice versa, phase

intuitively describes the relative delay of photons traveling along these rays to the

lens plane, as illustrated with red lines in Fig. 3.3. Hence, the phase of a thin lens is

its height profile multiplied with the wave number and the refractive index [85, 86].

We design the proposed lens by first specifying an ideal phase profile for perfect,

spatially invariant PSFs over the full FOV, i.e., mapping incident rays from one

direction to one single point. Because it will turn out intractable to manufacture this

ideal lens, we propose an aperture partitioning strategy as an approximation. The

deviation of this partitioned phase profile to the ideal profile is a large low-frequency

component which is independent of the incident angle. Together with the peak-

component, which preserves local contrast over the full FOV, these two components

make up the desired spatially invariant dual-mixture PSF.

To specify the ideal phase profile φ(r, ωi) for an incident ray direction i, and radial

position r, see Figure 3.3, we assume a physical aperture size D, focus distance f ,
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and set:

φ(r, ωi) = −k
[
r · sinωi −

∫ r

0

sinθ(r1, ωi)dr1

]
, (3.1)

where k represents here the wave number that is specified by the wavelength, and

ωi represents the incident angle of ray direction i [87]. For this ideal lens profile, we

define the output angle as:

θ(r, ωi) = arctan

(
ρ(ωi)− r

f

)
, (3.2)

since the ideal lens design maps the incident rays from one direction ωi to a single

point with spatial position ρ(ωi) on the image plane.

Next, by inserting Eq. 3.2 into Eq. 3.1, we derive the target phase φ as:

φ(r, ωi) = −k

[
r · sinωi −

∫ r

0

ρ(ωi)− r1√
f 2 + (ρ(ωi)− r1)2

dr1

]
(3.3)

= −k
[
r · sinωi +

√
f 2 + (ρ(ωi)− r)2 −

√
f 2 + ρ(ωi)2

]
.

The ideal phase profile from Eq. 3.3 is visualized in Figure 3.3 (right). We observe

a drastic variation when approaching larger incident angles. In other words, the

same position on the lens aperture would need to realize different phases for different

incident angles, which is not physically realizable with thin plate optics.

3.4.2 Aperture Partitioning

Realizing the ideal phase profile is intractable to manufacture over the full aperture,

as illustrated by the large angular deviations needed in off-axis region in Figure 3.3.

To overcome this challenge, we split the aperture into multiple sub-regions, and as-

sign each sub-region to a different angular interval, similar to prior work [4, 88] for

refractive optics. We note that this concept is also closely related to specializing op-

tics depending on the incident ray direction in light field imaging [89], for example,
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Figure 3.3: Schematic of ray geometries in a radially symmetric design manner (left)
, and the ideal phase profile distribution subject to incident angle (right). For vi-
sualization purpose the phase map is wrapped by 1,000π, and the vertical axis is
normalized with respect to the focal length.

tailoring optical aberrations for digital correction [90]. Specifically, we introduce a

virtual aperture A(r, ωi) = circ[r−ν(ωi)] to partition the incident light bundle of each

direction into a peak component that we optimize for, while treating out-of-aperture

components as out-of-focus blur. Here, circ[·] is a function representing a circular

aperture, ν(ωi) indicates the axial center of the virtual aperture subject to the ith

incident ray direction. With this aperture partitioning, we optimize for the phase

profile solving the following optimization problem:

[φ0(r), ρ, ν] = arg min
φ0(r),ρ,ν

N∑
i=1

‖A(r, ωi)(φ0(r)− φ(r, ωi))‖2
2. (3.4)

Note that the virtual aperture is not a physical aperture of the optical system, but

is only introduced as a conceptual partitioning in the lens optimization. Figure 3.4

shows the virtual apertures for uniformly sampled directions superimposed on the

real aperture. For every direction, we optimize only for the rays that pass through

the corresponding virtual apertures; these will be focused into a sharp PSF, while all

other rays from the same direction that miss A but pass through the full aperture D
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will be blurred and manifest as a low frequency “haze” in the measurement.

3.4.3 Fresnel Depth Profile Optimization

We solve the optimization problem from Eq. 3.4 using Zemax [33]. While Eq. 3.4

minimizes phase differences, Zemax interprets it as minimizing the optical path dif-

ference (OPD). Zemax allows us to piggy-back on a library of parameterized surface

types, and directly optimize a deep Fresnel lens profile (a deeper micro-structure than

regular 2π modulation.) instead of sequentially optimizing for the phase and depth

in a two-stage process. We formulate the problem from Eq. 3.4 using the multiple

configuration function with the number of the configurations set to the discretized

aperture directions (7 in this work, uniformly sampled on half of the diagonal image

size). We set the size of each virtual aperture – the effective aperture that contributes

to focusing light bundles – to one third of the clear aperture. As shown in Figure 3.4,

the center ν of the virtual aperture for each direction along the clear aperture plane

can be modeled by shifting a stop along the optical axis. This allows us to optimize

the location of the virtual aperture by setting the stop position as an additional op-

timization variable. The merit (objective) function used in Zemax includes terms for

minimizing the wavefront (phase) error at each sampled direction, and enforcing a de-

sired effective focal length (EFL). We refer the reader to the supplementary document

for additional details.

3.4.4 Aberration Analysis

The optical aberrations of the proposed design have the following properties. The

chromatic variation is small because a deep Fresnel surface results in only small focal

length differences in the visible wavelength region. Off-axis variation (i.e. spatial

intensity variation of PSFs across FOV) are small since we only control a part of light

of each direction to focus into the sharp peak (see Figures 2 and 7).

For each viewing direction, the PSF exhibits two components, a high-intensity
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Figure 3.4: Schematic of aperture partitioning approach. The spatial position of a
virtual aperture (specified by the offset from the optical axis and visualized with
different colors) along the radial direction is determined by the controlled position
of the stop (on the left), that is further dependent on incident ray directions. The
synthetic spot distributions of three directions are presented as inserts, from each
pattern we observe a sharp peak that fits well to our design goal of PSFs.

peak, which preserves local contrast, and a large low-frequency component. We note

that this property differs from conventional spherical or aspherical singlets with the

same NA whose field curvature can be severe. Although the low-frequency PSF

component reduces contrast, it does so uniformly across the FOV. In contrast to

conventional single element optics, which have very poor contrast in regions far from

the optical axis (required for wide-FOV imaging), it is this design which allows us

to preserve the ability to detect some residual contrast, instead of completely losing

contrast.

3.5 Learned Image Reconstruction

In this section, we describe the forward image formation model, which models sensor

measurements using the proposed optical design, and we present our learned recon-
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Figure 3.5: Generative image reconstruction architecture. The generator model is
shown on the left and the layer configurations of encoder/decoder stages are illus-
trated with different colored blocks (bottom-left). We apply skip connections in every
decoder stage. In particular, we use a combination of a perceptual loss between the
predicted image and the ground-truth, and a Wasserstein generative adversarial loss.
The discriminator model for the GAN loss is similar to the encoder architecture.

struction model which retrieves high-quality images from these measurements.

3.5.1 Image Formation Model

Modern digital imaging consists of two main stages: a first stage which records scene

information in measurement via optics and a sensor, and a second stage which ex-

tracts this information from the measurements using computational post-processing

techniques.

In the recording stage, a sensor measurement bc for a given color channel c can be

expressed as:

bc(x, y) =

∫
Qc(λ) · [p(x, y, d, λ, ic) ∗ ic(x, y)]dλ+ n(x, y), (3.5)

where the PSF p(x, y, d, λ, ic) varies with the spatial position (x, y) on the sensor, the

depth d of scene, and the incident spectral distribution λ. Qc is the color response

of the sensor, and i(x, y) and n(x, y) represent the latent image and measurement

noise, respectively. The PSF may also exhibit non-linearity in high-intensity regions,

which is why the PSF p takes the latent channel ic as further parameter. The noise
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may have complex characteristics, including signal-dependent shot noise as well as

read noise introduced in the measurement process. We refer readers to the EMVA

Standard [68] for a detailed discussion of noise sources and calibration of the proposed

model from Eq. (3.5).

Given a sensor measurement, conventional image processing pipelines perform a

sequence of operations, each addressing an individual reconstruction problem, such as

white balance, demosaicing, color calibration, digital gain, gamma compression and

tone mapping [91]. Errors occurring during any of these operations can accumulate,

adding to the ill-posedness of the overall image reconstruction problem [92, 93], that

is recovering i from b by inverting Eq. 3.5.

To recover a latent image from the degraded image, existing methods typically

perform deconvolution using optimization [74], addressing the ill-posedness of the

reconstruction problem using natural image priors. We refer to the supplementary

document for details on traditional deconvolution methods. However, large PSFs with

hundreds of pixels in diameter and high wavelength and depth-dependency cannot

be tackled by existing methods. While the scene dependency of the aberrations

may be addressed with blind deconvolution approaches, these methods are currently

limited to small PSF sizes of ca. 10-20 pixels in diameter [94]. Hence, existing image

reconstruction methods cannot compensate for the low-frequency tail of the proposed

PSF and scene-dependent PSF variation, as shown in Figure 8.

To handle the scene-dependence and non-linearities in the image formation model,

i.e., PSF dependency on i in Eq. (3.5), we deviate from existing methods in that we

do not pre-calibrate a PSF for a given illumination, and approximate the scene with

broadband spectral response, but instead solve for a given image without an inter-

mediate PSF estimate. This is done by directly learning a image-to-image mapping

using a deep neural network. Next, we describe the network architecture, training

methodology, and training data acquisition.
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3.5.2 Generative Image Recovery

We propose a generative adversarial network (GAN) for the retrieval of the latent

clean image i from corrupted raw sensor measurements b. Instead of relying on ex-

isting hand-crafted loss functions, which encourage overfitting as we will show below,

using a GAN allows us to learn a robust loss function along with the reconstruction

model. Moreover, in the learning of this loss function, we can augment training pairs

for supervised training with unpaired training data from high-quality lens captures.

The proposed framework is shown in Figure 3.5. Specifically, we adopt a variant of the

U-Net architecture [95], as our generative model G, referred to as Generator in the

following, while the discriminative critic network D is referred to as Discriminator.

During training, the generator is trained to produce latent estimates that “fool” the

discriminator network into classifying the estimate as a high-quality image, while this

discriminator is trained to better distinguish between images from compound lenses

and the estimates produced from the generator. We use training data without blurry

correspondences to augment the training of the discriminator, in a semi-supervised

fashion, while the generator model is trained using a combination of a learned percep-

tual loss between the predicted image and the reference, and the discriminator loss

using a Wasserstein generative adversarial framework.

Network Architecture

Generator. The proposed generator network consists of a contracting path and

an expansive path (Figure 3.5). Specifically, the contracting path consists of a 4×4

initial feature extraction layer, the repeated application of the Leaky rectified lin-

ear unit (LeakyReLU), a 4×4 convolution layer with stride 2 for downsampling, and

instance normalization layers. The LeakyReLU allows back-propagating the error sig-

nal to the earlier layer and the instance normalization (i.e. single batching training

in this work), to avoid the crosstalk between samples in a batch. At each downsam-
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pling convolution, we double the number of feature channels. The total number of

downsampling convolution steps is 7.

The expansive path consists of a stack of rectified linear units (ReLUs), the upsam-

pling convolution layer, and the instance normalization. We use a nearest neighbor

upsampling and a 3×3 convolution layer instead of the transposed convolution, that

practically reduces the checkerboard artifacts caused by uneven overlaps [96]. More-

over, as shown in Figure 3.5, we concatenate the feature maps from the contracting

path to introduce high frequencies so as to preserve fine scene details.

Discriminator. As illustrated in Figure 3.5, the discriminator consists of five 4×4

convolution layers with stride 2 for downsampling, where each layer is followed by a

LeakyReLU activation layer and instance normalization, except for the first. We also

double the number of feature channels after each downsampling layer. See Figure 3.5

and its caption for additional detail.

Loss Functions

Perceptual loss. Feed-forward CNNs are often trained using a per-pixel loss (e.g.

usually `1 or mean absolute error (MAE) loss and `2 or mean square error (MSE) loss)

between the output and the ground-truth labels. However, this approach may lead to

overly blurry outputs due to the pixel-wise average of possible optima [97]. To obtain

visually pleasing results that generalize to real data, we add a perceptual loss [71]

to our learned GAN loss. This loss component compares two images subject to the

high-level representations from the pre-trained CNN. We use the VGG19 network in

all our experiments. Let Ak(i) be the activations at the kth layer of the pre-trained

VGG19 network Φ with an input image i. Given a feature map Ak(i) with the shape

of Ck ×Hk ×Wk, the Gram matrix, with a size of Ck × Ck, can be expressed as:

GramΦ
k (i) = ψψT/CkHkWk, (3.6)
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where ψ presents the reshaped Ak(i) with a size of Ck × HkWk. As a result, our

content loss is described as:

Lc = Σk‖GramΦ
k (i)−GramΦ

k (G(b))‖1. (3.7)

Specifically, we choose the k = 15 layer (i.e. relu3_2) after ReLU operations of the

pre-trained VGG19 network to generate the feature map of the input image i.

Adversarial loss. We use an adversarial loss to learn a robust loss function, along

with the actual generator network, which better generalizes to measured data than

hand-crafted per-pixel losses. Instead of adopting a vanilla GAN [98] training pro-

cedure, we rely on variant of the Wasserstein GAN [99] with a gradient penalty

to enforce a more robust training process with the U-Net generator in our training

pipeline. The resulting adversarial loss can be expressed as:

Ladv = E
i∼Pr

[D(i)]− E
ī∼Pg

[D(̄i)]︸ ︷︷ ︸
critic loss

+λg E
ī∼Pī

[(‖∇īD(̄i)‖2 − 1)2]︸ ︷︷ ︸
gradient penalty

, (3.8)

where Pr and Pg are distributions of data and model, respectively. Note that r

contains here more sharp captured images than corresponding blurry/sharp pairs.

Intuitively, the adversarial loss attempts to minimize the structural deviation between

a model-generated image ī = G(b) and a real image i, penalizing missing structures,

while relaxing the requirements on high color-accuracy and SNR in heavily blurred

regions. We will analyze this behavior further in Sec. 3.8.4.

Overall loss. We use a weighted combination of both loss functions:

Ltotal = Lc + λaLadv. (3.9)
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During training, Generator G and Discriminator D alternate in a way that G gradu-

ally refines the latent image to “convince” D the result is a real image free of degrada-

tions, while D is trying to distinguish between real and generated samples, including

corresponding and non-corresponding real captures, by minimizing the Wasserstein

distance.

3.6 Datasets

Data Acquisition To be successful, the supervised training set component of the

proposed architecture requires corresponding sharp ground truth images, and blurry

captures using the proposed optical system. Manual acquisition of this dataset in

the wild, e.g., changing optics in a sequential fashion per capture, would require

complicated robotic systems to ensure identical positions, and captures of various

sceneries. Alignment of nearby placed cameras also poses a major hurdle due to the

severe aberrations in the prototype, which make alignment in parallax areas very

challenging.

To overcome these restrictive capture issues, we have built a display-capture lab

setup that allows us to efficiently generate a large amount of training data without

large human labor. This is realized by capturing images that are sequentially dis-

played on a high resolution LCD monitor (Asus PA32U), as shown in Figure 3.6. As

a benefit of the fact that our PSF is shift-invariant, the proposed lens design does not

require training over the full FOV. Instead, we train our network on a narrow field

of view, which allows us to overcome prohibitive memory limitations during train-

ing with current generation GPU hardware. Moreover, this feature further aids the

calibration over our large FOV. During testing we run the network on the CPU to

process full-resolution measurements. We use two datasets using a Canon 5D and

a Nikon D700 from the Adobe 5k set which contains in total 814 images. To cover

the full FOV, we additionally select the first 200 images by name order from the 814
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images and capture them by setting the monitor at large FOV. The test set is selected

by name order (i.e. first 100 images) from the Canon 40D subset of the Adobe 5k

set. All the images are resized to fit with the resolution of the display monitor and

converted to Adobe RGB colorspace.

Before starting the image capture procedure we calibrate the setup as follows:

1. We calibrated the tone curve and color reproduction of the LCD monitor using

the i1 Pro calibration suite.

2. We calibrated the system uniformity (including both the brightness uniformity

of the LCD monitor and imaging vignetting of the capturing camera) by cap-

turing a white calibration chart.

3. We obtained coarse distortion correction parameters of the captured image and

the alignment transfer matrix between the captured image and ground-truth im-

age displayed on the monitor by capturing several known checkerboard patterns

displayed on the LCD monitor.

Training Details For training purposes, we crop both the pre-processed raw and

ground-truth images into 512×512 and 1024×1024 patch pairs. These training pairs

are randomly flipped and rotated to augment the training process. To preserve color

fidelity, we normalize the image to range [0, 1] instead of subtracting the mean and

dividing its corresponding standard deviation. We choose the ADAM optimizer with

β1 = 0.5 and β2 = 0.999, which exhibits robustness to the high noise level of our

input. At first, the learning rate is initialized as 0.0001 for the first 100 epochs and

linearly decayed to 0 over another 150 epochs using 512×512 patch pairs. Then, the

learning rate is initialized as 0.00002 for the first 50 epochs and linearly decayed to

0 over another 50 epochs using 1024×1024 patch pairs. The batch size is set to 1 to

avoid the crosstalk among samples in the batch. In all of our experiments, we set the
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Figure 3.6: Top: Illustration of our display-capture setup for preparing the training
data set. Selected displayed and captured image pairs are shown as inserts; Bottom:
Results on testing set images captured by our lenses. For each example we show the
degraded measurement and reconstruction side-by-side.
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loss weights in Eq. 3.9 to be λa = 0.1. During each training iteration, D is updated

5 times while G is updated once.

The proposed network architecture is implemented with PyTorch 0.4, and the

training process takes around 80 hours in total on a single Nvidia Tesla V100 GPU.

Limited by the GPU memory that currently only allows processing up to around 12M

pixels, we are unable to fit in a full resolution (i.e. 6k) image on the GPU. As an

alternative solution, we solve the full resolution versions on E5-2687 CPUs which pro-

cess each 6k image in 6 minutes. In addition, processing a 4k × 3k image on the GPU

takes around 10s. Note, that with the rapidly emerging support of neural network

computing, a hybrid memory architecture with efficient caching (e.g. GraphCore’s

IPU architecture) and quantization [100] may lift this hardware limitation within the

coming year.

3.7 Prototype

We realize the proposed lens objective, using the same optimization method, for

two single element lenses, one with two optical surfaces (on both sides of the same

flat carrier), the other with a single optical surface. The field of view and focal

length of the lens prototypes are 53◦ and 43 mm with a real clear aperture size of

23.4 mm, respectively. To fabricate our lenses, we use a CNC machining system that

supports 5-axis single point diamond turning (Nanotech 350FG) [63]. The substrate

is polymethyl methacrylate (PMMA) with a refractive index of 1.493 at the principle

wavelength of 550 nm. We use 200π phase modulation rather than regular 2π to wrap

the optimized height map since our designed surface type is a deep Fresnel surface.

As a result, the final prototype lens has an effective modulation thickness of 120 µm

and a total thickness of 3 mm (10 mm) including the planar substrate. The total

clear aperture size of the lens is 23.4 mm with a focal length 43 mm corresponding

to an f number of f/1.8 in the traditional sense. However, note that the effective
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aperture which contributes the sharp intensity peaks has a size of 8 mm yielding an

effective f -number of f/5.4.

We note that the accuracy of the fabrication method is limited by the turning tool

which has a rounded tip with 16 µm radius, prohibiting the reproduction of discon-

tinuities in the profile. The light loss and haze caused by this prototyping constraint

accounts for some artifacts we will observe in the experimental result section. We

discuss this limitation in depth in the supplementary document.

