Blockwise Refinement —
A New Method for Solving the Radiosity Problem

Giinther Greiner, Wolfgang Heidrich and Philipp Slusallek
IMMD IX — Graphische Datenverarbeitung

Universitat Erlangen

Abstract

Since the introduction of radiosity to computer graphics, many improvements have
been made to lower the time it takes to compute a visually good approximation to the
exact solution of the radiosity equation. Progressive Refinement and Overshooting are
just two of the possibilities.

In this paper we present a new technique to solve the radiosity equation which pro-
vides a fast approximation to the exact solution. This technique solves the Radiosity
Equation by computing an approximate solution for an initial subset of patches, consid-
ered important for the radiosity environment.

This partial result is then refined towards the final solution by choosing other sets of
patches which may have a significant contribution. Thus the new technique reduces the
solution of a large matrix equation to a number of solutions involving smaller matrices.

Finally we analyze and compare the different algorithms for their convergence and
computational complexity. This provides some interesting new results.

1 Introduction

Since the introduction of radiosity to computer graphics by [GTGB84] many new methods to
calculate form factors and solve the resulting matrix equation have been introduced [CG85]
[ICG86] [WCP8T7] [SPL8S8] [WEHSR9] [SP89] [BEM&9] [CRMT9I1] [HSA91].

A major advance in the solution technique for the radiosity matrix equation was the
introduction of Progressive Refinement in 1988 [CCW88], which was further improved by
Feda [FP92] and [GCS] using over relaxation techniques.

At first we shortly review the available solution techniques for radiosity. This includes
GauB-Seidel iteration, Progressive Refinement, successive over-relaxation (SOR), over-shooting
and a new ”Super-Shoot-Gather” method.

The main part of this paper will present a new family of algorithms to solve the radiosity
problem. This approach solves the large set of radiosity equations by selecting in turn a small
set of patches that are assumed to have a large impact on the final solution. An approximate
solution is then found for this small set of patches.

This approximate solution takes into account the exact interaction between the selected
patches and all other patches, but uses an approximation for the interaction between the
other patches.

The approximate solution is refined by selecting other sets of patches, based on their
estimated influence on the solution. Solving this small matrix system for the new set of
patches will result in a correction toward the exact solution of the radiosity problem.

The last section will compare the convergence and the computational complexity of the
different solution techniques for the radiosity equation. It gives some interesting insights the
the convergence behavior of the different algorithms for the short- and long term convergence.



1.1 The Radiosity Equation

The radiosity method solves a restricted version of the rendering equation [Kaj86] by ap-
proximating the surfaces in the environment by planar patches and assuming a homogeneous
radiosity at each patch. Additionally the surfaces are assumed to be perfectly diffuse reflec-
tors, so that the Lambertian Law for diffuse reflection is valid.

Using the radiosity B; the Radiosity Equation for a single patch ¢ is given by

N
BiA; = EiAi+pi Y FiiBjA; (1)

J=1

where N is the number of patches in the environment, A; is the surface area of patch ¢, F; is
the radiosity emitted by the surface itself, p; is the factor of incident energy that is reflected
by the surface, and F};;B;A; is the part of the energy B;A; leaving patch j and reaching
patch i. F}; is a purely geometric factor that obeys the reciprocity relation Fj;A; = Fj; A;.
Application of this relation simplifies equation (1), now written in matrix form, to

B=FE+pFB, (2)

where p is a diagonal matrix given by the factors p;, and F is the matrix of form factors. B
and F are vectors given by the radiosities B; and the emissions F;, respectively. We write
the matrix equation (2) in standard notation as

(1- pF)B = E. (3)

First, let us recall a few properties of the used variables. The reflection factor p; is limited
by the physical process of reflection to the range of

0<p; <1 (4)

This means that no surface is perfectly black, absorbing all light energy, nor is it a perfect
mirror that reflects all incoming energy. The form factors are in the range 0 < F}; < 1. Fj; is
zero if the patches cannot directly exchange light energy, or if ¢ = j because a planar surface
cannot illuminate itself. The sum of all form factors E;VZI F;; is less or equal to one, where
equality holds in a closed environment, while in a open environment energy can be lost.