To validate the proposed approach experimentally, we use a Sony A7 full-frame

camera system with 6,000×4,000 pixels with a pixel pitch of 5.96 µm, resulting in a

diagonal FOV of 53◦. To collect reference data on real scenes as comparisons, we use

an off-the-shelf well-corrected lens (Sony Zeiss 50 mm f /1.4 Lens). This compound

reference lens has been designed with more than a dozen refractive optical elements

to minimize aberrations for a large FOV. To evaluate the proposed approach against

alternative single-element designs, we compare our lens against a single plano-convex

aspherical lens (Thorlabs AL2550G) with a focal length of 50 mm and a thickness of

6 mm. In contrast to a spherical lens, this aspherical lens (ASP) eliminates severe

on-axis aberrations. Note that a (phase-wrapped) diffractive Fresnel lens is equivalent

to an ASP at one designated wavelength, ignoring wrapping errors and fabrication

errors. Hence, we consider the ASP the state-of-the-art single lens alternative to the

proposed design.

3.8 Analysis

3.8.1 Field of View Analysis

Figure 3.7 shows the spatial distribution of the aberrations and example captures of a

checkerboard target across the full sensor. Our design balances the contrast detection

probability (CDP) [72] across the full field of view. CDP is a probabilistic measure

that allows us to characterize the ability of a higher-level processing block to detect
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Figure 3.7: PSF behavior comparison (top) and corresponding checkerboard capture
comparison (bottom) between an off-the-shelf aspherical lens (ASP) and our proto-
type lens. Bottom-left shows the side-by-side comparison of the measurements of ASP
and ours. Bottom-right shows the derived distributions of contrast detection proba-
bility. The confidence interval is set to 95% in both examples, refer to the original
reference for details. Here we use a plano-convex aspherical lens (Thorlabs AL2550G)
as the comparison.

a given contrast between two reference points after the full imaging chain.

We measure the local CDP of different measurement patches of our lens and that

of an aspherical lens, see Figure 3.7. The reference points for this measurement are

picked with 100% contrast between local patches with a lateral distance of 3 σ, with

σ being the full-width-half-max (FWHM) of the peak mode of our PSF. This allows

us to characterize CDP for our dual-mixture PSF without needing to vary the size of

measurement patches. For our lens, a significant CDP floor of almost 50% is preserved

across the full FOV, ranging from 40% at on-axis angular direction to stay above 80%

at the most tilted angle. Since the PSF is not completely spatially invariant, the plot

exhibits a maximum around 0.5× half-FOV where the lens focuses best. In contrast,



54

Figure 3.8: Comparison of off-axis image patches recovered using different reconstruc-
tion algorithms described in Table 3.1.The first row presents the displayed validation
from the test set of our learned reconstruction, while the remaining two rows present
the data captured in the wild. Due to the mismatch of spectrum, dynamic range,
and depth of field, vanilla supervised learning using a per-pixel loss may show good
quantitative results while suffer from severe artefacts on real-world data. For these
two examples, we present the image captured using an off-the-shelf compound lens
(Sony Zeiss 50 mm f /1.4 Lens) as the reference. Full images are shown in the sup-
plementary document.

the CDP of the aspherical lens drops drastically and approaches 0% at view directions

larger than 0.5× half-FOV. The measurements agree well with our design goal that

the sharp peak of our dual-mixture PSF preserves high-frequency detail and local

contrast required for the feature extraction blocks in deep network models.

3.8.2 Generalization Analysis

The training data acquired using the proposed lab setup suffers from mismatching

spectrum and tone curve, non-uniformity, etc., when compared to measurements in

the wild. The most critical differences are the limited dynamic range and fixed depth

of field of the monitor. Therefore, vanilla supervised learning using a per-pixel loss

(i.e. mean absolute error (MAE) or mean square error (MSE)) overfits to these non-
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uniformities, hence achieving high quantitative results on a validation set displayed

on the same setup, but suffers from severe artefacts on a real-world test set. The

proposed semi-supervised adversarial loss, and the perceptual loss achieve robustness

to this “noise” in the training data for the given approach. We validate the impact

of these algorithmic components visually in Figure 3.8 (in large off-axis regions), and

quantitatively against state-of-the-art recovery methods in Table 3.1.

Existing deconvolution methods recover the latent sharp images to some degree

but suffer from severe artefacts across the full FOV, which manifests as noticeable

haze and low contrast. The size and scene-dependence of the aberrations of the

proposed lens make it extremely challenging for prior-based optimization algorithms

to recover fine detail and remove apparent haze.

Table 3.1: Quantitative comparison of image recovery performance of the 10 mm
lens for recent deconvolution methods, including non-blind cross-channel deconvolu-
tion [43] (Cross), fully supervised U-net recovery, U-net + GAN + `1 loss (pix2pix),
and our U-net + GAN+ perceptual loss. We assess peak signal-to-noise ratio (PSNR),
structural similarity index measure (SSIM), and the perceptual loss component from
our model. The right-most column shows the ASP lens used in Figure 3.7 and Fig-
ure 3.9 fine-tuned for our network. Note that the fully supervised U-net in the third
row does overfit to the lab display-capture setup and fails to generalize to real capture
scenarios.

Input Cross U-net pix2pix Ours ASP
PSNR 21.28 21.46 29.70 22.20 25.89 22.53
SSIM 0.79 0.73 0.91 0.77 0.86 0.84
Perceptual Loss 0.87 0.80 0.57 0.93 0.47 0.65

To validate the proposed method against existing supervised training approaches,

and assess the effect of the proposed loss functions, we train a U-net with the same

structure as that of our generator on the lab-acquired data. Figure 3.8 and Table 3.1

show that vanilla supervised training overfits to the dataset acquired from the lab

setup, which causes it to perform much better on captured data under the same

condition (validation dataset) but to fail on real-world captures. In addition, we

train pix2pix [101] as an adversarial approach while enforcing an `1 loss instead of
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perceptual loss. By introducing this adversarial loss, the recovery performs better on

real world data but still suffers from non-trivial and visually unpleasant artifacts, e.g.

the high intensity sky and low intensity ground in the patches. In other words, pix2pix

is not robust enough to resolve the mismatch of dynamic range and depth of field. By

introducing a perceptual loss rather than a per pixel loss in the proposed method, our

approach outperforms existing baselines for real world experimental captures while

preserving local contrast and detail, that fits well with the scope of building consumer

level cameras.

3.8.3 Fine-tuning for Alternative Lens Designs

To validate the efficacy of the proposed lens design, we fine-tune the described re-

covery method, using the same network, data and training methodology, with an

aspherical lens. Compared to this alternative single-element design, the proposed

design offers substantially improved sharpness in off-axis regions while trading off on-

axis sharpness, as shown in Figure 3.9. The significant improvement in PSNR across

full FOV, see last column of Table 3.1 and more real captures in the supplement,

validate that not only the recovery algorithm is responsible for image quality but that

our mixture PSF design plays an essential role in proposed computational imaging

technique.

3.8.4 Hallucination Analysis

The evaluation and understanding of the robustness of deep networks is an active area

of research. To analyze if the proposed method hallucinates image content that is not

present in the measurements, we visualize the outliers with respect to perceptual and

SNR metrics on a held-out validation set with known ground truth. Figure 3.10 plots

the histograms of errors of image patches with respect to `1, `2, and the discussed

perceptual loss. We show the outliers of these plots in the same figure. Other than
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Figure 3.9: Comparison of different regions on images recovered using our learned
image recovery algorithm from data captured by an off-the-shelf aspherical lens (ASP)
and our prototype lens. Although trading off on-axis sharpness in some sense, ours
exhibits much better quality in off-axis regions. The lens parameters and settings
are the same as in Figure 3.7. The plots on the right reveal the averaged PSNRs
of patches subject to FOV over 100 validation images. Note, in this comparison we
investigate only half of the full FOV of our design because the required resolution
limits the FOV when using a consumer display monitor. We observe that even within
this intermediate range of FOV, the recovered image quality of ASP drops drastically
when the investigated half-FOV goes beyond 7◦.

suffering from slight blur and color inaccuracy, our recovered results do not hallucinate

detail that is not present. Note that the presented image patches are the outliers with

the largest error values. As the histogram mode is separated significantly from the

presented outliers, we conclude that the proposed reconstruction method is robust and

does not hallucinate major detail. Please see the supplemental material for additional

outlier visualizations.

3.9 Experimental Assessment

Dual-surface Design. We first show results for our dual-surface thin-plate lens

where both surfaces are configured as target depth profiles to be optimized. The

resulting optics layout and simulated optical behavior are reviewed in the supplemen-

tary document. For this design, to mitigate the possible pressure distortion because

of the hard contact turning fabrication, we use a plastic substrate plate that has a

thickness of 10 mm as a proof-of-concept. In mass manufacturing, this substrate can
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Figure 3.10: Outlier analysis of reconstruction images of our deep network. For each
pair we show the recovered patch (left) and its corresponding ground truth patch
(right). The plots show the histograms of 9,600 evaluated image patches under three
error functions, `1 loss, `2 loss, and perceptual (VGG) loss.

be reduced to a thinner and more solid structure using glass substrates.

The first two rows of Figure 3.11 show reconstructions of indoor and outdoor

scenes under both artificial illumination and natural light. Our method successfully

preserves both fine details and color fidelity across full field-of-view. Note that all

captures have been obtained using a clear aperture setting, i.e. f /1.8, and a full

sensor resolution.

Single-surface Design. Next, we show results captured with a single-surface thin-

plate lens with only the rear surface machined. The resulting optical layout and

simulated optical behavior are detailed in the supplementary document. For this

design, we have reduced the thickness of the substrate plate to 3 mm. The third
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Figure 3.11: Experimental results of dual-surface lens design (first two rows) and that
of single surface lens design (third row) on real word scenes. For each pair, we show
the degraded measurement and the reconstruction result. The exposure time for these
images are set 0.8, 125, 0.5, 1.25, 0.5, 0.4 ms with ISO 50. Refer to supplementary
document for more real world results.

row of Figure 3.11 shows results for indoor and outdoor scenes captured with this

single-surface prototype.

3.9.1 Imaging over Large Depth Ranges and in Low Light

Figure 3.12 shows reconstruction results for scenes with large depth ranges and in low-

light scenarios. Although we only train the proposed method with screen captures

at a fixed distance, the proposed method preserves the depth-dependent defocus,

i.e., bokeh, for scenes with large depth ranges. Careful readers notice that for high-

intensity regions, as in the sky, our reconstruction does not recover detail. As outlined

in Section 1, this is because the training data does not contain high-dynamic range
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captures for our low-dynamic range LCD monitor setup.

Figure 3.12: Experimental results of large DOF (top row) and low-light imaging
(bottom row). The exposure time and ISO for the top two examples are set (3.125,
1) ms and ISO 50, while that for the bottom two examples are set (10 ms with ISO
500) and (20 ms with ISO 25,600).

In contrast to alternative flat optical designs with wide FOV, such as pinholes with

theoretically unlimited FOV, the proposed lens design allows for low-light captures

due to its f -number of f/5.4. We demonstrate low-light and short-exposure imaging

scenarios in the second two rows of Figure 3.12, where we compare our design against

a pinhole (0.8 mm) that suppresses most aberrations over a wide FOV at the cost of

very limited light throughput. The pinhole measurements are low-signal and hence

corrupted with severe noise that results in a poor reconstruction – even with state-of-

the-art low-light denoising methods [36]. Additional comparisons at different exposure

levels can be found in the supplement.

3.10 Discussion and Conclusion

We have demonstrated that it is viable to realize high-quality, large field-of-view imag-

ing with only a single thin-plate lens element. We achieve this by designing deep

Fresnel surface optics for a learned image reconstruction algorithm.

Specifically, we introduce a compact thin-plate lens design with a dual-mixture

PSF distribution across the full FOV. Although the PSF has an extremely large spot
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size of ≥ 900 pixels in diameter, it preserves local contrast uniformly across the sensor

plane.

To recover images from such degraded measurements, we learn a deep genera-

tive model that maps captured blurry images to clean reconstructed images. To this

end, we propose an automated capture method to acquire aligned training data. We

tackle the mismatch between lab-captured and natural images in the wild – prohibit-

ing vanilla supervised learning to perform well on real world scenes – by introducing a

combination of adversarial and perceptual loss components. Together, the proposed

network architecture, training methodology, and data acquisition, allow us to achieve

image quality that makes a significant step towards the quality of commercial com-

pound lens systems with just a single free-form lens. We have validated the proposed

approach experimentally on a wide variety of challenging outdoor and indoor scenes.

While the proposed approach could enable high-quality imagery with thin and

inexpensive optics in the future, on today’s consumer graphics hardware, the described

reconstruction method is memory-limited for models at full 24.3 Megapixel sensor

resolution. Therefore, we run the post-processing on the CPU which results in low

throughput on the order of minutes per image – far from that of modern image

processing pipelines. The upcoming graphics hardware generation will likely overcome

this memory limitation. In the meantime, a combination of cloud processing and

low resolution or tile-based previews could make the method practical. The lab

data acquisition is currently restricted by the dynamic range of consumer displays,

which we hope to overcome in the future with alternative high-dynamic range display

approaches.

Although our thin-plate lens design significantly reduces the form factor com-

pared to complex optical systems, we validate the concept with a focal power and

an aperture size comparable to existing DSLR camera lenses. To achieve the envi-

sioned camera device form factors, a reduction in both size of the optical lens system
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and focal length are necessary. Miniature lens systems with short back focal length

(e.g. ≤ 5 mm) are now possible by introducing metasurfaces or injection molding

techniques to fabricate the optics, which provide feature sizes at the order of the

wavelength of light and hence can diffract light at steeper angles allowing for ultra-

short focal lengths.

While we designed a single-element lens in this work, dual-refractive lenses or

hybrid refractive-diffractive optical systems might be interesting directions for future

research. Moreover, simple optics for sensor arrays, such as the PiCam [40], could

be revisited with the proposed PSF design. Although this work focuses on com-

putational photography applications, we envision a wide range of applications across

computer vision, robotics, sensing and human-computer interaction, where large field-

of-view imaging with simple optics and domains-specific post-processing could enable

unprecedented device form factors.
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Chapter 4

End-to-End Encoding Through Optimizing PSF:

Super-resolution SPAD Camera

In the previous chapter, we have realized the joint design of optics and image recon-

struction network. It is a big step to improve the imaging capability for large FOV

imaging, which cannot be realized before with a single element. However, we still

cannot directly optimize the optics together with post-processing. In this chapter, we

take one more step that optimizing the PSF together with the post-processing, bring

the imaging system design into an end-to-end fashion.

SPADs have recently received a a lot of attention in imaging and vision appli-

cations due to their excellent performance in low-light conditions, as well as their

ultra-high temporal resolution. Unfortunately, like many evolving sensor technolo-

gies, image sensors built around SPAD technology currently suffer from a low pixel

count.

In this work, we investigate a simple, low-cost, and compact optical coding camera

design that supports high-resolution image reconstructions from raw measurements

with low pixel counts. We demonstrate this approach for regular intensity imaging,

depth imaging, as well transient imaging.

We adopt the differentiable diffractive optics model described in Section 2.2.2 Our

method uses an end-to-end framework to optimize simultaneously the optical design

and a reconstruction network for obtaining super-resolved images from raw measure-

ments. The optical design space is that of an engineered point spread function (imple-

mented with diffractive optics), which can be considered an optimized anti-aliasing
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filter to preserve as much high-resolution information as possible despite imaging

with a low pixel count, low fill-factor SPAD array. We further investigate a deep

network for reconstruction. The effectiveness of this joint design and reconstruction

approach is demonstrated for a range of different applications, including high-speed

imaging and time of flight depth imaging, as well as transient imaging. While our

work specifically focuses on low-resolution SPAD sensors, similar approaches should

prove effective for other emerging image sensor technologies with low pixel counts and

low fill-factors.
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Figure 4.1: Overview of our optically coded computational SR SPAD camera. We
computationally design phase plates that can suppress aliasing while preserving as
much information as possible for SR image reconstruction (right bottom). Fabricated
using photolithography technique, this optimized phase plate produces the target PSF
at the image plane. In this figure, we demonstrate two representative applications
of our optically coded SR SPAD camera: regular intensity imaging, as well as depth
estimation, where we obtain high-quality super-resolved (4×) images (a-2) from raw
data (a-1) modulated by our phase mask, and super-resolved (4×) intensity (b-2) and
depth images (b-3) from the noisy raw data (b-1).

4.1 Introduction

Arrays of Single Photon Avalanche Diode (SPAD) have recently emerged as an alter-

native hardware solution to photomultiplier tubes (PMT) and streak cameras [102,

103]. Features such as single-photon light sensitivity and sub-nanosecond time resolu-

tion make this technology promising for many photon-starved applications like time-
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of-flight [104], transient imaging [105, 106], fluorescence lifetime imaging [107, 108]

and positron emission tomography [109].

Unfortunately, image sensors built upon SPAD technologies still suffer from low

spatial resolution (e.g., 64×32) and low fill-factor, i.e., the fact that the light-sensitive

area of a pixel is only a small fraction of the pixel’s total area (e.g., 3.14% in the MPD-

SPC3 SPAD camera used in our experiments). Although recent research prototypes of

SPAD arrays have substantially higher pixel counts (e.g. up to 512×512 pixels [110]),

they still fall short of the resolution of conventional image sensors. Therefore our

method is relevant to the latest generation of prototype SPAD image sensors as well as

all commercially available SPAD arrays. Both the limited pixel count (e.g., [104, 12])

and the limited fill-factor and its associated loss in light efficiency [111, 112] have

been targeted by recent research. However, no definitive solution is available at this

time.

To date, computational imaging has achieved tremendous success in the fields of

spatial resolution enhancement [113, 12] and defocus deblurring SR [114]. Via point

spread function (PSF) engineering [115, 116], researchers have succeeded in localizing

microscopic point emitters in a 3D volume by inserting either a spatial light modulator

(SLM) or a physical phase plate.

Although optimizing the parameters of DOEs for a computational camera has

been studied intensively, state-of-the-art PSF engineering methods still, for the most

part, do not consider the optical design together with the sensor performance and the

reconstruction algorithm in a full end-to-end fashion. A notable exception is a recent

work by Sitzmann et al. [14], that employed an end-to-end optimization that jointly

considers optics and image processing to extract optimal PSFs for the purposes of

superresolution and depth of field extension. Although this work takes a significant

step towards full end-to-end design of cameras, the reconstruction method used is

quite simple and with only fixed blocks, for example, the Wiener deconvolution. In
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our work, we extend this concept by jointly optimizing both the PSF design for the

sampling model and the reconstruction algorithm, particularly in the context of a

deep neural network.

Putting these pieces together, we aim to overcome the essential the spatial reso-

lution limit of SPAD sensors by developing an optically encoded SR SPAD camera

with only a single-shot capture procedure. This is achieved by a combination of an

optical system that encodes the incident light and a deep neural network that faith-

fully decodes the high-resolution image. The optical encoding is interpreted as an

engineered PSF, acting as an anti-aliasing filter that helps preserve as much infor-

mation as possible, given the specific sampling the pattern of SPAD sensors. We

demonstrate significant improvements gained by our prototype when imaging natural

scenes. While our method can, in principle, be applied in any imaging system that

employs SPAD array sensors, we focus in particular on three applications: regular

intensity imaging (including high speed imaging), depth imaging, and transient (i.e.

light-in-flight) imaging.

Our main technical contributions are as follows:

• We exploit an end-to-end design paradigm for computational superresolution

camera systems, incorporating both PSF design, imaging model, and deep net-

work reconstruction. The system finds optimized compromises between sharp-

ness and anti-aliasing for a given pixel fill-factor.

• We develop a novel single-shot optically coded SPAD camera that achieves an

aggressive spatial resolution enhancement of 4×. By simply applying an ultra-

thin phase plate that can be easily fabricated and assembled, we achieve an

almost zero budget enhancement of hardware configuration.

• We build a prototype with a general phase plate being easily assembled in

front of a regular lens. We validate our claims of resolving high-resolution
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images through simulations and real experiments in normal imaging, high-speed

imaging, and time-of-flight (TOF)/transient imaging.

4.2 Related work

Computational imaging has been applied in both low-level vision tasks like artifact

removal [13], and higher-level imaging applications like depth estimation [117, 4].

Particularly, a large amount of work has studied image enhancement using the end-

to-end method for applications such as haze removal [118], motion deblur [119], and

time-of-flight imaging [120]. In the following, we focus on a few more narrow categories

of research that are most relevant to our work.