2 Solution Techniques

The early algorithms for the radiosity problem used direct solution techniques to solve for
the radiosities B in (3), but iterative methods have proven themselves more efficient.

There are two restrictions that prohibit the use of many of the standard solution tech-
niques for linear systems. First of all, we cannot compute or store the complete matrix, since
a typical scene contains in the order of thousands of patches. Instead the solutions should
only need to look at a few entries of the matrix at a time. Using standard algorithms for
form factor calculation and the reciprocity relation a row and a column of the matrix are
easily available.

Secondly, our primary concern in general is not that we seek an exact solution to the
radiosity problem (say in the order of 4-6 fractional digits, as in standard numerical applica-
tions) per se, rather we need a fast approximation that is visually equivalent to the correct
solution.



2.1 Gaufl-Seidel Iteration

One of the standard techniques used in early radiosity applications is GauB-Seidel iteration,
also called ”gathering”, since it is equivalent to computing the new radiosity of a patch by
gathering the contributions from all other patches. The outline of the algorithm is given as:

1 for all ¢

2 B, = F;

3 while not converged

4 for each ¢ in turn

5 Bi=FE;+pi; BjF;

6 display the image using B; as the intensity of patch «.

2.2 Progressive Refinement

The Progressive Refinement technique was especially developed for the radiosity problem.
Only recently it has been shown that this technique is equivalent to a numerical method called
Southwell iteration [GCS]. This kind of algorithm distributes radiosity from one patch to
the environment. Because it updates all patches in the environment in each step its ”visual”
convergence is much faster in the beginning, making it more appropriate to the radiosity
problem.

In the Progressive Refinement algorithm the patch with the largest unshot energy AB; A;
is selected. Its radiosity is then ”shot” to all other patches to increase their radiosity and
unshot radiosity. After shooting, the unshot radiosity of the selected patch is reset to zero.
The algorithm is given below:

1 for all 2
2 B; = E;
3 AB; = E;

4 while not converged

5 pick i, such that AB;A; is largest

6 for each patch j

7 Arad = ABZ',D]'F]'Z'

8 AB]' = AB]' + Arad

9 B]' = Bj + Arad

10 AB; =0

11 display the image using B; as the intensity of patch i.

2.3 Overshooting Algorithms

The first two algorithms are conservative in the sense that they only take into account the
current radiosity of a patch. It is easy to see that the algorithms can be improved by
considering what will happen in later steps of the iteration.

Whenever radiosity is shot from a patch, this will increase the unshot radiosity of other
patches. When they are later selected for shooting, a part of this radiosity is sent back to
the original patch. Of course this radiosity has to be shot again, and so forth. A similar
argument holds for the gathering algorithm.

The idea of an overshooting algorithm is to take these later steps of the iteration into
account and to shoot more radiosity than is actually available on the selected patch.



2.4 Successive Overrelaxation (SOR)

A variant of GauB-Seidel iteration is successive over-relaxation (SOR), which generally gives
a better convergence than the standard GauB-Seidel algorithm. Instead of gathering the
correct amount of radiosity, a factor a (in the order of 1.2 - 1.5) is used to take into account
steps that would occur later in the iteration. Of course this is a very crude estimate and «
has to be tuned to the problem.

The basic algorithm is identical to GauB-Seidel except that line 5 is modified to be

B = (1 - a)B; + a(Ei + p; > B; F;).

J

2.5 Ambient Overshooting

The Overshooting algorithm presented by Feda et. al. [FP92], uses the ambient term intro-
duced by Cohen [CCWS8S]| as an estimate for the additional amount of overshooting. From
each selected patch the radiosity AB; + p; ambient is shot.

1 for all 2
2 B; = E;
3 AB; = L

4 while not converged

5 pick i, such that (AB; 4 p; ambient)A; is largest

6 for each patch j

7 Arad = (AB; + p; ambient)p; Fj;

8 AB]' = AB]' + Arad

9 B]' = Bj + Arad

10 AB; = —p; ambient

11 display the image using B; as the intensity of patch i.

2.6 Super-Shoot-Gather

In a paper submitted for publication, Gortler et. al. [GCS] present an algorithm that uses
the form factor information that is already known to compute the amount of overshooting.
Additionally, the amount of overshooting is computed separately for each other patch in the
scene.