4.2.1 Image SR

For target applications like high speed imaging, fluorescent lifetime imaging, time-

of-flight depth or transient imaging, achieving an aggressive resolution enhancement

is highly desirable. A large body of work is based on learning the mapping from

low-resolution (LR) to low-resolution (HR) images, using techniques such as dictio-

nary learning [121, 122], local linear regression [123, 124], random forests [125], and

CNNs [126, 127, 128]. Alternatively, one can employ a sparse coding based network

to fully explore the sparsity of natural images [129].

Ongoing research efforts have attempted to improve the SR quality using deeper

networks [130, 131]. Alternative work includes a Laplacian Pyramid SR network [132]

and an enhanced deep SR network [133] that removes unnecessary modules in con-

ventional residual networks [134]. More recently, Haris et al. proposed a deep back-

projection network [135], exploiting iterative up and down sampling layers and pro-

viding an error feedback mechanism for projection errors at each stage.

The mentioned approaches take a traditional image processing approach, whereby

the imaging hardware is given and not part of the design decision. Computational
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imaging approaches, where the imaging hardware and the reconstruction method are

co-designed, promise improved system performance. This is the approach we take in

this work, specifically with the design of an optimal sampling strategy for low pixel

count, small fill factor SPAD image sensors.

4.2.2 PSF Engineering for Computational Imaging

The optics and computational imaging communities have widely investigated the

deliberate design of (non-Dirac) PSFs with favorable properties for specific applica-

tions. One of the earliest approaches was wavefront coding, a method to make the

PSF depth-invariant in an attempt to EDOF [1, 136]. Recently, the utility of PSF en-

gineering was expanded to 3D to realize a 3D super-resolution effect [137]. Encoding

the aperture of the optical system not only enables recovery of depth information with

great fidelity but also generates a high resolution image image [117, 138]. Further-

more, coded aperture techniques have been intensively incorporated into compressive

sensing [139, 140, 141].

Instead of inserting a (usually binary) coded aperture, we investigate the link

between the aperture and the image plane in the domain of diffractive optics. By

introducing a phase modulation diffractive optical element into the aperture, one has

greater flexibility to design the desired PSF in the image plane. There have been a

wide range of optimization-based algorithms capable of generating desirable phase or

amplitude distributions in both the spatial and the spectral domain. To this end,

iterative methods based on GS search, simulated annealing, or direct binary search,

have been applied to design both monochromatic and broadband DOEs [142, 143].

Another related avenue of investigation is the design of DOEs to serve as replace-

ments for refractive lenses in imaging systems. Peng et al.’s work on achromatic

DOE lenses [51] started a sequence of DOE design works with similar methodol-

ogy [43, 144, 145]. Instead of automated end-to-end design, the PSF design and re-
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construction method are developed separately with a human in the loop. Some recent

works [146, 147] have explored the role of anti-aliasing filters in image super-resolution;

however, they use analytical filters (Butterworth and Gaussian, respectively), instead

of end-to-end learned ones.

4.2.3 Imaging with SPAD Sensors

Time-correlated single photon counting (TCSPC) [148] is a common technique for

pico-second rate recording of photon events using SPAD arrays. It has been widely

applied for example in fluorescence lifetime imaging [108, 149]. By repeatedly measur-

ing the time duration between a laser pulse and the corresponding transient photon

arrival, one can achieve typically sub-nanosecond resolution. Starting with first pho-

ton imaging [150], several approaches have been proposed to abstract the correct tem-

poral information like temporal deconvolution [12], pile-up compensation [151, 152]

and non-line-of-sight imaging [153, 154].

To overcome the limitations of low fill-factor and low spatial resolution, researchers

have used 2D translation setups to shift a 2D SPAD array with a fixed lens [104], or

used a galvo mirror setup to scan a 1D line SPAD camera [106, 155]. An alternative

approach is the use of DMD-based focal plane spatial modulation to enable a com-

pressive sensing design with SPAD arrays [12]. This method requires high precision

mechanics and additional imaging optics. Other works have focused primarily on

improving the fill-factor of SPAD arrays [111, 112].

Although state-of-the-art methods have yielded a reasonable spatial resolution,

they are significantly complicating the camera design, and/or require multi-shot image

acquisitions, which makes it impossible to image non-repeatable phenomena. We

seek a computational super-resolution imaging solution that can maintain all the

advantages of SPAD sensors including the snapshot capability, i.e. super resolution

reconstruction from a single image capture.
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4.2.4 End-to-End Computational Cameras

Motivated by recent advances in hardware as well as optimization methods, re-

searchers have started to investigate joint optimization over optics like binary masks [156]

for compressive sensing and even sensor structure like a color filter array [157]. More

recently, an end-to-end optimization [14] over more complicated phase modulation

elements was reported. In work parallel to ours, full end-to-end pipelines have been

shown recently for the design of depth-encoding PSFs in shape-from-defocus applica-

tions [158, 16].

In addition to conventional imaging applications, diffractive optical elements can

also be used as convolutional layers in neural networks [159] to speed up the process.

Instead, we are inspired to simulate our imaging model for SPAD sensor using con-

volutional layer. Taking the convolutional layer into a physical world, we are able to

realize the difficult super-resolution task for low fill-factor and low resolution SPAD

sensor by incorporating both optics and deep reconstruction networks.

4.3 End-to-end Diffractive Optics Design and Image Recon-

struction

We aim to realize super-resolution imaging over a SPAD sensor that suffers from both

low resolution and low fill-factor. These two problems will result in significant spatial

aliasing and the associated reconstruction artifacts [160]. To address this issue, we

introduce an OLPF into the optical system of the camera. The OLPF acts as an

anti-aliasing filter, that is specially designed to suppress aliasing while preserving as

much information as possible for SR image reconstruction.

In our framework, this filter and the matching reconstruction network are jointly

learned in an end-to-end sense, as illustrated in Figure 6.2. Specifically, we first syn-

thesize the low resolution input using a convolutional layer conv(11, 1)1, representing

the PSF and the sensor sampling model, followed by a feature extraction step to
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Figure 4.2: Framework of end-to-end optics design and reconstruction for our super-
resolution SPAD camera. The anti-aliasing filter (PSF) for the low fill-factor SPAD
array is learned using our design paradigm. In each forward pass, the synthetic PSF is
convolved with a batch of images, and Poisson noise is added to account for sensor’s
counting noise after the interval sampling process. After obtaining the optimized
PSF, we apply a GS based phase retrieval algorithm to derive the phase mask. The
reconstruction network is composed of three main parts: initial feature extraction,
back projection stages, and reconstruction step. The back-projection stage (right
bottom), alternating between reconstruction of H t and Lt, consists of T up projection
stages and T − 1 down projection stages. Each unit is connected with the outputs of
all previous units.

generate LR feature maps. Then, at the projection stages a mapping between the

LR feature maps and the HR feature maps is built. Finally, a reconstruction step is

added to convert the HR feature maps into high resolution images.

After training, we extract the optimal PSF from the weights of conv(11, 1) and

then apply a GS-based phase retrieval algorithm to derive the phase mask (see left-

bottom of Figure 6.2), which acts as an optical coder installed at the front focal plane

of a regular lens to generate the optimal PSF for later implementations. In order to

account for differences between the design and the fabrication of the phase mask, the

real-world PSF of the mask can be calibrated, and the reconstruction network can be

fine-tuned through re-training.
1For convenience, we denote a convolutional layer as conv(f, n)[.] and a transposed convolutional

layer as convT (f, n)[.] where f is the filter size and n is the number of filters.
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In the following, we first detail the image formation model, incorporating the

anti-aliasing filter applied to the sampling model of SPAD array and the phase mask

optimization to generate the learned PSF combined with a regular imaging lens. Next,

we present the deep neural network reconstruction and the time profile sharpening

strategy.

4.3.1 Image Formation

Anti-aliasing filtering and image sampling

As mentioned, the fill factor of most current SPAD imaging sensors is very low, that is,

the light sensitive area of the pixel is much smaller than the total area occupied by the

pixel structure. For example, the SPAD array used in our experiments (MPD-SPC3)

has a pixel pitch of 150 µm horizontally and vertically, however the active area is only

30 µm in each dimension. The physical low pixel count and small fill-factor severely

degrade the image quality, creating the desire for super-resolved image reconstruction.

To avoid aliasing, the image signal should be pre-filtered with a low pass filter of the

appropriate cut-off frequency, followed by a down-sampling process [160]. Again, the

goal is to trade-off sharpness and aliasing, so as to find a good compromise that

preserves most details of interest.

Due to the low resolution of the sensor array, we can reasonably neglect off-axis

aberrations like coma. Image formation becomes a shift-invariant convolution of a

latent image with a kernel. To this end, we jointly learn the optimal anti-aliasing filter

(e.g. the convolved kernel) and the reconstruction network to eventually preserve the

finest details of natural images so as to realize a SR enhancement. The quantitative

evaluation of applying this desired OLPF is detailed in Section ??.

At the position (x, y) on the sensor, the detected signal Is(x, y) is expressed as:

Is(x, y) = P(S(pλ ∗ I)), (4.1)
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where S is a 2D sampling operator corresponding to the physical structure of SPAD

sensor, I is the latent image formed on the sensor, pλ is the kernel (or PSF) realized

by the optical system, and P represents a generator of the Poisson noise, which is the

appropriate noise model for low light scenarios that are typical for SPAD imaging.

Learning optimal PSF using end-to-end design

To obtain the optimal PSF pλopt using our end-to-end framework, we model our PSF

as well as the low-resolution sampling process of the SPAD array as a convolutional

layer conv(11, 1). In each forward pass, the synthetic PSF (convolutional layer) is

convolved with a batch of images, and Poisson noise is added to account for photon

shot noise after the interval sampling process. In other words, we represent both the

PSF and the sampling process as layers in our neural network during training, and

then physically realize the learned result as a custom DOE for our SPAD camera (see

Section 4.3.3).

To determine the size of the kernel, we take a large kernel 21×21 at the beginning

and then we found only an 11×11 region of the filter had non-zero values. Therefore,

we take 11 × 11 as the kernel size of the PSF whose physical dimension is 412.5 ×

412.5µm2.

4.3.2 Image Reconstruction

Image reconstruction is the final stage for applications like regular intensity imaging or

high speed imaging, and the second last stage for applications like depth and transient

imaging. For our camera the reconstruction is formulated as an optimization problem

of a data fitting term with an additional regularization term:

min
I

1

2
‖S(pλopt ∗ I)− Is‖2

2 + β‖Φ(I)‖1, (4.2)
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where Φ(·) denotes the transform coefficients of I with respect to some transform Φ

that can be either linear or optimized non-linear. Sparsity in the transform space

Φ(I) is encouraged by the `1 norm with β being a regularization parameter.

Usually, natural images are non-stationary in classic domains like DCT, gradients,

and wavelets, which may result in an ill-posed problem under such an imaging model.

Although an optimized PSF model can preserve a large amount of spatial information,

conventional optimization-based methods fail to faithfully reconstruct good quality

results when the sampling ratio is very low (e.g. in our case with a sampling ratio only

3.14%). To this end, a trainable architecture for SR with powerful learning ability

for features meets our strict requirements as our learned PSF itself encodes features.

We choose the state-of-the-art method— dense deep back-projection networks (D-

DBPN) [135] as our reconstruction network, as shown in Figure 6.2. The D-DBPN

framework introduces an iterative error correcting feedback mechanism to characterize

the features in previous layers. More importantly, it addresses the mutual dependency

by taking the back-projection from HR domain to LR domain.

Framework architecture

As shown in Figure 6.2, the end-to-end framework to obtain the optimal filter and

reconstruction network can be divided into four parts:

a. Imaging model. As we have already discussed in Sec. 4.3.1, we take the physical

imaging model as the first part of our end-to-end framework. The joint framework

is used to learn the optimal anti-aliasing filter. After fabricating the filter we then

refine the learning process of the reconstruction network with additional training to

account for fabrication errors. For more details, please refer to Section 4.5.

b. Initial feature extraction. The initial feature maps L0 are constructed using

a conv(3, n0) layer to extract features and a conv(1, nR) layer to pool the features
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and reduce the dimension from n0 to nR. In the experiments, n0 is set as 256 and

nR, which is the number of filters used in each projection unit, is set as 64.

c. Back-projection. As illustrated in Figure 6.2, at tth stage (T = 7 stages in

total), the LR feature maps [L1, L2, · · · , Lt−1] and HR feature maps [H1, H2, · · · , H t]

are concatenated to be used as input for up- and down-projection units respectively.

In each projection unit, we use a conv(1, nR) to merge all previous outputs from each

unit after the shown concatenation process.

The up-projection is defined as follows:

scale up H t
0 = convT (fp, nR)[Lt−1]

scale down Lt0 = conv(fp, nR)[H t
0]

residual: elt = Lt0 − Lt−1

scale residual up: H t
1 = convT (fp, nR)[elt]

output feature map:H t = H t
0 +H t

1

(4.3)

The down-projection is defined as follows:

scale down Lt0 = conv(fp, nR)[H t]

scale up H t
0 = convT (fp, nR)[Lt0]

residual: eht = H t
0 −H t

scale residual down: Lt1 = conv(fp, nR)[elH ]

output feature map:Lt = Lt0 + Lt1

(4.4)

d. Reconstruction. Finally, we take the concatenated HR feature maps [H1, H2, · · · , H t]

as input and use a conv(3, 1) layer to reconstruct the target HR image.
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Training details

To train the network, we use the MSE loss function. In the stated framework, we

use an 8×8 convolutional layer with a stride of four and a padding of two. All con-

volutional and transposed convolutional layers are followed by a parametric rectified

linear unit. We trained our network using the high resolution images from the DIV2K

dataset, using a batch size of 64. For convenience, the LR image resolution was 32×32

(half the size of our SPAD array), and the HR image size was 128×128. We take a

convolution layer conv(11, 1) as our PSF following the sampling model of the SPAD

sensor to simulate the LR images from HR images. We use ADAM as the optimizer

with momentum set to 0.9 and weight decay set to 10−4. The learning rate is initial-

ized to 10−4 for all layers and decayed by a factor of 10 for every half of total epochs.

All experiments were conducted using Pytorch on a single NVIDIA TITAN Xp GPU.

For learning the optimal PSF, we trained the whole framework with 50 epochs taking

around 40 hours. After calibrating the PSF generated by the fabricated phase mask,

we take the weights of the network trained above as initialization and continue to

train the reconstruction network with 11 epochs taking around 8 hours.

4.3.3 Phase Mask Generation

After obtaining the optimal PSF with our framework, we establish the relationship

between the PSF and the phase mask. We first analyze the propagation of light from

the phase mask to the image plane, and then present the details of phase mask design.

Optical model

As shown in Figure 4.3, the mask is placed at the front focal plane of the lens, and

acts as the pupil of whole system. For modeling the light propagation, we apply

scalar diffraction theory [86] to approximate the paraxial incident wave. The phase of

a complex-valued incident wave is delayed by a phase profile φ(x′, y′) proportionally
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Figure 4.3: Illustration of light propagation and desired PSF. The phase mask (i.e.
DOE) is set at the equivalent Fourier plane of imaging lens to modulate the incident
light and produces the desired PSF on the sensor.

to the height map of a diffractive optical element h(x′, y′):

φ(x′, y′) = ∆n
2π

λ
h(x′, y′), (4.5)

where λ is the wavelength, (x′, y′) is the location on the phase mask plane , and

∆n = n − n0 represents the refractive index difference between air (n0) and the

substrate material (n). Placed at the front focal plane of a lens together with our

customized limited stop, the phase mask acts as the complex pupil function.

The incident wave field Uλ(x′, y′, z = 0−) = A(x′, y′)φd(x
′, y′) is modulated by the

phase mask, shown as:

Uλ(x
′, y′, z = 0+) = Uλ(x

′, y′, z = 0−) · eiφ(x′,y′), (4.6)

where we use the notation z = 0− and z = 0+ to denote positions just before and

just after the mask, respectively.

Using the Fresnel approximation, the light propagates through a lens with a focal
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length f to the image plane is then formulated as:

Uλ(x, y) =
eikf

iλf

∫ ∫
∑ Uλ(x

′, y′, z = f)e−
ik
2f

(x′2+y′2)

e
ik
2f [(x−x′)2+(y−y′)2]dx′dy′

=

∫ ∫
∑ φ(x′, y′)e−i2π

x′x+y′y′
λf dx′dy′,

(4.7)

where k = 2π/λ is the wave number, (x, y) is the location on the image plane, and

e−
ik
2f

(x′2+y′2) represents the optical transfer function of the lens. Note that Equation

(4.7) represents essentially a Fourier transform (FT).

For an imaging system, the diffractive PSF on the image plane is eventually ob-

tained as:

pλ(x, y) ∝ ‖(F{φ(x′, y′)}‖2. (4.8)

Phase retrieval

After deriving the relationship between PSF and the phase mask, we can design a

physical height profile h(x′, y′) on a substrate of refractive index n to implement an

image-plane PSF pλ using the GS [161] phase retrieval algorithm based on Equa-

tion (4.5).

The core of the phase retrieval is shown on the bottom left of Figure 6.2. In the

beginning, a random phase distribution serves as the initial estimate subject to the

amplitude of the PSF. Then, using the initial phase and the amplitude constraint

(between 0 and 1) of learned PSF, we apply an inverse Fourier transform on this

synthesized complex field function. The resulting phase part of the discrete complex

field is preserved while the amplitude part is discarded. In the next round, this

preserved phase is plugged into the forward propagation procedure of applying a

Fourier transform to update the amplitude estimate of the complex field on the image

plane. Eventually, the process is repeated with a finite number times to converge to
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an optimal phase profile. For more details, please refer to the work by Morgan et

al. [162]. Since we optimize the phase plate for only one wavelength (that of our

picosecond laser), we are guaranteed to obtain a phase plate that can generate the

optimal PSF we desire. As shown in Figure 4.4, the correlation coefficient between

the PSF generated by phase plate and the learned PSF is 0.9996, and the root mean

square error (RMSE) between them is 0.0061. This all means the optimal PSF is

accurately realized by the phase mask.
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Figure 4.4: Efficiency illustration of GS phase retrieval method for our design. a)
Learned PSF; b) Simulated PSF using the phase profile optimized by GS method; c)
The absolute error between a) and b), and the RMSE is 0.0061; d) The correlation
coefficient of the learned PSF and the PSF generated by phase plate, and finally it
converges to 0.9996.
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Phase mask tiling

As shown in Figure 5.7, a subpixel on the learned PSF has a size of lp = 37.5 µm.

Accordingly, the size of phase profile obtained using Equation 4.7 is lu = λf/lp =

0.8733 mm, which would make for a very small, square aperture. To design opti-

cal systems with larger apertures, one could over-parameterize the design space to

optimize the phase profile over a defined larger aperture. This would require a re-

design of the pattern for each aperture size, and rule out the use of the aperture stop

diaphragm in the main camera lens.

a b c

150μm

412.5μm

 Sensetive
area

412.5μm
Designed PSF size

37.5μm
Subpixel size

Shrinked subpixel: “dot” in (a)
with size 2.34μmd

 1)

 2)
  3)   4)   5)

a b c

d

Figure 4.5: Calibrating the PSF generated by our fabricated phase plate. a) Captured
PSF; b) Synthetic learned PSF; c) Effective PSF as a result of combining PSF a) with
the SPAD pixel sampling pattern; d) Illustrating the effect of focus on the dot pattern
from a) – see text for details.

A simple alternative that overcomes these issues, is to side-by-side replicate the

small optimized phase pattern described above in order to tile the aperture. In our

prototype, we tile a square area of edge length L = 14 mm, which defines a maximum
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aperture that can be further stopped down using the lens diaphragm. The tiling has

the effect of creating a discrete dot pattern instead of a continuous PSF in the image

plane. At a size of lplu/L = 2.34 µm, the individual dots are significantly smaller than

a sub-pixel and their center-to-center spacing is exactly the sub-pixel pitch, which also

matches the edge length of the light sensitive area of a SPAD pixel. Therefore, as

the SPAD sensor integrates spatially over the light sensitive area, it integrates over

exactly one of the dots in the dot pattern, which is equivalent to implementing the

continuous version of the PSF designed above.

As an added benefit, the dot pattern simplifies the alignment process in the as-

sembly of the optical system. As illustrated in Figure 5.7,(d1)-(d3), slight defocus

does not spread the energy out of the subpixel block. If we were to instead employ a

large, non-repeating mask, a slight slight defocus would spread energy to neighboring

subpixels, equivalent to an additional low-pass filter, as illustrated in Figure 5.7,(d4)-

(d5).

4.3.4 Temporal Sharpening for Depth and Transient Imaging

To extract temporal information from our reconstructed images, we use a recent

reported temporal PSF model [12] for SPAD sensors to sharpen our reconstructed 3D

data. For depth and transient imaging, our SPAD sensor works in time-correlated

single photon counting (TCSPC) mode.

This model is useful for precise temporal localization of Gaussian laser pulses from

an observed time profile at each pixel Ii, using a model of the temporal response of

the SPAD pixel, Π(t). The gate signal Π(t) is not a simple rectangular pulse, but

is distorted according to a resistor-capacitor (RC) circuit response (also compare

Figure 4.6 bottom left). We band limit this RC model with a small Gaussian filter

(σf = 100 ps in the experiments), see Figure 4.6 bottom center.

The observed time profile at each pixel Ii is then modeled as a convolution of
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this gate model Π(t) with the Gaussian laser pulse G(t;A, µ) = Ae−
(t−µ)2

2σ2 , where the

parameters A and µ of the Gaussian are initially unknown. They can be determined

by solving the following minimization problem for each pixel:

min
A,µ
‖G(t;A, µ) ∗Π(t)− Ii‖2

2, (4.9)

where ∗ denotes the convolution. Please refer to the original paper of Sun et al. [12] for

technical details. Instead of using a Gaussian model for the laser pulse, we note that it

would be straightforward to substitute other models such as an exponentially modified

Gaussian [163] to estimate parameters for inter-reflection, subsurface scattering, or

fluorescent lifetime imaging (FLIM).
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Figure 4.6: Modeling the temporal PSF of the system as the convolution of distorted
SPAD gate signal and a Gaussian laser pulse profile [12]. The data of the histogram
is selected from location (45, 167) in Figure 4.1 b-3.

4.4 Evaluation in Simulation

We first present a quantitative comparison of some of state-of-the-art SR methods

like VSDR [131] and SRCNN [128]. Table 4.1 shows that although that these kinds of

methods perform well on a conventional SR problems, they fail in the low fill-factor
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case. In this table, each of the methods, including our own reconstruction network

was trained using the low fill-factor model (i.e. without an anti-aliasing filter) on

the same DIV2K dataset. We also tried VSDR and SRCNN on the optical design

obtained with our method, but the resulting SNR and SSIM results are slightly worse

than in the low fill factor case shown in the table.

Table 4.1: Quantitative assessment of current SR methods over the low fill-factor
sampling model in PSNR and SSIM (grayscale).

Methods Set5 Set14 BSDS100

Bicubic 24.26/0.8336 21.51/0.7589 20.83/0.7175
SRCNN 25.27/0.8620 22.34/0.7812 21.58/0.7397
VSDR 25.45/0.8717 22.57/0.7915 21.74/0.7481
Ours 27.17/0.9019 23.97/0.8066 23.82/0.7691

Next, we present a quantitative comparison of applying our reconstruction net-

work to four different sampling models: (1) Low fill-factor sampling model that

considers the SPAD sensor model without the phase mask; (2) Full fill-factor sam-

pling model that is common for other imaging sensors; (3) Low fill-factor sampling

model that considers the SPAD sensor with a Gaussian PSF of standard deviation

σN =
√

3 log 2/π ≈ 0.459, corresponding to a least-squares fit of the sinc function that

corresponds to the ideal low pass filter; (4) Our sampling model that considers the

SPAD sensor model with setting the phase mask at the front focal plane of imaging

lens.

To make a fair comparison, we use the same training dataset and parameters

to retrain the network for the low fill-factor model, full fill-factor model, and a low

fill-factor model with a Gaussian PSF. We then assess on 3 well-known datasets:

Set5 [164], Set14 [165], and BSDS100 [166]. Table 4.2 summarizes the averaged PSNR

and SSIM scores. We observe that, without the aid of our phase mask, the original low

fill-factor model exhibits significantly worse performance than ours both in terms of

of PSNR and SSIM. Concerning the Gaussian PSF, even in comparison to a perfectly
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shaped Gaussian diffuser (which would need to be carefully designed, manufactured,

and aligned for a specific sensor geometry, and would certainly not be an off-the-shelf

part), the scores and recovered image detail (see Figure 4.8) are still worse than that

of our end-to-end system. In addition, we also evaluate a hypothetical full fill-factor

model that might be feasible with alternative sensor designs. The results show a

clear advantage of our end-to-end design over all alternatives sampling patterns on

all datasets.

Table 4.2: Quantitative comparison of 4× SR under different sampling models in
PSNR and SSIM (grayscale). σN is chosen to best approximate the ideal low pass
filter with a Gaussian (see text).

Model Set5 Set14 BSDS100

Low fill-factor 27.17/0.9019 23.97/0.8066 23.82/0.7691
Full fill-factor 29.77/0.9317 26.13/0.8442 25.59/0.8069
Gaussian (optimal) 30.41/0.9360 26.68/0.8498 26.05/0.8157
Gaussian (w./o. re-training) 20.46/0.8087 19.64/0.7268 20.07/0.7016
Ours 30.76/0.9399 26.91/0.8557 26.23/0.8198

Figure 4.7 visualizes several examples selected from the test dataset. Sampling of

a low fill-factor sensor destroys most information, thereby the reconstructed results

suffer from noticeable artifacts and distortions. These artifacts are alleviated by our

proposed method. For instance, the texture on the butterfly is well preserved, but

is in comparison, corrupted by artifacts in the low fill-factor case without the phase

mask. The full fill-factor sensor shows lightly better performance than that of the low

fill-factor sensor, since it averages our the information at all frequencies across the

full pixel block. Instead, our sampling model preserves the most desired information,

showing reconstruction results closer to ground truth (GT). To this end, we believe

our anti-aliasing filtering design contributes to preserving interesting details while

suppressing other artifacts.
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4.5 Prototype and Assessments

In this section, we assess the modulation transfer function (MTF) of our imaging sys-

tem and present the prototype results of three application scenarios. Before detailing

the experimental assessments, we briefly summarize the fabrication of the phase masks

and the calibration of the PSFs.

4.5.1 Prototype

Fabrication. The phase mask is discretized into eight levels which can then be

realized by repeatedly applying photo-lithography and reactive ion etching (RIE) 3

times [162, 51] on a 0.5 mm Fused Silica substrate. The principal wavelength is

655 nm, and a 2π phase modulation is used to wrap the heightmap. Refer to the

supplemental document for fabrication details.

We use a FLIR mono sensor GS3-U3-50S5M with a pixel pitch of 3.45 µm to

calibrate the PSF of the fabricated phase plate. The phase plate is placed at the

front focal plane of a Canon 50 mm lens. A point light source with a 655 nm/10 nm

bandpass filter is set 1.35 m away from the sensor. Figure 5.7a shows the calibrated

PSF of our fabricated phase mask (see Section 4.3.3). The sparse dot pattern structure

is due to the tiling of the phase plate as described in Section 4.3.3.

4.5.2 MTF Analysis

We use the slanted edge method [167] to assess the modulation transfer functions

(MTF)s of our results and that of the low-resolution reference, as shown in Figure 4.9.

We observe outliers larger than 1 in the plot of the SR image without phase mask

(orange plot). In contrast, the MTF of our super-resolution camera is closer to the

desired MTF in optical systems: smoothly and monotonously decreasing from an

amplitude of 100% for the DC term to ca. 10% at the Nyquist limit of the SR image,

with no erroneous maxima for higher frequencies. This result is enabled by better
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preservation of super-resolution information in our learned PSFs. Here we remind the

reader that MTFs are intended to characterize linear systems, and may not be the

best metric of assessing non-linear computational imaging systems such as ours.

4.5.3 Intensity Imaging

Experimental setup. The prototype of normal intensity imaging is illustrated in

Figure 4.10. We use an MPD-SPC3 SPAD array as the detector. The phase mask is

optimized for imaging daily scenes and human activity. The SPAD array is operated

in snapshot mode with the integration time set as 52 µs. We sum up 100 frames

before read-out, corresponding to a total integration time of around 5.2 ms.

Results of intensity imaging. To validate the practicability of the proposed opti-

cally coded single-shot super-resolution design, we employ the fabricated phase mask

on a normal imaging setup that acts as the basis of alternative applications, for ex-

ample, depth and transient imaging, as well as low light imaging. A sequence of raw

images (upsampled to the size of the reconstructed images for ease of comparison) is

shown in Figure 4.11-1. The advantages of generating the optimal PSF specifically

designed for the SPAD sensor’s low fill-factor structure are significant. The recon-

structed super-resolution results (i.e. Figure 4.11-2 faithfully preserve many details

as without introducing artifacts. Therefore, for such a kind of low fill-factor sensor

structure, our method succeeds in preserving the spatial information.

Results of reference experiments. To further demonstrate that our phase mask

works as designed, we performed a reference experiment for the same scenes without

phase mask. Figure 4.11-3 presents the raw images without phase mask. The visual-

ization of the raw images contains more high frequencies compared with those with

phase mask. These undesirable high frequencies only result in the loss of fine details

we want to preserve, but also introduce strong artifacts as illustrated in Figure 4.11-4.
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In comparison, our phase mask can preserve the most useful information while

suppressing aliasing, consistent with the simulation results as described in Section ??.

4.5.4 High Speed Imaging

Experimental setup. We use the same camera setup described above. The SPAD

array is operated in snapshot mode at a frame rate of 1,250 fps with the integration

time set as 80 µs. In this example we sum up 10 frames before read-out. As illustrated

in Figure 4.10b, we use a CPU fan as a high speed spinning object. One of the blades

is marked black as a position tracker, as shown in Figure 4.10c.

Results of high speed imaging. The optically coded single-shot super-solution

camera fits well with unsynchronized and non-repeatable conditions, where time-

sequential spatial resolution enhancement methods like compressive sensing with a

DMD, 2D mechanical scanning, or 1D line scanning are not applicable. As illustrated

in Figure 4.12, we successfully capture and reconstruct the frames of a high-speed

rotating fan (roughly calculated at 3,750 rpm from the shown frames). Figure 4.12a

presents the captured raw data with darkcounts and background noise removed. Fig-

ure 4.12b presents the reconstructed 4× super-resolved frames. We can distinguish

the fine details of fan and football. For more details, please refer to the supplemental

video.

4.5.5 Depth and Transient Imaging

Experimental setup. Figure 4.13 illustrates the experimental setup for depth and

transient imaging and the corresponding scenes. We use a 655nm picosecond laser

(PicoQuant LDH P-650) with an average power of around 1 mW as the illumination

source. The FWHM of the laser pulses is around 80 ps, and the repetition rate is

50 MHz. To illuminate the scene smoothly, we scatter the laser beam using a diffuser
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and use an 80 mm plano-convex lens to re-concentrate the overly scattered beam.

We operate the SPAD camera in TCSPC mode with a 200 ps gate width and a

20 ps phase shift per cycle. The integration time is set to 52 µs, and 1,500 frames are

summed up before read-out. In total, the capture process lasts around 9.8 s.

During the capture, the SPAD array sends the synchronizing signal to trigger

the laser driver and then counts the arrival photons with a fixed phase offset of the

gate. After sufficient integration, the SPAD camera shifts the gate window (i.e., 20 ps

delay) and captures another frame until covering all designed phase offsets.

Fabrication Details As mentioned in main text, the designed phase plates are

discretized to 8 height levels, which can then be realized by repeatedly applying

photolithography and reactive ion etch (RIE) process 3 times [162]. The core of

fabrication (i.e. photolithography and RIE) is shown in Figure 4.14. The thickness

of Cr layer is 100nm and the etching depths for each circle are 178nm, 356nm, and

712nm, sequentially.

The microscope images of fabricated diffractive phase plates are shown in Fig-

ure 4.15. Each phase unit is designed as 0.873mm×0.873mm, and we repeat 16×16

units for the final diffractive phase plate. With this kind of repeatable designing

scheme, our phase plates fit well with different sizes of aperture, exhibiting an aper-

ture invariant PSF behaviour. In addition, our designed phase unit has a smooth and

continuous profile. This releases the requirement of a very high precision fabrication

method. For commercial use, one can use state-of-the-art micro-stamp methods [168]

to fabricate the phase plates in a low budget.

Results of depth imaging. In this experiment, we demonstrate the ability to

resolve the geometric details of several objects (fans, horse, wooden toys, etc.) in the

scene depicted in Figure 4.16. As shown, the reconstructed intensity (Figure 4.16b)

and depth images (Figure 4.16c) exhibit details that are hardly distinguishable in
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raw data, for instance the edges of fans and wooden toys. From Figure 4.16a we

observe that the raw images obtained by summing over the time axis remains very

noisy although the dark counts and background noise have been mostly removed.

Compared to the raw data of intensity imaging, i.e. Figure 4.11a), the summed

pixel values show a considerably larger uncertainty, which makes it challenging to

reconstruct good quality results. This is because the output power of our laser is very

low with an average output only around 1 mW. Furthermore, the light is scatted to

illuminate the entire scene. Consequently, only a few photons can be collected by our

camera after bouncing back.

Results of transient imaging. Figure 4.17 presents the selected results of recon-

structed transient frames. A mirror is placed near the objects to reflect the light. In

Figure 4.17a, the light pulse starts hitting the objects, resulting in a gradual increase

and then a gradual decrease of the illumination. Later, the reflected light from the

objects propagates to the mirror. Similarly, the reflected image (left part) shows the

same phenomenon as the objects that the illumination gradually increases and then

gradually decreases. The results in Figure 4.17b show a similar process. Thus, we

have successfully captured and reconstructed high resolution transient phenomena

from the low resolution raw data.

4.6 Discussion

Fabrication feasibility and generalization. Our optimized PSFs are relatively

small, and which means that the phase plate only needs to diffract the light slightly,

which can be achieved with relatively large feature sizes (5 µm in our experiments).

This easily fits within the fabrication capability of inexpensive mass-production meth-

ods like micro-imprinting. In practice, the assembling accuracy (rotation ±4◦, dis-

placement ±2 mm) shows a minimal impact on reconstruction results. It is viable
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to design systems where the phase plate can be easily switched by end users, simple

as switching a regular lens, to maximize the performance for different application

scenarios. We believe the proposed design paradigm can be generalized to alternative

low fill-factor and low resolution sensors like on-board pixel processing circuits [169],

3D cameras, fluorescent analyzers, thermal cameras, etc.

Limitations for depth and transient imaging. We reasonably ignore the mul-

tipath effect at the stage of proof-of-concept since current illumination region is con-

strained within a level of a few decimetres. But there are several limitations that

affect the reconstruction quality of depth and transient imaging. On the one hand,

the picosecond laser used in our experiments has a power of only 1 mW. On the other

hand, current photon detection efficiency (PDE) is only 12% at the wavelength of

655 nm. These two essential hardware constraints, in tandem with the need of dif-

fusing laser beam into a 2D space to illuminate the whole scene, result in a fact that

only a few reflected photons can be collected by the sensor. In contrast, line SPAD-

based scanning methods [106, 155] scatter the laser beam only into a line and use the

spectra of 450 nm, corresponding to a SPAD detection PDE around 50%. Therefore,

currently the relatively lower light efficiency of our method adds difficulties to tackle

the strong noise in the reconstruction.

Future Work. In depth and transient imaging applications increased illumination

power always improves measurement range and robustness to ambient light. However,

safety and cost concerns set tight limits to the laser power in many scenarios. To

overcome this problem, using an intensity-modulated continuous laser, similar to

amplitude modulated continuous wave (AMCW) time-of-flight sensors, can be a good

alternative. A future direction of research would be to build a counting and digital

version of AMCW TOF sensors using continuous wave illumination. This can be

achieved by replacing the two capacitors that collect the charge of a photodiode with
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two counting units that count the photons of SPAD. In this way the SPAD-PMD

device can lower the requirements on illumination while exhibit more robustness to

ambient light. SPAD arrays are a particularly promising technology for the field of

fluorescent lifetime imaging, where state-of-the-art hardware solutions either suffer

from low resolution or require complex and time-consuming mechanical scanning. To

this end, optimizing a phase mask can enable a fast, high resolution, and scanning-free

fluorescent lifetime imaging system.

4.7 Conclusion

In conclusion, we present a general design paradigm to realize an optically coded

single-shot super-resolution camera for low fill-factor sensors. This is achieved by

incorporating optical design, sensor modeling, and deep network reconstruction. We

build a high-resolution SPAD camera and demonstrate its viability in the application

scenarios of intensity, high speed, and depth/transient imaging. Our approach for

the first time overcomes the spatial resolution limit of existing SPAD sensor arrays

with a single-shot capture, without the need of any mechanical scanning or repeatable

measurement. The hardware improvement requires only a relatively inexpensive phase

mask to the front focal plane of an existing optical system. We envision a wide range

of applications across computer vision, sensing, and microscopic imaging.



92

Groundtruth Low fill-factor 

Full fill-factor Ours

Groundtruth Low fill-factor
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Figure 4.7: Selected examples of 4× SR under different sampling models. For the
low fill-factor case, we direct apply the low fill-factor model of SPAD to sample the
high resolution images to obtain 1/4 resolution images. For the full fill-factor case,
we average the 4×4 pixel area to obtain 1/4 resolution images. For our method, we
apply the low fill-factor sampling model of SPAD with pre-filtering using our learned
PSF kernel.
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Figure 4.8: Imaging performance of the best Gaussian PSF (top) and our end-to-
end learned PSF (bottom). Our end-to end learned approach does show significantly
better preservation of details above the Nyquist limit, see insets.
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Figure 4.9: MTFs derived from experimental results, including raw LR sensor image
and 4× super-resolved SR image with and without phase mask, respectively. The
corresponding images are revealed with different color plots and the ideal 4× SR
image is marked by black color.
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Figure 4.10: Prototype for normal/high speed imaging and the scene: a) The pro-
totype of normal imaging and high speed imaging. b) The scene of running fans
captured with a regular RGB sensor. c) Static states of the scene shown in b), and
the red marked area are manually set as black to mark the rotating position.

1) raw images with mask 2) results with mask 3) raw images without mask 4) results without mask

Figure 4.11: Results of normal imaging. 1) Captured raw images with phase mask
and with dark counts and background noise removed. 2) Results with phase mask.
3) Captured raw images without phase mask and with dark counts and background
noise removed. 4) Results without phase mask.
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(a) raw frames (b) reconstructed frames

Figure 4.12: Results of high speed imaging. The displayed data is selected for every
five frames and we set the frame rates around 1,250 fps. (a) Selected raw frames
with darkcounts and background noise removed. (b) Reconstructed high resolution
frames.
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Figure 4.13: Photograph of hardware set-up of depth and transient imaging (a); and
the scenes used in experiments (b).
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Figure 4.14: Steps of DOE fabrication. First, patterns are transferred from masks to
photoresist on Fused Silica wafer through the exposure under UV illumination and
the following develop process. Then, the transferred patterns are converted to binary
profiles on the wafer by Cr etching and reactive ion beam (Ar + SF6) bombardment.
The final binary profile is obtained by removing the Cr layer.
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Figure 4.15: 5X microscope images of a fabricated DOE.
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Figure 4.16: Results of depth imaging: (a) raw image(with darkcounts and back-
ground noise removed) summed over the time dimension; (b) reconstructed intensity
image according to (a); (c) reconstructed depth image; (d) reconstructed depth image
without temporal deconvolution.
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a

b

Figure 4.17: Results of transient imaging. From left to right and from top to bottom
are the selected frames of our reconstructed transient video stream. We here present
one frame out of every 9 frames with an visualized interval of 180 ps. The right
bottom of a) shows the captured scene containing a cup, a polyhedron, and a large
mirror. The right bottom of b) is the captured scene containing a wooden skeleton
and a large mirror.