The amount is computed by setting up a simple restricted version of the original radios-
ity problem, which can be solved analytically. It takes into account the direct interaction
between the shooting and all the other patches.

In the restricted system all form factors are set to zero except those in row and column
1, where 7 the selected patch. The emission vector is replaced with the vector of unshot
radiosities. The solution (SG) of this system gives the additional radiosity that is directly
exchanged between the selected and all other patches in the scene. Please note that this does
not take into account the interaction between the other patches. The algorithm is outlined
below. An additional variable VB;; is introduced, which is the shot radiosity from patch i
to patch j. Since it is only nonzero for patches which have already shot radiosity, it does not
require quadratic storage and need not be initialized, if only a constant number of iterations
is performed. The unshot radiosity AB;; is then derived as AB;; = B; — VB;;. Please see
[GCS] for details of the algorithm.



for all ¢
B; = L
while not converged
pick a patch i, such that E]' AB;; is largest
for every other patch j
Arad = ABijijji
Bj = Bj + Arad
VBZ'J' =B,

\Fi;AB;;
(SG); = D PiFAB

1- E piFijpiFyi

10 B;=B;+ (SG)

11 for every other patch j

12 Arad; = p; F};(SG);

13 B]' = BJ' + Aradj

14 VBj; = Bj

15 VB;; = B;

16 display the image using B; as the intensity of patch 1.
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The algorithm presented in the next section extends the idea of the Super-Shoot-Gather
algorithm.

3 Blockwise Refinement

We extend the ideas of Gortler et. al. [GCS] in two ways:
¢ instead of considering a single patch, we select a collection of patches at each step.

e in order to have a reasonable estimate of the solution at the initial step, we allow
approximate interaction between the remaining patches.

3.1 The Idea of the Method

We consider a scene with N patches and denote the form factors, the reflection coefficients,
the emissions and the radiosities by ( 2])1<H<N7 0i, F; and B; respectively. Since N is
very large, a direct solution to (3) will be impossible. We select out of the N patches a
considerably smaller set of n patches, called the “important patches”. Typically n ranges
between 5 and 50. The set of important patches will be denoted by I. The radiosity equation
(3) then can be written in block form

(BHEEIER IH R

where F11 = (F};) ;g contains the form factors for interaction among the n important
patches. Fqy is an nxn matrix. Similarly, Fio = (F}; )zGI Fy = (E])zgj are nx N and
N xn matrices, respectively, containing form factors for the 111te1'act1011 bet\;veen an important
and a less important patch. Furthermore, Fgp = (Fw);g is the (N — n) X (N — n) matrix
containing the interaction among the less important patches. The n-vector By = (B))ier
contains the radiosities of the important patches, while the (N — n)-vector By = (B;)igr

contains the radiosities of the less important ones. The same is true of E; and g, respectively.

The basic idea is, to replace in (5) F33 by a simpler matrix which allows to reduce the
N X N system to a system of order n xn. This reduced system will be solved exactly. For



Figure 1: Scheme for the Interaction between the set of important patches (left) and the less

important patches

reasonably large n this already yields a fairly good approximation to the exact solution. It
can be improved by iteration. In the following sections we will present several possibilities
of how F35 can be chosen, and describe the reduction, and the iteration of the algorithm.

3.2 No Interaction Between “Less Important Patches”

The simplest way to change Fo5 is to set it zero. That is, we approximate the original
problem by a problem which has the same emissions and reflection coefficients. Also, the
form factors describing the interaction of an “important patch” and any other patch are
the same. However, there is absolutely no interaction among “less important patches”.
Therefore, instead of solving (5) we have to solve the following system:

(BHEERER R

This N XN system can be reduced to an nxn system (see below) and can then be solved
exactly.