101

Chapter 5

End-to-End Encoding Through Optimizing Phase Mask:

Single-shot HDR Imaging

In the previous chapter, we take one more step that optimizing the PSF together

with the post-processing, bring the imaging system design into end-to-end fashion

and successfully applied it to enable the super-resolution of low fill-factor SPAD

camera. However, it is based on the assumption of a single wavelength such that we

can find a fixed relationship of optics and PSFs through GS based method. When

applying to color imaging or multispectrum imaging, we need to consider that the

refractive index varying with the wavelength. Therefore, in this chapter, we build a

differentiable DOE based on fresnel approximation to compromise color channels.

HDR imaging is an essential imaging modality for a wide range of applications

in uncontrolled environments, including autonomous driving, robotics, and mobile

phone cameras. However, existing HDR techniques in commodity devices struggle

with dynamic scenes due to multi-shot acquisition and post-processing time, e.g.

mobile phone burst photography, making such approaches unsuitable for real-time

applications. In this chapter, we propose a method for snapshot HDR imaging by

learning an optical HDR encoding in a single image which maps saturated highlights

into neighboring unsaturated areas using a DOE. We propose a novel rank-1 parame-

terization of the DOE which drastically reduces the optical search space while allowing

us to efficiently encode high-frequency detail. We propose a reconstruction network

tailored to this rank-1 parametrization for the recovery of clipped information from

the encoded measurements. The proposed end-to-end framework is validated through
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Figure 5.1: Due to pixel saturation, image detail in bright regions is lost in a single
snapshot LDR image. Our camera, with the learned optic prototype (left), captures
LDR images where high-intensity image content is encoded through a series of streaks
(center left). This allows us to reconstruct the lost highlights (center, center right)
with a specialized two-stage CNN.

simulation and real-world experiments and improves the PSNR by more than 7 dB

over state-of-the-art end-to-end designs.

5.1 Introduction

HDR imaging has become a commodity imaging technique as evident by its applica-

tions across many domains, including mobile consumer photography, robotics, drones,

surveillance, content capture for display, driver assistance systems, and autonomous

driving. The pixels in conventional CMOS and CCD image sensors act as potential

wells that saturate when the well capacity is reached. Unlike film, which provides

a gradual compression of high intensities, digital image sensors thus suffer from a

hard cutoff at some peak intensity, so that information about the saturated bright

regions is irrevocably lost. By reducing the exposure time, brighter regions can be

recovered, but at the cost of under-exposing, i.e., reducing signal photons in darker

image regions.

As a result, single captures of conventional sensors provide high fidelity only for

low-contrast scenes, while struggling for high-contrast scenes at night with both low-

and high-flux scene content.

Although existing HDR imaging methods in widely deployed consumer smart-

phone devices [35, 170, 93] successfully overcome this limitation by acquiring bursts
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of captures, the combined capture and processing time of multiple seconds [35] is

prohibitive for many applications in robotics and autonomous driving that demand

real-time feeds.

Faster multi-capture imaging methods [171, 172, 173], relying on only 2-3 low-

dynamic range exposures and hardware exposure fusion, fail for higher dynamic scenes

typical in automotive and robotics applications. As an alternative, emerging sensor

designs multiplex exposures on the sensor [174, 175, 176], however, at the cost of spa-

tial resolution required for spectral or spatial information. Optical splitting methods

using multiple sensors [177] are often not practical in an application due to their cost

and footprint. To tackle this issue, a line of recent work explores the hallucination

of HDR images [178, 179] from single low-dynamic range (LDR) captures. These

methods can only rely on semantic context but no measurement signal to recover the

clipped HDR regions. In an alternative direction, Rouf et al. [180] proposed a hand-

crafted star filter attachment to optically encode lost information by spreading out

saturated highlights to nearby regions. Unfortunately, their approach only achieves

low image quality far below that of recent hallucination approaches.

In this chapter, we revisit this idea, but by learning an optical HDR encoding

in an end-to-end optimization. To this end, we jointly design the optical PSF to-

gether with the inverse reconstruction method, i.e., the post-capture processing that

recovers the latent HDR scene from the input measurement, which we formulate as

an (RAW-)image-to-image neural network. However, we found that applying exist-

ing end-to-end methods [14, 181] easily finds a local minimum of the vast design

space, parameterized by an unconstrained diffractive phase plate optic. Instead, we

parameterize the diffractive element in the proposed optical design with a rank-1

phase pattern. This constrained PSF design spaces makes allows us to tailor the

architecture of the reconstruction network to the recovery from such streak-encoded

measurement. We optimize the diffractive optic and reconstruction algorithm jointly



104

in an end-to-end optimization which finds a local minimum that outperforms vanilla

end-to-end designs with similar network capacity by more than 7 dB PSNR.

We demonstrate the proposed approach outperforms the state-of-the-art snapshot

HDR methods in simulation. We prototype our design camera system by fabricating

the DOE and demonstrate on a broad set of experimental in-the-wild captures, that

this method generalizes to unseen scenarios, outperforming existing optical designs.

Our method is most effective for recovering concentrated high-intensity light sources

such as street lamps. In addition, we also show that the proposed network is effective

in removing glare from in-the-wild automotive optics with windshield-induced streaks.

Specifically, we make the following contributions:

• We introduce a novel rank-1 parameterized optical design that learns to encode

saturated information with a streak-like PSF.

• We co-design a tailored reconstruction network which first splits the unsaturated

regions from the coded information and then recovers the saturated highlights

from the encodings.

• We validate the proposed method in simulation and on real-world measure-

ments acquired with a fabricated prototype system. The proposed method

outperforms existing designs by over 7 dB in simulation.

5.2 Related Work

5.2.1 Multi-exposure HDR Imaging

Traditionally, HDR imaging is performed by sequentially capturing LDR images for

different exposures and then combining them through exposure bracketing [6, 182,

183, 184, 185, 186]. This approach is unsuitable for handling highly dynamic scenes

and for fast captures necessary for real-time applications. More rapid HDR imaging

can be realized with burst HDR acquisition [35, 170, 93]. However, these techniques
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still suffer from motion artifacts and require seconds for capture and processing for a

single acquisition.

To alleviate motion artifacts, prior work has employed HDR stitching [187, 188],

optical flow [189], patch matching [190, 191, 192, 193, 194], and deep learning [195,

196]. These techniques have even enabled HDR videography, but the post-processing

cost makes them impractical for fast capture. Ultimately, these approaches attempt

to find a trade-off between densely sampling different exposures and post-processing

computation time.

5.2.2 HDR Snapshot Reconstruction

A large body of work has explored reconstructing HDR content from a single LDR

image, a process referred to as inverse tone-mapping. Early work in this domain

utilized heuristic approaches [197, 198, 199, 200], but often does not provide satisfying

HDR reconstructions [201, 202]. Building upon these works, deep learning has been

used to hallucinate HDR content from LDR images [178, 179, 203, 204, 205, 206, 207,

208, 209, 210, 211]. These approaches generate plausible reconstructions of low-light

regions but fail to recover saturated details accurately.

Several approaches encode information into the captured LDR image to allow

for better estimation of highlights. This can be achieved by modifying the sensor

architecture through spatially varying pixel exposures [174, 212], convolutional sparse

coding [213], compressed sensing [214], or modulo cameras [215]. Drawbacks of these

approaches include the need for expensive custom cameras and loss of detail in the

low dynamic range. Furthermore, recovering highlights in scenes involving very large

dynamic ranges is still a challenge for these approaches. Instead of modifying the

sensor, other approaches place optical components in front of conventional cameras

to affect the captured LDR image. Hirakawa et al. [216] utilized color filters to avoid

saturation of any single color channel. Rouf et al. [180] proposed to use a known
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optical element to spread saturated information content into unsaturated regions.

Although this allows for high fidelity estimation of highlights, these techniques leave

noticeable artifacts in the unsaturated areas.

5.2.3 End-to-end Optics Design

Joint optimization of optics and reconstruction has demonstrated superior perfor-

mance over traditional heuristic approaches in color image restoration [217], microscopy[218,

219, 220, 221], monocular depth imaging [16, 25, 27, 222], super-resolution and ex-

tended depth of field [14], and time-of-flight imaging [223, 120].

We propose an end-to-end optimization framework for single-shot HDR imaging.

Drawing inspiration from Rouf et al. [180], our optimized optic is a DOE that en-

codes clipped highlights into specific unsaturated regions. The ample design space of

DOEs allows for rich optical encodings but has the unintended consequence of being

challenging to optimize. As such, investigating a suitable parameterized model of

the DOE becomes a critical design step. Recent work, in parallel to ours, explores

end-to-end optimization of optics for HDR imaging by directly learning a heightmap

for the DOE [181]. This approach causes the DOE to produce shifted scaled copies of

saturated content that allow for HDR reconstruction but that are difficult to remove

from the unsaturated regions. Another approach used by Sitzmann et al. [14] is to

represent the DOE with Zernike polynomials, but this only allows the DOE to affect

low frequencies and is inadequate for capturing high-frequency detail in HDR scenes.

In this chapter, we found that by constraining the DOE height map model to a

rank-1 phase pattern, our DOE learns to produce streak patterns that are easy to

remove from the unsaturated regions but still allow for high fidelity reconstruction

of saturated image content. We employ a structured multi-stage CNN, instead of a

single-stage U-Net as in [181], to perform these tasks step by step.
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5.3 Image Formation Model

Our image formation model is illustrated in Figure 2.1 in Section 2.2.2, and the basic

pipeline is illustrated in Chapter 3. In the following, we describe the details that

distinguished to the forward optics model, and it can later be used for end-to-end

optimization.

5.3.1 DOE Layer and Rank-1 Factorization.

Existing end-to-end frameworks have used an unconstrained height map model for

the DOE, where each location in the m×m height map is a learnable parameter [14].

We found that this model has a tendency to produce local minima in the form of very

local encodings such as shifted and scaled copies of highlights, as also shown in parallel

work [181], but rarely produces non-local encodings such as streaks. Using these local

encodings provides lower quality HDR reconstructions as they are difficult to separate

from the unsaturated areas in the close neighborhood. We note that alternative

parameterizations such as a truncated Zernike basis [14] are also not suitable for our

application, because even though it can model non-local encodings, it is only suitable

for low spatial frequencies and cannot encode high-frequency content.

To tackle this challenge, we propose a novel rank-1 decomposition of the 2D height

map which not only can encode high frequencies but also reduces the number of

parameters touched in training. The height map at location (x′, y′) is given by

h(x′, y′) = hmax σ
(
vq>

)
, (5.1)

where v ∈ Rm×3 and q ∈ Rm×3 are trainable variable basis pairs whose outer product

describes the DOE height map, σ is the sigmoid function, and hmax = 1.125 µm is

the maximum height that corresponds to 2π phase modulation at λ = 550 nm for

fused silica. The sigmoid function σ(x) = 1/(1 + e−x) is applied element-wise to vq>
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to clamp the range to [0,1].

Our rank-1 parameterized model encourages global optical encodings, such as

streaks, while still permitting local encodings, such as peaks. Furthermore, this pa-

rameterization produces a grating-like height map which is more suitable for DOE

fabrication. In addition to the rank-1 parameterization, we also use an additional

constraint to assist the framework in finding proper optical encodings. To ensure

that highlights are encoded without severely affecting low-light regions, we adopt a

regularization loss to constrain 94% of the energy into the center of the PSF and

to spread the remaining 6% into the surroundings. We found that if we take our

converged height map and continue optimizing without our rank-1 parameterization,

then the optimized height profile is still maintained, which suggests that we do indeed

find a good local optimum. Please refer to the Supplemental Material for details.

Sensor Model. The image captured by the sensor Is is given by

Is = s(I ∗ p + η), (5.2)

where I is the high dynamic range ground truth image, p is the point-spread function

of the optical system, η is sensor noise, and s(·) is the camera response function that

clips to [0, 1]. Note that Is and I are both continuous variables.

5.4 End-to-end Design and Reconstruction

The proposed end-to-end imaging system consists of three main parts: a differentiable

optical model, a robust network for recovering and separating the unsaturated image

IU (i.e., pixel values in [0, 1]) from the residual information Ir encoded by the saturated

image IS (i.e., pixel values in [1, 28]), and a reconstruction network for inferring IS

from Ir. In a final step, the recovered unsaturated component IU and the recovered

highlight component IS are combined using a fusion network to predict the latent
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Figure 5.2: Our end-to-end pipeline consists of the image formation model and CNN
reconstruction. Our CNN is divided into several stages that focus on separating the
encoding from the captured LDR image, recovering the highlights, and fusing the
recovered unsaturated and saturated regions to produce the final HDR prediction.
After fabrication our image formation model is replaced by real-world captures.

HDR image I.

Differentiable Optical Model We implement the optical model as described in

Section 5.3.

Residual Splitting Network. We first discuss the network for reconstructing IU

and separating this unsaturated part from Ir. Our residual splitting network fU takes

in the coded LDR sensor capture Is and outputs a prediction ÎU for the unsaturated

image and a prediction Îr for the residual information:

ÎU, Îr = fU (Is) . (5.3)

Inspired by recent work on separation of reflection from transmission in single-

shot images [26], the network first uses a pre-trained VGG model to extract feature

maps. Specifically, we used the pre-trained VGG-19 network to extract “conv1_2”,

“conv2_2”, “conv3_2”, “conv4_2” and “conv5_2” feature maps and bilinearly upsam-

pled them to the input image size. These feature maps, along with the input image,

are then compressed to 64 channels by using a 1 × 1 convolution layer before being
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fed through seven 3 × 3 dilated convolution layers with dilation rates from 1 to 64

(Dilated Full-Resolution Reconstruction Block in Fig 5.2). Each dilated convolution

layer has 64 channels. Finally, a 1 × 1 convolution layer is used to reduce to six

channels, three of which correspond to ÎU and the other three correspond to Îr. Each

dilated convolution layer is followed by a Leaky ReLu activation (slope = 0.2) and

an instance normalization layer. The loss on the unsaturated pixels LU as shown in

Figure 5.2 forces this network to effectively split streaks from the unsaturated image

ÎU.

Highlight Reconstruction Network. After splitting the unsaturated image from

the residual encoding we then use the residual to reconstruct highlights. Since the

residual encoding was produced by convolving the highlights with our designed PSF,

reconstructing the highlights becomes a deconvolution problem. Our network fS thus

takes in the residual prediction Îr and outputs a prediction ÎS of the highlights:

ÎS = fS

(
Îr

)
. (5.4)

We rely on a variation of the U-Net architecture [95] to deal with this deconvolu-

tion task. Specifically, our U-Net has five scales with four consecutive downsamplings

(maxpools) and four consecutive upsamplings (nearest neighbor upsampling following

by a 3 × 3 convolution layer). Each layer uses a 3 × 3 kernel window except for the

first layer with 7 × 7 and the last layer with 1 × 1. Since the coded information is

in the range [0, 1] while the values to reconstruct are in the range [1, 28], we avoid

using normalization in the last two convolution layers to allow the network to learn a

large range of output values. Similar to the splitting network, the loss LS encourages

high-fidelity highlight reconstructions.
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Fusion Network. In order to avoid boundary artifacts caused by combining ÎU and

ÎS into a single image, we adopt a light-weight fusion network fF to combine them

and create the final predicted HDR image ÎF:

ÎF = fF

(
ÎU, ÎS

)
. (5.5)

The fusion network applies two 3 × 3 convolution layers with 64 feature channels to

ÎU and ÎS separately, concatenates the feature maps together, and then applies two

3×3 convolution layers with 32 and 3 feature channels to produce the final predicted

output ÎF.

5.4.1 Loss Functions

Our loss functions consist of two intermediary losses LU and LS which we apply to the

intermediate outputs of the residual splitting network and the highlight reconstruction

network respectively. We also apply a final loss LF to the final output of our network.

The total loss that we minimize when training our network is given by

LTotal = LU + LS + LF. (5.6)

Loss on Unsaturated Regions We adopt a perceptual loss as a metric of differ-

ence between the intermediate unsaturated image prediction ÎU and the ground truth

unsaturated image IU. Our perceptual loss is defined using the pre-trained VGG-19

network and is given by

LVGG(x̂, x) =
∑
l

νl‖φl(x̂)− φl(x)‖1, (5.7)

where {νl} are loss balancing weights and φl are the feature maps from the l-

th layer of pre-trained VGG-19. Specifically, we use the “conv2_2”, “conv3_2”, and
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“conv4_2” layers of the VGG-19 network.

To better separate the unsaturated region prediction from the residual prediction,

we apply an exclusion loss [26] Lexcl during network fine-tuning. We assume that the

edges of the unsaturated image and the edges of the residual encoding are unlikely

to overlap, and we apply this assumption through an exclusion loss that penalizes

correlation between the predicted unsaturated image and the residual in the gradient

domain. The exclusion loss is defined to be

Lexcl = ‖tanh(ηU | ∇ÎU |)� tanh(ηr | ∇Îr |)‖F , (5.8)

where ηU =

√
‖Îr‖F/‖ÎU‖F and ηr =

√
‖ÎU‖F/‖Îr‖F represent normalization factors,

and ‖ · ‖F represents the Frobenius norm.

In conclusion, the loss that is applied to the intermediate output of the residual

splitting network is

LU = α1LVGG(ÎU, IU) + α2Lexcl(ÎU, Îr). (5.9)

Loss on Saturated Regions To extract information and perform deconvolution

from the residual artifacts we use the same VGG loss given in Eq 5.7 for the inter-

mediate prediction of the saturated highlights:

LS = βLVGG(ÎS, IS). (5.10)

Loss on Fused Output We applied a Huber loss with γ = 1/2 to the ground truth

HDR image I and final network prediction ÎF:

LF = LHuber

(
(Î + ε)γ, (I + ε)γ

)
. (5.11)
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Regularization As described above we apply a regularization loss during training.

This loss is applied by using the energy distribution mask shown in Figure 5.3c and

keeping 94% of the energy in the center and 6% in the line-like satellite regions. Our

regularizer is formally given by

Lreg = τc|0.94− p�Mc|+ τs|0.06− p�Ms| (5.12)

where p is the PSF, Mc is the energy mask corresponding to the center, and Ms is

the energy mask corresponding to the satellite regions. In our experiments we used

τc = 0.05 and τs = 0.1 .

We also performed an experiment where we trained using our optical model but

without regularization. We found that the final PSF converges to a Dirac point

instead of spreading out energy from the saturated area and the performance is only

36.9 dB PSNR and 61.45 points on HDR-VDP 2 [224] on the test set. This experiment

illustrates the importance of our regularizer.

a b c

Figure 5.3: PSF corresponding to Rank-1 height map parameterization. (a) Simulated
PSF. (b) PSF captured in the real-world. (c) Energy distribution mask used for
regularization.

Continued optimization without rank-1 height map factorization and with-

out regularization To validate that we achieve a good local optimum with our

optical design we continued to train without our rank-1 factorization and without
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our regularizer for 25 epochs. That is, we take our learned height map profile and

continue to train as an unconstrained height map where each location is a learnable

parameter. For this experiment the starting learning rate of the optical model is low-

ered from 1e−3 to 1e−6 while all other hyperparameters are the same as the original

model training process. We observe that after 25 epochs the height map has changed

insignificantly, as illustrated in Figure 5.4. This suggests that we do indeed find a

good local optimum.

a b c
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Figure 5.4: Height map comparison. (a) Our learned height map. (b) Continued
training height map without rank-1 factorization and without regularization. (c)
Absolute difference between (a) and (b). All figures are normalized by the maximum
fabrication height hmax = 1.125 µm

5.4.2 Implementation and Training

We implement our rank-1 DOE height map model and reconstruction network in

TensorFlow. Our network assumes inputs are in the range [0, 1], and outputs are

in the range [0, 28]. The model is jointly optimized using the Adam optimizer with

polynomial learning rate decay. For more details, please refer to the Supplemental

Material.