3.2.1 Iteration

In order to improve this approximate solution, one has several possibilities. Of course,
GauB-Seidel or SOR can be applied. Also, Progressive Refinement or Super-Shoot-Gather is
possible. In this case, one has to initialize the unshot radiosities AB; and AB;; as follows:

o 0 for 2€l o 0 for 2€lorjel
ABZ_{BZ- for i1 AB”_{BZ- for i¢gTand 7¢I (7)

Another possibility is to perform the iteration in blockwise fashion. This can be done in
the following way: As in Super-Shoot-Gathering, we keep track of unshot radiosities. AB;;
denotes the radiosity which has to be shot from patch ¢ to patch j. It is initialized as in (7).
In the k" step we select another set of n patches, say i € Iy, consisting of those with the
highest unshot radiosity >°; AB;;. Then we decompose the matrices and vectors F, o, etc.
according to the selected set of patches. Again we denote the corresponding submatrices by
F;; and so on. Then we solve

(BHEER R AT



where AB; := %Zjelk ABj;. Then B; and AB;; are updated as follows:

_ n. ' o 0 for 1€lorjel
Bz —BZ—I_DZ AB’L] _{ ABZ]‘I‘DZ fOI‘ ig[a;lld ]¢I (9)

The algorithm is outlined below.

1 for all i

2 AB; = F;

3 for all 5

4 AB;; =L

5 while not converged

6 Select n patches i € I with largest E]' AB;;
7 for all ¢

8 ABZ':%E].UABN

9 Solve equation (8)

10 for all ¢

11 B; = B; + D;

12 forall j el

13 AB;; = AB;; — AB;

14 ABj; = ABj; — AB;

15 foralle gl

16 forall j &1

17 AB” = AB” + D;

18 display the image using B; as the intensity of patch i.

3.2.2 Reduction to a small system

Now we are going to describe how the N X N-system (6) can be reduced to an nxn system.
Of course, the same applies to (8).
Equation (6) can be written as a system of two equations

Bi - o FuBi - o0/Fi2B; = E;
B2 - 0,F21B; = E

From the second equation we get By = 9,F21B1 + E; and replacing this in the first one we
obtain the following equation for B :

Bi — (o:Fi1 + 0,F120,F21)B1 = E; + 0, F11E, (10)
This is an n X n-system. Once it is solved, By is obtained by

By = 0,F21B1 + Eo

3.3 Averaging the Interaction Between “Less Important Patches”

Instead of setting all form factors describing the interaction between two less important
patches to zero, one may try to estimate them somehow. In the simplest case one can give
them all a constant value. A more sophisticated estimate for the form factors F};, ¢,7 ¢ I
giving rise to a better approximate solution can be obtained as follows:

First determine the ratios (1 — Y ;77 Fij)7" Yier Fir k ¢ I. For a less important patch
i ¢ I, we distribute 1 — >,/ F}; to the form factors Fig, k € I according to these ratios.
Thus instead of dealing with the exact form factors Fi, ¢,k ¢ I we consider

_ Sier Fin
Fyp:=(1-) F;) 1€ :
jez; - Yierjer b

(11)



Then we have to solve the following system:

([5e]-[5 el[e e &)-[8] oo

with Fyy = a®b = (a;b;); j¢r where a; := 1-3"; .7 F;, and b; := (1—275 Flk)_l(zzg Fj).

In this case the NXN system can be reduced to an (n+41)x(n+1) system (see below) and
will be solved exactly. The solution is an even better approximation to the exact solution
of equation (2) than in the previous case. An iteration to improve it is described in the
following section.

3.3.1 Iteration

Out of the remaining patches in turn pick those having largest o;A;, thus obtaining a set of n
patches, say I. Perform in turn a gathering step with each of these patches, which yields an
estimate of the unshot radiosity AB; for each of the patches 2 € Ir. Decompose the matrices
and vectors F, g, etc. according to the selected set I;. Replace Fyy by an approximation
F3; as described in (11). Then solve the system

(R A 1 A R Y B
01 0 o Fo1 Fo D, AB;
Finally update B by B; = B; + D;.

Generally light sources in radiosity scene are considered to have no reflection. In this
case blockwise refinement reduces to normal shooting steps. To avoid the large overhead, we
use initial shooting steps to distribute the radiosity such light sources.

The algorithm is briefly outlined below:

// initialization

1 for all 2

2 B, =0

// shooting from all “pure” light sources
3 for all patches ¢ with £; # 0 and ¢; =0
4 for all patches j

5 B]' = BJ' + QijiEi

6 AB]' = ABJ' + QijiEz’
7 AB; =0

8 B = F;

// iteration
9 while not converged
10 Select out of the remaining patches a set I of n patches
with largest g; A;
11  if not the first iteration step
// gather towards the selected patches
12 forallee I

13 ABZ'IEZ'—I—QZ' E]» FZ']'B]' - B;
14 solve equation (13)
15 for all ¢

17 display the image using B; as the intensity of patch i.