5.4.3 Details for reconstruction network

Details for residual splitting network Our residual splitting network configu-

ration is shown in Table 5.1. As described in Section 4 of the chapter, we use the
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Layer Convolution layer Activation Normalization

0 conv-n64-k1-d1 Leaky Relu nm
1 conv-n64-k3-d1 Leaky Relu nm
2 conv-n64-k3-d2 Leaky Relu nm
3 conv-n64-k3-d4 Leaky Relu nm
4 conv-n64-k3-d8 Leaky Relu nm
5 conv-n64-k3-d16 Leaky Relu nm
6 conv-n64-k3-d32 Leaky Relu nm
7 conv-n64-k3-d64 Leaky Relu nm
8 conv-n64-k3-d1 Leaky Relu nm
9 conv-n6-k1-d1 - -

Table 5.1: Configuration of residual splitting network. In the table, “conv-n(a)-k(b)-
d(c)” represents a convolution layer with a output channels, using a b × b kernel,
and using a dilation rate c. Each “Leaky Relu” has slope 0.2 and nm(x) = w0x +
w1Instance_norm(x), where w0 and w1 are trainable variables.

pre-trained VGG-19 model to extract feature maps (1472 channels in total) and up-

sample them to the same size as the input image (3 channels). Then we concatenate

them together (1475 channels) and feed into our residual splitting network. We use

a skip connection so that the output unsaturated image estimate ÎU is given by the

sum of the first three channels of the output of our residual splitting network and

the input image Is. The last three channels of the output of our residual splitting

network gives the encoded residual estimate Îr. We clip ÎU to [0, 1] and Îr to [0, 24].

Details for highlight reconstruction network Our highlight reconstruction net-

work configuration is shown in Table 5.2. We avoid using normalization in the last

two-layers ’9_1’ and ’9_2’, and the last layer ’10’ to allow the network to output a

larger range of values. The output of the network ÎS is clipped to [1, 28].

Details for fusion network As shown in Table 5.3, we first convolve inputs ÎU

and ÎS separately using two convolution layers for each input. Then we concatenate

the feature maps together and generate the final HDR prediction using another two

convolution layers. In addition, we mask out the unsaturated region for ÎS before it
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is sent to the fusion network.

5.4.4 Dataset

To ensure that our model accurately reconstructs highlights, we gathered HDR images

that contain large dynamic ranges with small saturated regions. These include a mix

of urban and rural scenes at night as well as indoor scenes from 19 different sources,

see Supplemental Material for a complete list of dataset sources. To accommodate

different image sizes we manually took 512 × 512 crops of the images specifically

located at where the saturated regions were. After preprocessing, we had a total of

2039 images for training and 36 images for testing.

As part of the sensor simulation, we saturate a random percentage of pixels during

training. That is, we multiply images by a scale factor such that 1% to 3% of pixels

are larger than 1. After the scaling, we clip extreme pixel values, any pixel values

larger than 28 are set to 28. We also augment the images using random rotations and

flips. During testing, we saturate exactly 1.5% of the pixels in all test images and

again clip pixel values larger than 28.

5.5 Evaluation and Comparisons

We evaluate our approach in simulation against recent state-of-the-art single-shot

HDR methods [181, 180, 178]. For HDR-CNN we used their pre-trained model. For

Rouf et al.’s glare filter method, we applied an 8-point star PSF to the image using

their experimentally obtained glare filter. For Deep Optics, we used the authors’ PSF

and trained their network on our dataset. Table 5.4 displays quantitative results on

the test set. PSNR is calculated in the linear domain with a maximum value of 28.

HDR-VDP Version 2.2.1 was used with default settings except for pixels per degree

which was computed using 24 inch diagonal display size, 512 × 512 resolution, and

1 m viewing distance. We report the Quality Correlation score. Figure 5.5 shows
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Figure 5.5: Visual comparison of different snapshot HDR methods in simulation.
HDR-CNN [178] severely underestimates the intensity of saturated regions. Glare-
HDR [180] often leaves artifacts and fails to estimate highlights correctly. The copied
peaks for Deep Optics [181] sometimes overlap with the saturated areas and conse-
quently are ineffective for highlight reconstruction. Please zoom in to view image
details, such as the fine structures within the saturated areas.

qualitative comparisons of our approach against others.

5.5.1 Ablation Study

We performed an ablation study to illustrate the benefits of our proposed optical

design and reconstruction network. Table 5.5 compares performance when using

different reconstruction networks. We found that our network was best suited to

HDR recovery with our learned PSF. Table 5.5 also shows performance when using

different PSFs with our reconstruction network. For these experiments, only the

network was optimized, and the PSF remains fixed. We observed that our PSF

outperforms alternative PSF designs.
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5.5.2 Scene depth experiments

Our optical model assumes that the point light source is placed 5 m away from the

DOE plane. However, the PSF varies with different scene depth. As such, we investi-

gate the robustness of our reconstruction network for handling PSFs corresponding to

different scene depths in simulation. We change the position of the point light source

from 1 m to infinity (while adjusting the distance between the sensor and focusing

lens accordingly). Figure 5.6 shows our PSNR results on the test set in simulation.

Our reconstruction network does best for 5 m depth as expected, and the performance

is slightly degraded for other depths.
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Figure 5.6: PSNR performance in simulation over different depths.



119

5.6 Experimental HDR Captures

We fabricate the optimized DOE using multilevel photolithography techniques [41,

43]. Due to fabrication limitations, we first slice the continuous phase mask into

four layers with 24 = 16 phase levels. This results in a high diffraction efficiency

(theoretically more than 90%) [225]. By repeating the photolithography and reactive

ion etching (RIE) for four iterations, we fabricated the phase mask on a 0.5 mm fused

silica substrate with aperture size 9.16 mm and feature size 6 µm. Please refer to the

Supplemental Material for further fabrication details.

Our imaging pipeline uses a Sony A7 with a pixel pitch of 5.97 µm, and the

phase mask is closely placed in front of a Zeiss 50 mm f/1.4 lens (recall that we

do not model the propagation between DOE and standard lens). Figure 5.7 shows

that the real-world PSF matches the simulated PSF with slight contrast loss due

to manufacturing imperfections and model approximations. Therefore, we perform a

PSF calibration step where we capture the real-world PSF and then use it to fine-tune

our reconstruction network. The real-world PSF is obtained by placing a white point

light source 5 m away from the sensor, taking multi-exposure (five) snapshots at 3

EV intervals, and then fusing the snapshots in linear space using MATLAB’s HDR

toolbox.

5.6.1 Results

Figures 6.1 and 5.8 show real-world captures and reconstructions with our setup and

reconstruction procedure. Reference images were taken by the same camera without

the DOE (same aperture and position) using exposure fusion as described above for

the PSF capture. In Figure 6.1, we correctly reconstruct highlights in the illuminated

letters while removing most of the encoding streaks. In Figure 5.8 the left images

show a brick wall where details are lost due to the light sources. Our method recovers

these details, including color and structure. Note that our method succeeds despite
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Figure 5.7: Comparison of simulation versus the real-world for the heightmap and
PSF. Fine-tuning was performed with the captured PSF.
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Figure 5.8: Real-world captures using fabricated DOE and reconstruction results.
Note that the middle image is of a strobe light array with 50 Hz frequency. The
reference images of −4 EV, −6 EV and −8 EV are taken by the same camera without
the DOE (same aperture and position) by reducing the exposure time to 1/24, 1/26

and 1/28 respectively. Please zoom in to view image details.

interference between the background image and our streak encodings. The middle

images show that our method also works for dynamic scenes with of flashing strobe

lights, which are challenging for burst HDR methods as the bursts would not be

synchronized with the strobe. The right side shows that detailed reconstructions can

be obtained for high-intensity lamp regions.

The presented reconstruction results and additional results in the Supplemental

Material validate the proposed method for various scene types, including high-contrast

night time urban environments and indoor settings. However, it is important to use
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Figure 5.9: Automotive streaks are caused by grating-like patterns on the windshield.
Applying our residual splitting network to the corresponding PSFs allows us to remove
them.

a low exposure time as our method fails when the streaks are overexposed.

To evaluate real-time applicability we benchmarked the reconstruction latency.

Our unoptimized network in TensorFlow takes 530 ms on an Nvidia Titan RTX to

process a single LDR capture. After TensorRT optimization and network pruning our

network takes 85 ms with fp32 precision and 44 ms with fp16 precision on the same

GPU.

5.7 Grating Optics In-the-Wild

This section explores reconstruction without a designed optic, but with grating-like

optics in the wild. As such, front-facing automotive cameras suffer from glare in-

duced by thin lines of dust and dirt remaining on the windshield after wiping [226],
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see Fig. 5.9. These thin streaks of dust are oriented perpendicular to the wind-

shield wiping orientation on a typically curved windshield. As a result, they scatter

light along streaks with varying orientation, which negatively impacts the imaging

systems of autonomous vehicles during night time driving. Removing these streaks

could improve performance for display applications, such as digital mirrors, as well

as downstream computer vision tasks.

Although the PSFs corresponding to these streaks are different from our learned

PSF, we can still apply our residual splitting network for removing these streaks.

To demonstrate this, we collected several night time driving video sequences. We

modeled the streak PSF in these videos using a 2-point star PSF, and we trained

the residual splitting network using the same dataset from Section 5.4.4 and the

unsaturated loss from Eq 5.9. To account for variations in the rotation angle of the

2-point star PSF, we uniformly sampled the rotation angle within (−8,−2.5)∪(2.5, 8)

radians where 0 radians refers to the 2-point star PSF being parallel to a vertical line.

Example snapshots along with removed glare results can be seen in Figure 5.9. For

additional qualitative results, please refer to the Supplemental Material.

5.7.1 Automotive streak removal

We model streaks using a 2-point star PSF with the same parameterization from

Rouf et al. [180]. We set α = 1.0, β = 0.00025, γ = 0, m = 0.014 in order to closely

approximate the streaks seen in the video sequence. To remove the streaks we train

our residual splitting network with the unsaturated loss LU described in Section 4.1

and use ÎU as the output. We do not use the highlight reconstruction network or

the fusion network for this task. Figure 5.10 shows additional qualitative results for

automotive streak removal.
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Figure 5.10: Additional qualitative results for automotive streak removal.
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5.7.2 Automotive highlight reconstruction

Highlight reconstruction can also be performed with the automotive streaks. Fig-

ures 5.11 and 5.12 show highlight reconstruction results when training our full network

on the same glare streaks described in Section 5.7.1.

5.8 Discussion

Limitations Like other optical encoding methods, our method requires that the

encoding streaks themselves are not saturated. While we can ensure this for applica-

tions where small, saturated regions are expected (e.g night time driving and indoor

navigation) our method does struggle with larger saturated regions. Please refer to

the Supplemental Matrial for further discussion and failure examples.

State-of-the-art GPUs allow us to achieve real-time latencies, requiring multiple

GPUs for high sensor resolutions, but are impractical for low-power consumer appli-

cations. Porting to dedicated hardware, such as power-efficient ASICs or FPGAs, is

an important next step.

Large saturated regions Our method is most effective for recovering highly

saturated, small area regions, but struggles like other optical encoding methods when

the saturated regions are larger in area.

We performed simulation experiments on scenes with larger saturated regions to

further illustrate the capabilities and limitations of our method, which can be seen in

Fig. 5.13. The left images contain large saturated regions which causes some of the

encoding streaks to be saturated. In spite of this, our method is still able to recover

lost details and remove the encoding artifacts. The middle images show that our

method is able to accurately detect and recover highlights of different intensities even

if they all lie within the same saturated region. Specifically, the high intensity ceiling

lights are correctly determined to be of higher intensity than the reflected light from
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Figure 5.11: Qualitative results A for HDR imaging from windshield streaks.
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Figure 5.12: Qualitative results B for HDR imaging from windshield streaks.
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Figure 5.13: Additional simulation results on area with larger saturation regions.
These larger saturated highlights are more difficult to recover, but we are still able
to provide accurate reconstructions. Note that different highlight intensities within
saturated regions are reconstructed with the correct intensity, for example, the ceiling
lights in the middle image have higher intensity than light reflected from the windows.

the windows, even though both are saturated in the LDR measurement. The right

image illustrates a failure mode consisting of a very complex scene within a large

saturated region. Nevertheless, our method is still able to recover details and with

correct intensity levels.

Conclusion We present a novel approach tackling the challenge of estimating

HDR images from single-shot LDR captures. To this end, we propose a rank-1 DOE

encoding of HDR content and a catered reconstruction network, which when jointly

optimized allow for snapshot HDR captures that outperform previous state-of-the-art

methods. Going forwards, we envision making snapshot HDR capture truly practical

by extending our optical model to handle greater scene information, such as depth

and multispectral data, as well as designing our algorithms for specialized hardware

for low-power processing at the edge.
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Layer Convolution layer Activation Normalization

1_1 conv-n32-k7-d1 Leaky Relu Instance
1_2 conv-n32-k3-d1 Leaky Relu Instance

Max Pooling

2_1 conv-n64-k3-d1 Leaky Relu Instance
2_2 conv-n64-k3-d1 Leaky Relu Instance

Max Pooling

3_1 conv-n128-k3-d1 Leaky Relu Instance
3_2 conv-n128-k3-d1 Leaky Relu Instance

Max Pooling

4_1 conv-n256-k3-d1 Leaky Relu Instance
4_2 conv-n256-k3-d1 Leaky Relu Instance

Max Pooling

5_1 conv-n512-k3-d1 Leaky Relu Instance
5_2 conv-n512-k3-d1 Leaky Relu Instance

Upsampling & Concat

6_1 conv-n256-k3-d1 Leaky Relu Instance
6_2 conv-n256-k3-d1 Leaky Relu Instance

Upsampling & Concat

7_1 conv-n128-k3-d1 Leaky Relu Instance
7_2 conv-n128-k3-d1 Leaky Relu Instance

Upsampling & Concat

8_1 conv-n64-k3-d1 Leaky Relu Instance
8_2 conv-n64-k3-d1 Leaky Relu Instance

Upsampling & Concat

9_1 conv-n32-k3-d1 Leaky Relu -
9_2 conv-n32-k3-d1 Leaky Relu -

10 conv-n3-k1-d1 - -

Table 5.2: Configuration of highlight reconstruction network. In the table, “conv-
n(a)-k(b)-d(c)” represents a convolution layer with a output channels, using a b × b
kernel, and using a dilation rate c. Each “Leaky Relu” has slope 0.2 and “Max Pooling”
represents a max pooling layer with a 2×2 kernel and a stride of 2. Each “Upsampling”
represents nearest neighbor upsampling with a factor 2 followed by a convolution layer
with a 3× 3 kernel.
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Layer Convolution layer Activation Normalization

1_1U conv-n64-k3-d1 Leaky Relu -
1_2U conv-n64-k3-d1 Leaky Relu -

1_1S conv-n64-k3-d1 Leaky Relu -
1_2S conv-n64-k3-d1 Leaky Relu -

Concat

2_1 conv-n32-k3-d1 Leaky Relu -
2_2 conv-n3-k3-d1 Leaky Relu -

Table 5.3: Configuration of fusion network. In the table, “conv-n(a)-k(b)-d(c)” repre-
sents a convolution layer with a output channels, using a b×b kernel, and using a dila-
tion rate c. Each “Leaky Relu” has slope 0.2 and nm(x) = w0x+w1Instance_norm(x),
where w0 and w1 are trainable variables. 1_1U, 1_2U are applied to ÎU while 1_1S,
1_2S are applied to ÎS.

Table 5.4: Quantitative comparison across single-shot HDR methods.

Methods PSNR HDR-VDP 2

Ours 48.26 74.47
Deep Optics [181] 40.30 67.96
Glare-HDR [180] 32.23 56.76
HDR-CNN [178] 34.06 54.34
LDR 33.57 52.43

Table 5.5: Ablation study with different PSFs and reconstruction networks.

PSF Network PSNR HDR-VDP 2

Ours Ours 48.26 74.47
Ours Deep Optics [181] 37.91 61.30
Ours HDR-CNN [178] 33.51 52.66
Dual Peak PSF [181] Ours 43.08 70.25
Star PSF [180] Ours 42.62 68.03
Dirac PSF Ours 37.25 63.45
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Chapter 6

Differentiable Complex Lens Design: A General End-to-end

Optics Design Pipeline

Our primary focus was on building a differentiable diffractive optics model that can

be jointly optimized with post-processing in the previous chapters. We first built

a differentiable optics model combined with the GS-based algorithm to realize an

optimal PSF physically through DOE. Then we expand the differentiable diffractive

optics model to a general fresnel propagation problem to optimized the PSF on the

sensor. To solve the problem that it is easy for a vast variable map of DOE to be

stuck in a local minimum, we first proposed a rank-1 factorization model to express

the DOE layer with fewer parameters. As a result, we applied this model to snapshot

HDR imaging and achieved state-of-the-art results.

Figure 6.1: An exemplary triplet design for EDOF imaging optimized by our end-to-
end differentiable complex lens design framework. Top left: 3D model of the optimized
triplet lens design (50mm/F4). Bottom left: prototype fabricated by single-point
diamond turning. Middle: final image that is captured by our end-to-end designed
lenses and processed by our algorithm. Right: the same scene captured by a Sony
28 − 70mm zoom lens at 50mm/F4.5. The objects are placed in the range from
around 0.8m to 1.8m from the lenses. Our prototype succeeds in obtaining the all-
in-focus image, while the conventional lens shows a narrow depth of field.
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However, those differentiable diffractive optics models used in the previous chap-

ters have been quite simplistic, built either on simple wave optics models such as

Fourier transform or similar paraxial models. Such models only support the opti-

mization of a single lens surface, which limits the achievable image quality.

To overcome these challenges, we propose a general end-to-end complex lens design

framework enabled by a differentiable ray tracing image formation model. Specifically,

our model relies on the differentiable ray tracing rendering engine to render optical

images in the full field by taking into account all on/off-axis aberrations governed

by the theory of geometric optics. Our design pipeline can jointly optimize the lens

module and the image reconstruction network for a specific imaging task. We demon-

strate the effectiveness of the proposed method on two typical applications, including

large field-of-view imaging and EDOF imaging. Both simulation and experimental

results show superior image quality compared with conventional lens designs. Our

framework offers a competitive alternative for the design of modern imaging systems.

6.1 Introduction

Cameras are designed with a complicated tradeoff between image quality (e.g. sharp-

ness, contrast, color fidelity), and practical considerations such as cost, form factor,

and weight. High-quality imaging systems require a stack of multiple optical elements

to combat aberrations of all kinds. At the heart of the design process are tools like

ZEMAX and Code V, which rely on merit functions to trade off the shape of the

PSF over different image regions, depth, or zoom settings. Such a design process

requires significant user knowledge and experience, and the emphasis on PSF shaping

neglects any subsequent image processing operations, specific application scenarios,

or the desire to encode extra information in the image.

Therefore, domain-specific computational imaging has attracted researchers’ at-

tention in the past several decades. Enabling the co-design of optics with post-
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processing, computational cameras have achieved impressive results in EDOF (EDOF) [1,

2, 3, 4], high dynamic range imaging (HDR) [5, 6, 7, 8], and image resolution [9, 10, 11].

Nevertheless, all those older methods are either heuristic or use some proxy metric

on the point spread function (PSF) rather than considering the imaging quality after

post-processing. Therefore, finding a joint optimal solution for both imaging optics

and image reconstruction for a given task remains an unsolved problem in general.

Over the past few years, co-design of optics and image processing [12, 13], or even

data-driven end-to-end design [14] have emerged to bridge the gap between optical

design and algorithm development. Co-design of optics and post-processing algo-

rithms has achieved a superior performance for domain specific tasks such as depth

estimation [15], large field-of-view imaging [13], EDOF [16], optimal sampling [17],

and high dynamic range (HDR) imaging [18, 19]. Unfortunately, the differentiable

lens models used in these works have been too limited to describe complex optical

assemblies, and have instead only allowed to optimize a single optical surface with a

single material. This narrow design space limits the final image quality compared to

commercial consumer-level or industrial-level cameras. Furthermore, existing mod-

els are based on the paraxial approximation and ignore off-axis aberrations, which

degrades the quality for large field of view imaging.

Data-driven optimization of all the parameters in a complex lens assembly is

challenging. On the one hand, the varying parameters of the optical surfaces cause

scaling and distortion that change during the optimization process. On the other

hand, a naive implementation will consume huge computational resources due to the

differentiable ray tracing engine [20]. In this work, we overcome these challenges,

and achieve the first end-to-end optimization system for complex lens assemblies.

We propose a unique differentiable and configurable optical model that not only

overcomes the limitation of a single optical surface and a single material, but also

supports optimizing off-axis regions. In addition, we propose an end-to-end framework
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configurable for a given task with a tailored recovery algorithm, loss function, and

data. As a result, we are able to directly render the images with aberrations of

all kinds. That means we can optimize the complex lens model while accounting

for the continuous variation of the PSF across the image plane. Beyond the goal

of capturing a sharp and clear image on the sensor, the proposed method offers

huge design flexibility that can not only find a compromise between optics and post-

processing, but also opens up the design space for optical encoding.

It must be stressed, however, that our approach does not completely eliminate the

need for an experienced user. Specifically, since lens design is a highly non-convex

problem, we can not initialize the parameter space randomly; instead, we initialize

the system with a coarse design that has the desired number of lens elements, and

is roughly focused along the optical axis. This optical system is then improved and

adapted to a specific imaging scenario using end-to-end optimization. In this chapter

we demonstrate both large field-of-view and large depth-of-field as the two applica-

tion scenarios. The proposed approach outperforms the state-of-the-art complex lens

design (by ZEMAX) in both simulation and experiments. We prototype our designs

with complex lenses manufactured by a CNC machining system that supports point

diamond turning. The experiments are carried out in-the-wild as conventional cam-

eras. Our results show significantly improved performance over conventional designs

on the above-mentioned applications.

Specifically, we make the following contributions:

• We introduce a novel configurable and differentiable complex lens model based

on differentiable ray-tracing, and this model can simulate aberrations of all

kinds. We allow users to easily define the initial optics design, including lens

surface profile, positions, and materials.

• Our differentiable complex lens model is the first in end-to-end design to con-

sider off-axis performance, and offers a greater design freedom compared to
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existing end-to-end optics models.

• We propose an end-to-end pipeline that can jointly optimize the lens model and

the recovery network. The reconstruction network and loss functions can be

tailored to a given computational imaging task.

• We successfully apply our model and pipeline to large field-of-view imaging

and EDOF imaging using designs that are compact and low-budget, but high-

quality. We validate them in both simulations and on real-world measurements

captured by our assembled and fabricated aspherical lens group and verify that

the experimental results agree with the simulations.

6.1.1 Optical Aberrations and Traditional Lens Design.

The most common monochromatic aberrations are defocusing, spherical aberration,

coma, astigmatism, field curvature, and distortion, while the chromatic aberrations

are typically axial and lateral chromatic aberration. Both types of aberrations are

the result of the differences in the optical path length when light travels through

different regions of a lens at different incident angles [44]. These aberrations manifest

themselves as an unwanted blur, which becomes more severe with increasing depth

of field (DOF), numerical aperture, and FOV [45].

Conventional lens design is a semi-automated process, in which a rough initial

design is chosen by an experienced designer, and then optimized with software like

CODE V and ZEMAX. These typically use either the Levenberg-Marquardt algorithm

or damped least squares (DLS) to optimize the optical system including spherical and

aspherical lenses, hybrid optical elements [227, 228], and lens elements with different

material properties. These tools are the cornerstone of lens design and rely on existing

aberrations objectives, so-called merit functions, to find a compromise across a variety

of criteria [34, 46], trading off the PSFs across sensor locations, lens configurations
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(e.g., zoom levels), and target wavelength band.

However, critically the established merit functions only operate on the PSFs, trad-

ing off their footprint over different configurations. This approach is agnostic to any

intended usage case or image reconstruction approach. As a result, it is hard to co-

design the optics and post-processing together for domain-specific cameras [14] since

they can not use the final imaging performance criteria as an optimization object.

Thinking beyond the traditional complex lens design for a given task, we seek to in-

vestigate a differentiable complex lens model and end-to-end optimization framework

to bring the complex lens design into an end-to-end era.

6.1.2 Computational Optics.

Many works on computational imaging [229, 230, 47, 48] have proposed design-

ing optics for aberration removal in post-processing. These methods often favor

DOEs [231, 49, 50, 43], or even metasurfaces [232] over refractive optics because of

their large design space or ultra thin form factor [233]. To simplify the inverse prob-

lem in post-processing, all of the described approaches ignore off-axis aberrations by

restricting the FOV to a few degrees – existing methods do not realize monocular

and chromatic imaging with a large FOV. The state-of-the-art joint designing of op-

tics and post-processing [13] firstly enables a large FOV imaging with a single lens.

However, their model is still to design the optics and image processing algorithm sep-

arately to include the FOV in the design process. Moreover, they need a complicated

and time-consuming dataset acquisition from the monitor.

In addition to minimizing optical aberrations optics, computational imaging also

aims to improve the basic capabilities of a camera by including optical coding, such

as DOF [1, 2, 3, 4], dynamic range [5, 6, 7, 8] and image resolution [9, 10, 11].

Our proposed end-to-end complex lens design framework could be applied to many

of these applications. It introduces a general design paradigm for computational
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cameras that optimizes directly for the post-processed output with respect to a chosen

quality metric and domain-specific dataset.

6.1.3 End-to-end Optics Design.

Co-designing of optics and post-processing has demonstrated superior performance

over traditional heuristic approaches in single-lens color imaging [217, 13], HDR imag-

ing [18, 19], single image depth estimation [15, 25, 26, 55, 234, 235, 236, 237], mi-

croscopy imaging [218, 219, 220, 221].

In computer vision, the emergence of deep learning has led to rapid progress in

several challenging tasks and the state-of-the-art results for well-established prob-

lems [76, 77, 78]. For example, a deep approach for deconvolution by including a

fully connected convolutional network [79] has been proposed. Generative adversarial

networks (GANs) are shown to provide generative estimates with high image quality.

Kupyn et al. [80, 238] demonstrated the practicability of applying GAN reconstruc-

tion methods to deblurring problems. Those approaches have been demonstrated

to obtain state-of-the-art results in many computational photography tasks but not

take one step further to optimize the optics together. G. Côté et al. [239, 240] utilize

deep learning to get lens design databases to produce high-quality starting points

from various optical specifications. However, they generally focused on the design of

starting points, and the designing space is limited to spherical surfaces.

The deep optics [14] approach involves joint design of optics and image recovery for

a specific task in an end-to-end fashion. Based on this model, a series of applications

have been investigated in the last two years like hyperspectral imaging [241, 242], high

dynamic range imaging [19], full-spectrum imaging [231] and depth estimation [16].

These works are inherently limited to designing only a single optical surface, and

therefore the image quality of their final designs does not reach the level of regular

consumer camera optics. A solution to this problem has been to utilize a commercial
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lens but add a single, co-designed element for a specific purpose. This approach

has been applied to super-resolution SPAD cameras [17] and high dynamic range

imaging [18]. However, none of these approaches can deal with large FOVs as their

image formation model relies on simple paraxial approximation in addition to the

single-surface restriction. Co-designing complex optics with the image reconstruction

was not addressed until the work on learned large FOV imaging [13]. They overcame

the limitation of FOV by separating the optical design and image processing but not

in an end-to-end fashion.

In conclusion, existing end-to-end methods work in a very restricted setting, in-

cluding only a single optical surface and a simple paraxial image formation model

(small FOV), or rely on existing optical design tools. They also have in common

that they require either accurate PSF calibration or extensive training data. We pro-

pose a general configurable and differentiable complex lens model and an end-to-end

framework with tailored recovery networks for different tasks. Drawing inspiration

from the state-of-the-art differentiable rendering technique [20, 243, 244, 245], our

complex lens model offers a great design freedom where the number of elements, lens

surface profiles and positions can be configurable. The ample design space of our

proposed lens model allows for rich optical encodings and the end-to-end pipeline

achieves optimal synergy with the image reconstruction algorithm. Our complex lens

model can optimize the lens parameters and simulate all kinds of aberrations without

considering spatial and depth varying PSF. This property makes it easier for the later

reconstruction network retraining and fine-tuning stage to get a highly accurate simu-

lated dataset. Finally, our solution overcomes the limitation for large FOV and makes

it possible to design a high-quality consumer-level lens in an end-to-end manner.

6.2 End-to-end Optimization of Complex Lens and Image Re-

covery
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6.2.1 Image Formation Model

Complex Lens ModelScene Dataset

differentiable rendering

Simulated Sensor 

Image Recovery Network

White 
balance

Color 
correction

Digital
 gain

Image 
recovery

Gamma 
correction

Image processing pipeline

Preprocessed rendered image
Recovered imagePrototype

Image processing 
pipeline

Real Scene

Figure 6.2: Framework for end-to-end designing of differentiable complex lens model
and reconstruction. In each forward pass, we set up one scene from a certain point-
of-view and render the simulated sensor image through the differentiable complex
lens model. Then, the simulated images are sent to the image reconstruction network
and we train the whole framework simultaneously. For the experimental stage, we
directly send the preprocessed real-captures to the pre-trained network. Notice that
the scene setup, initial lens design and image recovery network can be tailored to
specific applications.

Our end-to-end framework consists of an optical simulation stage with the lens

model and a trimmed recovery network as a reconstruction stage to achieve the best

results by employing a generative adversarial network (GAN). As in most existing

complex lens systems, the refraction is usually generated by either spherical or aspher-

ical surfaces. Throughout the rest of this chapter, we consider rotationally symmetric

lens profile designs, which can be manufactured using diamond turning machines.

Note, however, that our lens model could be easily applied to rotationally asym-

metric profiles such as Zernike basis functions.

Differentiable Lens Model and Ray Tracer

We implement our differentiable lens tracer following [246], based on Mitsuba2 [20].

The framework is fully differentiable, including the configurable and differentiable

complex lens model and the image recovery network. Each part of this pipeline can
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be easily configured to tailor for specific tasks.

After training, we take the optimized parameters like radius, conic coefficients and

high order coefficients of the lens profiles to fabricate the lens. To account for better

reconstruction with the image processing pipeline and the recovery network, it can

be tailored and fine-tuned through re-training after the lens parameters are fixed.

In the following, we show how to efficiently integrate the differentiable ray-tracing

into our lens designing pipeline.

Aspherical Lenses Our lens model is based on a standard representation of an

aspherical lens as a spherical component with a polynomial correction factor. Given

a Cartesian coordinate system (x, y, z), the z-axis coincides with the optical axis,

while (x, y) forms the transverse plane. Let r =
√
x2 + y2 and ρ = r2. Then the

height of the aspheric surface and its derivative is defined as:

h(ρ) =
cρ

1 +
√

1− αρ
+

n∑
i=2

a2iρ
i, (6.1)

h′(ρ) = c
1 +
√

1− αρ− αρ/2
√

1− αρ
(
1 +
√

1− αρ
)2 +

n∑
i=2

a2iiρ
i−1, (6.2)

where c is the curvature, α = (1 + κ)c2 with κ being the conic coefficient, and a2i’s

are higher-order coefficients. The implicit form f(x, y, z) and its spatial derivatives

∇f are:

f(x, y, z) = h(ρ)− z, (6.3)

∇f =
(
2h′(ρ)x, 2h′(ρ)y,−1

)
. (6.4)

Note that spherical surfaces are special cases of aspheric surfaces when κ = 0 and

a2i = 0 (i = 2, · · · , n).

In the following, we derive a differentiable ray-tracing based image formation
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model which simulates all kinds of aberration at the same time. For each surface in

the lens, its profile is directly described by (6.1) and the lens materials are predefined

according to the prior knowledge of optical design to cancel the chromatic aberrations.

Ray-surface Intersection by Newton’s Method To use the above lens model

in a ray-tracer, we need to be able to compute the intersection point (x, y, z) and

ray marching distance t for intersecting surface f(x, y, z) = 0 (implicit form), given

a ray (o,d) of origin o = (ox, oy, oz) and direction d = (dx, dy, dz) of unit length (i.e.

‖d‖ = 1). Mathematically, this is a root finding problem, i.e. we need to determine

t > 0 such that

f(x, y, z) = f(o + td) = 0. (6.5)

Since there is no analytical solution for this problem for the aspherical lens model,

we solve the problem numerically using Newton’s method. At iteration k + 1, we

update t(k+1) from previous estimate t(k) as:

t(k+1) ← t(k) − f(o + t(k)d)

f ′(o + t(k)d)

← t(k) − f(o + t(k)d)

∇f · d
, (6.6)

where f ′ and ∇f denote derivatives w.r.t. t and (x, y, z), respectively. A coarse

(non-singular) initialization is t(0) = (z − oz)/dz, and the iteration stops when the

difference is smaller than tolerance.

Dispersion by Cauchy’s equation To model dispersion, we extend Mitsuba2 by

formulating the lens material refractive index using Cauchy’s equation [247]:

n(λ) = A+
B

λ2
+
C

λ4
+ · · · . (6.7)
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In practice, we found it sufficient to use only the first two terms (with parameters A

and B) in the equation. When the central wavelength nD and Abbe numbers V are

given, A and B are computed as:

A = nD −
B

λ2
D

and B =
nD − 1

V (λ−2
F − λ

−2
C )

, (6.8)

where λD = 589.3 nm, λF = 486.1 nm, and λC = 656.3 nm.

Optics simulation

End-to-end computational imaging consists of simulated optics used to generate sim-

ulated image data with all aberrations present, as well as software reconstruction

pipeline. For joint design, both of these modules should be fully differentiable so that

gradient update become possible across both components.

With the optimal trade-off between the simulation stage and the reconstruction

stage, the PSF usually varies within the field of view, and across scene depth and

spectrum. For a given color channel c, the recorded sensor measurement Ic can be

expressed as:

Ic(x
′, y′) =

∫
Qc(λ) · [p(x′, y′, d, λ) ∗ sc(x′, y′, d)]dλ+ n(x′, y′), (6.9)

where the PSF p(x′, y′, d, λ) is a function with spatial position (x′, y′) on the sensor,

the depth d of scene, and the incident spectral distribution λ. Qc is a function of

the color response of the sensor, and sc(x
′, y′, d) and n(x′, y′) represent the latent

scene and measurement noise (white Gaussian noise), respectively. The operator ∗

represents convolution.

We use Monte Carlo sampling in the rendering engine. At each pixel, rays are

sampled starting from the sensor plane, with the wavelengths, sub-pixel origin shift,

and direction sampled by a uniform random number generator without any impor-
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Figure 6.3: Image reconstruction architecture. The generator model is a U-net ar-
chitecture that has seven scales with six consecutive downsampling and upsampling
operations. We adopt a global and a local discriminator to incorporate both full spa-
tial contexts and local details. In addition, the layers marked by the dashed line is
the trimmed U-net for the end-to-end designing stage, and they are initialized with
the results of the designing stage.

tance sampling. These sampled rays are then traced sequentially through each of

the refractive surfaces following Snell’s law. Rays are marked as invalid and do not

contribute to the final rendered image when the intersections are outside of the lens

geometry or when total internal reflection takes place.

Unfortunately, the number of samples per pixel (SPP) is limited by the GPU

memory, resulting in Monte Carlo rendering noise. To overcome this issue, we first

render several passes and average them to get a clean estimate, then replace the

PyTorch variable with the clean estimation to calculate the gradient multiple times

to get the averaged clean gradients. After this processing, the obtained images and

gradients are clean enough, and the Monte Carlo sampling noise can be ignored [248]

compared to added white Gaussian noise.

Image alignment during training

Another challenge for end-to-end optical design is that in the initial stages of the op-

timization, the simulated image is both distorted and scaled compared to the desired

reference. This misalignment makes it hard to accurately calculate a meaningful loss

between the reference image and the rendered simulations. To solve the problem of

pixelwise alignment, we first forward trace 16 points that are uniformly distributed
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from the center of the texture plane to the border and obtain the points rd intersected

with the sensor plane. Then we set corresponding ideal points on the sensor as r and

the relation between the point pairs can be expressed as:

rd = ξr(1 + k1r
2 + k2r

4 + k3r
6) (6.10)

To simulate the distortion and magnification, we only consider the radial distortion

and solve a least-squares problem as:

min
K
‖[r, r3, r5, r7]KT − rd‖2

2, (6.11)

where K = ξ(1, k1, k2, k3) represents the current distortion coefficients along with a

magnification coefficient ξ. Then we distort and resize the reference ground truth to

match the currently rendered simulation pixel-to-pixel. Once the lens parameters are

fixed, we undistort the captured image in the experiments.

6.2.2 Image Reconstruction

End-to-end lens design. As shown in Figure 6.2, we connect a U-net like archi-

tecture [36] with deep layers trimmed (only use the marked layers in Figure 6.3 in

designing stage) but its early layers filters that can encode the information on sen-

sor [13]. This setup speeds up the training process and provides sufficient degrees of

freedom to encode the simulated information for the end-to-end design. Specifically,

the trimmed U-net architecture in the design stage has three scales with two max

pool operations for downsampling and two transposed convolutions for upsampling.

At the bottleneck, we adopt two flat convolutional layers. Each convolutional layer

is followed by a parametric rectified linear unit (PRelu). The trained weights in this

trimmed U-net network are then taken to initialize the corresponding layers for the

final fine reconstruction. Refer Figure 6.3 for details.
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Generator. At the final reconstruction stage with fixed lens parameters, we adopt

a GAN as shown in Figure 6.3 to recover the corrupted sensor image I from the

estimate Î. The generator G is a U-net architecture with seven scales and six down-

sampling and upsampling stages. We compute the loss between the prediction Î and

the corresponding ground truth Iref by

Lc(Iref , Î) = ν1‖φl(Î)− φl(Iref )‖2 + ν2‖Î − Iref‖1, (6.12)

where ν1 = 0.5 and ν2 = 0.006 are loss balancing weights and ν2 is added to keep

the color fidelity, and φl extracts the feature maps from the l-th layer of pre-trained

VGG-19. Specifically, we use the “conv3_3” layer of the VGG-19 network.

Discriminators. As illustrated in Figure 6.3, we adopt a global discriminator to

incorporate full spatial context and a local discriminator based on PatchGAN [101]

to take advantage of local features. We adopt the relativistic "warping" on the least

square GAN named RaGAN-LS loss [238] for a discriminator D can be expressed as:

Ladv(x, z) = E
x∼Px

[(D(x)− E
z∼Pz

[(D(G(z))− 1)2]

+ E
z∼Pz

[(D(G(z))− E
x̂∼Px̂

[(D(x)− 1)2],

(6.13)

where Px and Pz are the distributions of the data and model, respectively. This

proved faster and more stable than WGAN-GP [99] in minimizing a model-generated

image z and the ground truth x. The resulting total loss can be expressed as:

Ltotal = Lc(Iref , Î) + σgLadv−g(Iref , Î) + σlLadv−l(Iref , Î), (6.14)

where Ladv−g and Ladv−l represents global and local adversarial loss and σg = σl =

0.01.
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6.3 Implementation and Prototypes

Figure 6.4: Prototypes and the rendered section views of our designed lenses. The
top left shows our fabricated lens for LFOV (left) and EDOF (right) imaging, and the
corresponding structures are shown in the medium/bottom left and medium/bottom
right, respectively.

The top right shows the assembled prototype with the camera body.
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6.3.1 Datasets and Training details

For the training details of the end-to-end designing stage, please refer to Section 6.4

and Section 6.5 according to the requirements of the application LFOV and EDOF.

With the lens parameters fixed, we train and finetune the image recovery network

for both applications as follows. First, we rendered simulations with the full DIV2K

dataset, and the texture plane are set according to the applications. We reserve

the first 100 images in the DIV2K dataset [249] for quantitative comparisons, and

use the remainder for training. Then we calibrate the lens distortion and find the

homography to align the rendered result with the ground truth image. We use ADAM

as the optimizer with β1 = 0.9 and β2 = 0.999. The learning rate is initialized to

10−4 for the first 50 epochs and linearly decayed to 0 over another 100 epochs using

256×256 patch pairs. All experiments were conducted using a single Nvidia RTX

Titan GPU and each design takes around 20 hours.

6.3.2 Prototypes

Fabrication. Once the parameters c, κ and ck of each lens profile are fixed after

the end-to-end design, we fabricate each lens element with a coarse CNC machining

process followed by a single-point diamond turning process. First, each lens blank was

machined using a CNC machine with a precision of 0.05mm to prepare it for turning.