3.3.2 Reduction to a small system

We describe how (12) and (13) respectively can be reduced to a (n+1)x(n+ 1)-system. We

assume that Fyy is replaced by a @ b = (a;b;) igr. Writing (12) as system of two equations
JEI
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Figure 2: Interpretation of the reduced system. The interaction between py and p; is com-
posed of their direct interaction plus the interaction via the virtual patch pg

yields
By, - oFuB: - oo Fi2B; = E;
B, - 0,FnB; — (Bilb)g,ba = E;

where (:|-) denotes the usual inner product, that is (Ba|b)=3",4; B;a;. In the first equation
we substitute By by 0,F21B1 + (Ba|b)e,a+ E;. Moreover, we take the inner product of the
second equation with b. By := (B;|b) will be considered as an additional unknown quantity.
This results in the following system

B: - (e.Fii+0,F120,F21)B1 — BooFi200a = E; 4+ o, F12E (14)
By - <92F2lB1|b> - <92a|b>B0 = <E2|b>

This is a linear system in the n 4+ 1 unknowns B;, ¢ € I U{0}. Once it is solved, one obtains
B2 by
B2 = 92F21B1 + Boa + E2 (15)

3.4 More Averaging

The main computational effort (of course depending on the size of n) in the methods de-
scribed in the previous sections consists in determining the product of the matrices Fy5 and
F,;. This needs roughly 2n?N floating point operations. To overcome this problem one
may try not only to replace Fyo by a simpler matrix, but Fo; as well. In case Fy; has con-
stant columns, the matrix multiplication F31F;2 needs only O(nN) floating point operations.
Appropriate constant values are the averages of each column. Thus we consider

10 1 0 Fi1 Fi D, AB;
([01]_[% 92][F21 fQQ])lDQ]:lABQ] (16)

where Fgs is as in Section 3.3 and FZ-]- = ﬁZkel Fy; for i € I and j ¢ @. Iteration and
reduction are done in the same way as described in the previous section.
Instead of Fy1 one may as well approximate F15 by a matrix having constant rows.

3.5 Physical Interpretation

We point out that the reduced systems (10) (14) and the one corresponding to (16) both
can be considered as radiosity equation for a scene consisting of n and n + 1 patches re-
spectively. We describe the situation more detailed for (14). Physically one may think of



Algorithm Computational Complexity (x N FLOPs)
GauB-Seidel (gathering) 2

Successive Overrelaxation (SOR) 2

Progressive Refinement (shooting) 5

Ambient Overshooting 9
Super-Shoot-Gather 13

Blockwise Refinement (Sec. 3.3) M2+ 9n+5

Blockwise Refinement (Sec. 3.4) 13n + 6

Table 1: Computational Complexity of Radiosity Algorithms

this as combining all less important patches to form a single patch with index 0. The corre-
sponding emission Fy := (E3|b) is a weighted average of the radiosities of the less important
patches. As reflection coeflicient we choose gog = max;gro;. The form factor describing the
interaction between two patches ¢,57 € I now is F}; + Zkel FirorFy;. The first term is the
direct interaction, while the second stems from “indirect” interaction through one of the less
important patches (Fig. 2). Moreover, Fyy = kgt Fikokar and Foi = 3.qy Fki‘;—’gbk are
the form factors describing interaction between patch ¢ and the additional patch. It is not
difficult to verify that the standard hypotheses for radiosity equations posed in Section 2 are
satisfied, except for Fj; # 0.

This observation opens the possibility for different procedures to solve (14). Instead of a
direct solution via gaussian elimination one may use Progressive Refinement, or one of the
shooting methods described in Section 2.

4 Comparisons of Convergence

In order to compare the different algorithms we had to define a suitable error metric and
a common performance metric. To compare the algorithms we have chose the normalized
total error. This is not the most suitable metric however, since we are more interested in
the visual equivalence of the resulting pictures.

The Blockwise Refinement algorithm has a completely different structure than the other
algorithms, so that the definition of one ’step’ in the iteration is not suitable for a comparison.
Also the computational cost of each step in the other algorithms varies significantly as we will
show. The use of the elapsed time for comparing the algorithms would include differences
due to non optimal implementation of an algorithm and was therefore considered unsuitable.

Finally we choose to use the number of floating point operations (FLOP) as a common
and exact metric for the computational complexity of the algorithms. These numbers were
computed directly from the presented code segments and we counted each addition, multipli-
cation and division as one operation. We did not account for assignments, logical operations
etc.

The computational complexity of one step in each of the algorithms is given in Table 1.
The complexity for the initial setup is not given, as it is neglectable and similar for all
algorithms.

4.1 Example Scenes

We have selected two different scenes for comparing the performance of the algorithms. In
the figures, we plot the normalized total error over the number of FLOPs on the abscissa
normalized to units of Progressive Refinement steps to provide an intuitive base for compar-
ison.

10
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Figure 3: Convergence for a random scene. ga

: GauB-Seidel, pr: Progressive Refinement, sor:

Successive Overrelaxation (o = 1.2), ao: Ambient Overshooting, sg: Super-Shoot-Gather,
br: Blockwise Refinement (Sec. 3.4, ¢ denoting one step)

The first scene (Fig. 3) is an artificial scene computed by randomly setting the entries
of the form-factor matrix, the reflectivity and the emissions. The algorithm used takes care
to keep the row sums within the correct range (equal to 1.0 in this case) and to obey the
reciprocity relation. The number of primary light sources, the mean reflectivity and emission
can be adjusted.

In the scene presented the mean reflectivity is 0.5, the mean form factor is 1/500 and
10% of the patches have unit emission. Additionally the area of the largest patch is 10 times
that of the smallest and the scene is closed (E;-V:O F;; = 1). Unlike in real radiosity scenes,
light sources can (and generally do) have nonzero reflectivity. Therefore no initial shooting
steps are required and we can immediately start with blockwise refinement.

The second scene (Fig. 4) is a simple room environment with 874 patches, 6 of which act
as light sources with no reflectivity. In this example we used 6 important patches in each
step of blockwise refinement.

4.2 Comparison of the Algorithms

It is interesting to note that in both cases the GaufB-Seidel and SOR iteration perform
remarkably well in the long term. However, they provide very bad initial results, which
makes them unsuitable for interactive radiosity calculations.

It is also remarkable that in respect to their computational complexity the convergence of
the shooting algorithms (Progressive Refinement, Ambient Overshooting and Super-Shoot-
Gather) are similar. They all perform very well in the first few steps. The classical Progres-
sive Refinement technique even performs better in the initial stage of the iteration, while
the others gain ground later on. This is due to the fact that each of their steps is twice and
three times as costly, although they give better results in each step.

11
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Figure 4: Convergence for a sample scene. ga: GaufB-Seidel, pr: Progressive Refinement, sor:
Successive Overrelaxation (o = 1.2), ao: Ambient Overshooting, sg: Super-Shoot-Gather,
br: Blockwise Refinement (Sec. 3.4, ¢ denoting one step)

For blockwise refinement we used n = 10 for the random and n = 6 for the room scene.
In the room scene we used six initial shooting steps to distribute the radiosity from the
primary light sources. This is necessary, because their reflectivity is zero and thus blockwise
refinement has no effect and would be too costly.

Blockwise Refinement performs very well during the initial stage of the iteration, while
the performance is greatly reduced later on. This is due to the large error in the approximated
form factor matrix, which prohibits a fast convergence, as it reintroduces new errors in each
step. However, during the first few iterations the error is small in comparison to the large
residuum in the radiosity values. This large residuum is greatly reduced in just a few block
iterations.

5 Conclusion

In this paper we presented a new approach for solving the Radiosity Equation by approxi-
mating and reducing the large N X N form factor matrix to a system of size n X n, where
n is in the order of 5-50. Although the approximation in the form factors introduces new
errors and does not converge well in the long run, it gives very good results for the first few
steps. A possible strategy would be to perform a few blockwise iterations, (maybe even just
one with moderately high n) and then switch to one of the simple iteration procedures.

Comparison of the algorithms based on their computational complexity shows that the
shooting algorithms perform well during the initial stage of the iteration, while the gathering
based methods are better in the long run.

12
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