Then we used a CNC machining system that supports 3-axis single point diamond

turning (Nanotech 450) [63]. We use two substrates: PMMA with a refractive index

of 1.493, and polycarbonate (PC) with a refractive index 1.5892, both measured at

a principal wavelength of 550 nm. These materials represent a set of low index/low

dispersion and high index/high dispersion materials that is required for designing

achromatic optics.

We consider two applications, LFOV and EDOF. For the LFOV application, we

design a lens system with two lens elements, made from PPMA and PC, respec-
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tively. For the EDOF application, we use three elements and six design surfaces, the

corresponding materials are PMMA, PC, and PC.

System Integration. To demonstrate the proposed framework experimentally, we

use a Sony A7 camera with 6,000×4,000 pixels and a pixel pitch of 5.96 µm. The

equivalent focal length for both lens designs is 50mm, with aperture sizes of 12mm and

12mm for LFOV and EDOF, respectively. Correspondingly, both of the lens designs

have f-numbers of about F4. The fabricated lenses are mounted by our custom-

designed lens tubes, and both of them have a standard C-mount as shown in 6.4.

Finally, both of the two lens tubes are mounted to the camera with a C/E mount

adapter.

6.4 Large Field-of-View Imaging

A modern complex system is effective in minimizing optical aberrations but the depth

of the lens stack limiting in manufacturing high-quality LFOV lens with a low cost and

will introduce additional issues, such as lens flare and complicated optical stabilization

and assembling [10, 250, 40, 37]. In the last year, Peng et al. [13] proposed the state-of-

the-art of large FOV imaging with a thin-plate optics which adopts a virtual aperture

design of two aspherical surfaces, reconstructed by a generative network. However,

limited by the designing space of a single element, the PSFs at different FOVs are

typically larger than 900 pixels yielding strong hazing and blurring artifacts recorded

on the sensor. In addition, the optics and reconstruction network are not designed

fully end-to-end, the recovered image left visible artifacts even with a powerful GAN

recovery network.

With our proposed differentiable complex lens model, we can design a lens with

multiple elements with an aspherical profile according to the needs of the applications

and find the best compromise between the complexity of lens and image quality. To
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Figure 6.5: Evaluation of LFOV imaging in simulation. We compare the performance
of the state-of-the-art commercially available aspherical lens Thorlabs AL2550-A, lens
pairs ACA254-050-A, jointly designed optics without modulation to flat lens [13],
Cooke triplet and our end-to-end designed camera. All the texture planes are located
at 1m away from the camera, and the simulations are based on ray optics without
considering diffraction. The first column shows the section view of each lens, and
the second column shows the corresponding PSFs at different angles up to 30·. The
third column shows the simulated sensor image (top) and recovered image (bottom).
The fourth column shows the MTFs of each lens at different angles. The PSFs and
rendered simulation of AL2550-A and ACA254-050-A lenses show a strong blurring
at large angles. LFOV19 lens performs better in balancing PSF but left significant
artifacts in both measurements and reconstructions. Cooke triplet performs better
than AL2550-A and ACA254-050-A but still fails at a large FOV. Instead, our design
shows a better PSF distribution, and the results have fewer artifacts. Notice that all
lenses are adjusted to F4.
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Figure 6.6: Experimental results of LFOV imaging with two elements and four sur-
faces design. For each pair, we give the sensor measurement by our prototype camera
and the reconstructed results. Please zoom in to see more details.

apply our framework to LFOV imaging ( ≥ 30◦ ), we set a texture plane at 1m away

from the camera with the size around 437mm×54.5mm and set the sensor resolution

to 4096×512 pixels to cover the full designed FOV. As the lens is designed rotationally

sycemmatric, the full FOV should be calculated as 2 arctan(0.437/2 ∗
√

2) = 34.3◦.

The pixel size in the simulation is defined as 6µm, matching the camera sensor used

in the experiments. Limited by the GPU memory, we set the SPP to 64 for each

rendering pass and average ten passes for a single scene to get a clean rendered image

and corresponding accurate gradients. Refer to Section 6.2.1 for more details. To

simulate a larger field of view with limited resources and reduce the time consumption,

we align the sensor’s left bottom corner with the optical center and simulate the image

only in the first quadrant as the lens is symmetric.

We initialize the system with an initial lens design made of two lenses that are

brought in focus on the optical axis. The materials are chosen as PMMA and PC for

better cancelling of chromatic aberrations. To train the lens parameters for LFOV, we

set all the conic coefficients κ of each surface as variables. As illustrated in Figure 6.2,

a trimmed U-net architecture Gt connected to the end-to-end framework. The initial

learning rate is set to 0.08 and 0.0008 for the lens parameters and network parameters,
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and both of them are decayed by a factor of 0.8 at each epoch. Our loss function is

described as:

Lc = ‖Gt(Ic)− Iref‖1. (6.15)

Where the Iref represents the ground truth. In addition, once the lens parameters

are fixed, we take the parameters of the network to replace the corresponding layers

(marked in Figure 6.3) of the image recovery network as the initialization and train

the image recover network as described in Section 6.2 to process the images captured

in the real experiments. In addition, the reference images are pre-distorted and resized

at the beginning of each optimization step by the method described in Section 6.2.1

to make the image pairs matched pixel-to-pixel.

6.4.1 Evaluation in Simulation

Figure 6.5 shows a qualitative comparison of high-quality commercial available lenses

and the state-of-the-art LFOV imaging lens (LFOV19) [13]. We also show the MTFs

of each lens before and after the post-processing. Notice that some data in those MTF

charts are missing due to the observed edges are heavily blurred and becomes uncal-

culatable. We first compare against the high-quality commercial available aspherical

lens Thorlabs AL2550-A, which is optimized for focusing light incident on the aspher-

ical side of the lens with minimal spherical aberration. Then we compared against

an air-spaced doublet design ACA254-050-A, which provides superior spherical and

chromatic aberration correction. As illustrated in Figure 6.5, the simulated PSFs by

Zemax of AL2550-A and ACA254-050-A are well focused at the center FOV while

corrupted when reaching a FOV 20◦. The whole FOVs of simulated images shown

in Figure 6.5 are all up to 30◦. The Cooke triplet performs better compared with

AL2550-A and ACA254-050-A but still has a noticeable blurry at a large angle. Re-

fer to the supplementary material for more details. The state-of-the-art dual-surface

aspherical lens design named LFOV19 has a better performance than the commer-
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cially available lenses as they balanced the aberrations of different FOV to achieve

a larger FOV. However, this design yielding a very large PSF (≥ 900 pixels) that

overly degrades the image and has noticeable artifacts even with powerful generative

post-processing. Our design, which is also compact and low-cost, introduces a dif-

ferentiable ray-tracing based complex lens model that can directly optimize the lens

parameters according to the tasks. The second column of Figure 6.5 illustrates that

ours performs better from the PSF across the FOV. The third and fourth columns in

Figure 6.4 give two examples of the cropped rendered simulation and corresponding

reconstructed results, which use the same model and were retrained according to the

lens. We show the cropped part of rendered simulation from a full FOV 0◦ (left side)

to 30◦ (right side). Obviously, the results of AL2550-A and ACA254-050-A has a

good performance at a small FOV but suffer from heavy blurring in off-axis regions.

The LFOV19 shows an almost equal performance across the FOV but left noticeable

artifacts. Ours has a better PSF behavior across the FOV, yielding better sensor

measurements and reconstruction results.

We also show the quantitative comparisons in simulation in Table 6.1. Obviously,

our lens performs better in both PSNR and SSIM compared with the others over a

FOV from 0◦ to 30◦. Note that the training data and recovery network are re-rendered

and retrained for each lens.

Table 6.1: Quantitative comparison of image recovery performance of different lenses.
We compare PSNR values in dB and SSIM values over a FOV from 0◦ to 30◦. Notice
that all lenses are adjusted to F4.

AL2550-A ACA254-050A LFOV19 Cooke Ours
PSNR 16.96 19.03 16.86 15.724 22.8
SSIM 0.478 0.499 0.314 0.422 0.719



152

6.4.2 Experimental Results

To validate the practicability of the proposed differentiable complex lens model and

the end-to-end framework, we fabricated the lens elements using single-point dia-

mond turning and assembled them with the custom designed lens tube as shown in

Figure 6.4. Figure 6.6 shows the pairs of “in-the-wild” captured raw sensor data (left)

and corresponding reconstructed results (right). The exposure times for each image

are 33ms, 167ms, 167ms, 100ms with ISO 50. With our end-to-end designed imaging

lens and reconstruction, we achieve a high-quality LFOV imaging with minor artifacts

with only two lens elements. Notice the sensor measurements show haze artifacts,

which is mainly introduced by the surface roughness, scratch, and low transparency

of PMMA and PC in experiments. With our generative image reconstruction, we ob-

tain clean results with fine details, as shown in Figure 6.6. Our lens design is compact

and low-cost compared to commercial bulky lens and can get comparable results with

the help of our differentiable complex lens model and end-to-end framework.

6.5 Extended Depth of Field

Computational EDOF cameras usually design an approximately depth-invariant PSF

for one wavelength and then employ a simple deconvolution to the sensor capture to

obtain an all-in-focus image [1, 81, 251]. Recently, researchers proposed an end-to-end

pipeline for diffractive optics or Zernike Basis [14] and applied it to achromatic EDOF

imaging. However, their optics model is based on the paraxial approximation, which

is only a simple Fourier transform and can only deal with a single optical surface.

With the proposed differentiable complex lens model and our end-to-end framework,

we relax the designing space from a single surface to multiple surfaces for EDOF

imaging.

To apply our end-to-end framework to EDOF imaging, we start with an initial

triple-lens design with six surfaces where the second surface of the first and third ele-
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Figure 6.7: Evaluation of EDOF imaging in simulation. We compare the performance
of the state-of-the-art commercially available aspherical lenses, including Thorlabs
AL2550-A and ACA254-050-A. The first row shows the MTFs of each lens before
and after post-processing at different depths. All the texture planes are placed 1m
away from the camera, and the simulation is based on ray optics without considering
diffraction. The second row shows the corresponding PSFs at the selected depth. The
third column shows the simulated sensor image. Obviously, the PSFs of rendered
simulation of AL2550-A and ACA254-050-A lenses exhibit a strong blur when out
of focus. Instead, our design shows an almost depth invariant PSF and results with
fewer artifacts. Additional results are available in the supplementary material. Notice
that all lenses are adjusted to F4.
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Figure 6.8: Quantitative comparison of image recovery performance of different lenses.
We compare PSNR values in dB and SSIM values at 0.5m, 0.7m, 1.0m, and 1.5m.
Notice that all lenses are adjusted to F4.

ments are aspherical. This design is brought in good focus near the optical axis. The

materials for the three lens elements are selected as PMMA, PC, and PC for better

canceling of chromatic artifacts and easier fabrication. Refer to the supplementary

material for more details. To obtain clean rendered images and corresponding accu-

rate gradients despite the limited GPU memory, we use 10 rendering passes with 128

samples per pixel each. Please refer to Section 6.2.1 for more details.

We place the texture plane at 0.5m, 0.7m, 1m, and 1.5m away from the camera

in simulation and try to find the best compromise between the different depths. The

pixel size in the simulation is set to 6µm and the sensor resolution is set 256×256 pix-

els while the texture plane sizes are set to 13.82mm×13.82mm, 20.51mm×20.51mm,

30.72mm×30.72mm and 46.08mm×46.08mm, respectively. To train the lens parame-

ters to achieve a EDOF camera, we set the conic coefficients κ of the spherical surface

as the variable (four surfaces in total). The initial learning rate is set to 0.08 for the

lens parameters, and they are decayed by a factor of 0.8 at each epoch. Our loss
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Figure 6.9: Experimental results of EDOF with three elements and six surfaces design.
The left column shows the raw sensor data from our design, the center column shows
our reconstruction result and the right column shows images captured by a commercial
Sony 28-70mm zoom lens adjusted to 50mm/F4.5. The objects shown in these two
figures are placed from around 0.8m to 1.8m, and we succeed in obtaining the all-in-
focus image. Please zoom in to see more details.
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function can be expressed as:

Lc = Σjζi‖Ici − Ic2‖1 + Σj3(1− SSIM(Ic, Iref )), (6.16)

where ζi represents the weights for different depths, and we set them to {3, 3, 0.3, 1}

corresponding to the depths mentioned above, respectively. Ic2 represents the sensor

measurement with the texture plane placed a distance of 1m, and we take it as a

reference to balancing the blurring amount over different depths. For each depth,

we adopt a SSIM loss between the sensor measurement and the corresponding clean

reference as the brightness and gamma might mismatch with the reference. In ad-

dition, the reference images are pre-distorted and resized at the beginning of each

optimization step by the method described in Section 6.2.1 to align the image pairs

pixel-to-pixel.

6.5.1 Evaluation in Simulation

We first validate our lens design in simulation and compared our lens with the high-

quality commercially available lenses, including AL2550-A and ACA254-050-A. We

focus all the lenses at 1m away from the camera. As illustrated in Figure 6.7, the

simulated center PSFs by Zemax of AL2550-A and ACA254-050-A behave well when

in focus. However, their PSF becomes unacceptably large when out of focus. In

contrast, our design has an almost depth invariant PSF behavior compared with the

others. We first validate our lens design in simulation and compared our lens with the

high-quality commercially available lenses, including AL2550-A and ACA254-050-A.

We focus all the lenses at 1m away from the camera. As illustrated in Figure 6.7,

the simulated center PSFs by Zemax of AL2550-A and ACA254-050-A behave well

when in focus. However, their PSF becomes unacceptably large when out of focus. In

contrast, our design has an almost depth invariant PSF behavior compared with the
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others. Besides, the MTFs in Figure 6.7 show that the MTF of our optimized lens is

closer to the desired MTF in optical systems: smoothly and monotonously decreasing

from an amplitude of 100% for the DC term to ca. 10% at the Nyquist limit of the

recovered image, with no erroneous maxima for higher frequencies. Instead, the

others show an obvious outlier for the post-processed data and worse performance

before processing.

We further rendered the scene at different depths for each lens to provide further

evidence that our end-to-end design has a larger DOF. We rendered the whole dataset

for each rendered scene and retrained the recovery network for fair comparison for each

rendered scene and recovered estimation pairs. As illustrated in Figure 6.7, AL2550-A

and ACA254-050-A have better performance when in focus for both rendered results

and corresponding recoveries but break when out of focus. In contrast, our design

has a depth-balanced performance in both sensor measurements and reconstructed

images.

We also show the quantitative comparisons in simulation in Figure 6.8. Our lens

performs better balancing over depth in both PSNR and SSIM compared with the

others. For a fair comparison, all lenses are adjusted with an aperture of F4. Note

that the training data and recovery network are re-rendered and retrained according

to each lens. Furthermore, the rendered images’ energy distribution might vary with

the lenses and make them different from the reference images, causing a relatively

low matric value and less accuracy.

6.5.2 Experimental Results

To demonstrate the practicability of our approach in EDOF, we fabricated and assem-

bled the lenses with the custom-designed lens tube as shown in Figure 6.4. Figure 6.9

shows the captured raw sensor measurement (left), reconstructed results (middle),

and the reference image captured by a Sony 28-70mm standard zoom lens adjusted
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to 50mm/F4.5. The exposure times for each image are all set to 200ms with ISO 50.

Figure 6.9 illustrates that we achieved good performance and high image quality over

a large DOF. Compared with our lens (F4), the Sony 28-70mm standard zoom lens

has a larger f-number but worse DOF performance. Notice the sensor measurements

show haze artifacts, which has been discussed in Section 6.4.2 and Section 6.6.

6.6 Discussion and Conclusion

6.6.1 Discussion

Stablity and efficiency. We have introduced a differentiable complex lens model

that can be connected with tailored image reconstructions. Compared to conventional

lens design, which requires much experience in setting up merit functions to affect the

desired design characteristics, our approach reduces the need for human involvement.

However, both methods can converge to a local minimum if the starting point of

the design is too far off from a feasible solution. Like traditional lens design, which

requires a proper initialization, our approach still requires a good initial structure

that can then be further optimized automatically. Our data-driven optics do not yet

take into account many standard tasks of optical design, such as zoom and focus

changes, or design aspects such as tolerancing or anti-reflective coatings. We believe,

however, that such extensions will be easy to add to the framework in the future.

Our approach traces hundreds of rays for each pixel as for the computational

efficiency, resulting in millions of rays to compute the gradients. This is less time-

efficient even with the help of the state-of-the-art ray tracing cores and has a vast

space to optimize. In future work, we would like to introduce a patch wised rendering

strategy instead of tracing the whole FOV to improve the computational efficiency

during the designing stage.
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Fabrication. To demonstrate our differentiable optics model and end-to-end the

pipeline, we fabricated two prototypes for different applications using single-point

diamond turning from PC and PMMA material. PC and PMMA are easy to man-

ufacture, but the stability, transparency, and the easily transformed make it hard

to achieve a good imaging quality for a complex lens system. Besides, the center

alignment of the lenses and surfaces is a challenging task during machining and as-

sembling. As a result, the real captured sensor images have haze artifacts compared

with the simulations. However, many of these issues can likely be overcome in mass

production, such as injection molding fabrication processes like the ones already used

in the manufacture of cell phone cameras. We also would like to fabricate lenses from

optical glass with coatings to reduce the stray light in the future.

6.6.2 Conclusion

We proposed a novel differentiable complex model that provides a new approach for

optics design and an end-to-end framework that can be tailored for specifics tasks.

We demonstrated our model and pipeline on two applications, including LFOV and

EDOF imaging with compact lens designs, and tested both in real-world experiments.

In addition, our model can not only be applied to the end-to-end design of optics

but also offers a new approach for simulating lens’ aberrations, which makes it less

cumbersome to obtain a large, well-aligned training dataset for the image recovery

training stage. While the proposed approach enables practical, high-quality imagery

with compact designs, stability to initialization, and computational efficiency need to

be further investigated in future work.

In the future, it might also be interesting to explore hybrid refractive/diffractive

optical systems, and to incorporate features like coatings and other optical effects.

Furthermore, building a knowledge graph that contains a large library of classic de-

signs are an exciting direction to get rid of human involvement in initializing our
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system and making the design process fully automatic.
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Chapter 7

Concluding Remarks

7.1 Summary

Staring with a background introduction in Chapter 3, this dissertation formulates a

path to end-to-end optics design framework step by step. Driven from the insight that

the filters of early layers of recent deep models are gradient-like filters and respond

to local contrast as essential low-level information, we jointly design the optics and

corresponding recover network to realize LFOV imaging. This is the anterior plot of

the end-to-end optics design story. To further enable the end-to-end computational

camera design, Chapter 4 learns the PSF of a phase mask placed at the front pupil of

the optical system to generate a proper optical encoding of the spatial information for

the low fill-factor SPAD sensor model. This is the first milestone that enables end-

to-end optics deigning. To free the designing freedom for different color channels,

Chapter 5 gives a differentiable diffractive optics model that can directly optimize

the heightmap of the optics. By introducing a rank-1 factorization of the heightmap,

we drastically reduce the optical search space while allowing high-frequency encod-

ing. This makes the story has the robustness to face challenging tasks with a stable

solution.

To further bridge the gap in an end-to-end fashion, bring the simple wave op-

tics models such as Fourier transform, or on similar paraxial models into a general,

complex lens system. We build a differentiable complex lens model based on a differ-

entiable ray-tracing rendering engine. Finally, we applied this model to two classical
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computational photography tasks: LFOV imaging and EDOF imaging.

7.2 Future Research Work

We may further explore the application range and make all the scenarios to solve the

practical imaging problems. For diffractive optics models, we can further optimize

the heightmap to reduce the fabrication difficulty to make it possible for volume

production. For refractive complex lens model, we can find what can be used in

industry like mobile phone who wants to have a large DOF for a certain camera.

Besides, we can generalize a proper optics model to reduce the costs of certain imaging

products with fewer lenses but higher quality.

Besides, as the optimization process of the complex lenses is highly non-convex, the

whole optimizing process is not stable enough to meet the requirement of industry or

academic using without relying on an experienced optics art designer. A combination

with a traditional lens design that not only renders aberrations of all kinds but also

takes a serious of optical contain into consideration could be an interesting direction

at the current stage.
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