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Abstract

Reprojection error is a commonly used measure for com-

paring the quality of different camera calibrations, for ex-

ample when choosing the best calibration from a set. While

this measure is suitable for single cameras, we show that

we can improve calibrations in a binocular or multi-camera

setup by calibrating the cameras in pairs using a rectifica-

tion error. The rectification error determines the mismatch

in epipolar constraints between a pair of cameras, and it

can be used to calibrate binocular camera setups more ac-

curately than using the reprojection error. We provide a

quantitative comparison of the reprojection and rectifica-

tion errors, and also demonstrate our result with examples

of binocular stereo reconstruction.

1 Introduction

One of the most common problems in computer vision

is camera calibration. The process of calibration is to de-

termine the intrinsic and extrinsic parameters of a cam-

era from a number of correspondences between 3D points

and their projections onto one or multiple images [17, 21].

Most often this is accomplished using a calibration plane

with a checkerboard or other known marker pattern [5].

In this paper we focus on the problem of multiple camera

calibration, where the relative projection matrices between

cameras must be very accurate, for example in binocular

stereo [11], multi-view stereo [12], human pose reconstruc-

tion [18, 4], and novel view interpolation [22, 14]. For these

applications, the quality of the camera calibration has a di-

rect impact on the quality of the results. We will specifically

explore binocular camera calibration, and later discuss how

our approach can be used in a many-camera setup.

The two most common techniques for camera calibration

are those of Tsai [17] and Zhang [21]. While the method

of Tsai has the advantage that it can handle both coplanar

and non-coplanar input points, the easiest and most prac-

tical approach is to use a calibration grid or checkerboard

of coplanar points. When the input points lie on a single

plane, it is wise to have multiple input images containing

different planar grid orientations in order to ensure a ro-

bust calibration, even though Tsai’s method can operate on

a single input image. Zhang’s calibration method strictly

enforces these conditions, requiring multiple images of a

planar calibration grid. In this paper we will employ the

method of Zhang, although our algorithm is applicable to

other calibration methods, including that of Tsai.

Once multiple calibration images are collected, the cali-

bration process proceeds by finding the projection of known

grid points in the images and then solving for the camera pa-

rameters that minimize the reprojection error of the detected

points. The result is a single set of intrinsic parameters for

the entire image sequence and multiple sets of extrinsic pa-

rameters, one for each calibration grid location. All of the

images are used to compute the intrinsic parameters, how-

ever each set of extrinsic parameters is computed from a

single image and the corresponding grid location. The prob-

lem, as pointed out by Zaharescu et al. [20], is to determine

which of the extrinsic parameters to use. When collect-

ing the images, a small number of precisely oriented grid

locations could be recorded to ensure that the entire cap-

ture space is sampled by points. Alternatively, a short video

could be captured where the calibration grid is rotated more

or less at random, resulting in hundreds of input images but

also covering the entire space. The latter approach is more

practical, however there will be many more calibrations to

choose from. Each different location of the calibration grid

produces different extrinsic parameters for the camera, with

varying accuracy depending on the grid orientation, visibil-

ity, illumination, noise and a variety of other parameters.

The standard approach to determine which grid location to

use is to keep the extrinsic parameters that give the lowest

reprojection error in the single image from which the ex-

trinsics are calculated. This is the only image for which 3D

points are known, and thus the best we can hope for in sin-

gle camera calibration. However, the reprojection error for

a single grid location is only guaranteed to be accurate for

points that lie on the plane of that grid, and other points off



the plane can have a much higher reprojection error. Al-

though multiple grid locations are captured in the sequence,

the 3D location of one grid relative to another is usually

not available, and so we are unable to compute reprojection

errors for points off the plane of each grid.

In this paper we show that in a binocular camera setup

we can use all the grid locations in all images to evaluate

each potential set of extrinsic parameters and more accu-

rately determine the calibration for a pair of cameras. We do

this by estimating a reprojection error for the entire volume

spanned by the calibration grid over the whole sequence

of images, rather than simply a reprojection error for only

the points that lie on the calibration plane in one image, as

with the single-camera approach described above. Our new

approach is partly inspired by the normalized stereo cali-

bration error (NSCE) of Weng et al. [19], which evaluates

multi-calibration by measuring the triangulation error of a

pair of cameras using known 3D points. However, for any

given calibration, we do not know the 3D point locations

on any calibration plane except the one that defines the ex-

trinsic parameters, so the NSCE is not applicable. Even

though we do not know the 3D locations of points on the

other grids, the projection of common points onto the two

cameras can be found and we can measure the accuracy of

the epipolar geometry for each potential set of extrinsic pa-

rameters. This accuracy measure, which we call the rec-

tification error, measures the subpixel scanline difference

between the projection of common points onto the recti-

fied versions of the two camera images. If the calibration

of the two cameras is accurate then any scene point visible

by both cameras will project onto the same scanline in the

rectified images. Any discrepancy indicates an error in the

calibration. Combining epipolar geometry and calibration

has proven useful in past research. A similar measure to

our rectification error was used by Furukawa and Ponce to

evaluate their calibration algorithm [6], and Sinha et al. also

use epipolar geometry to calibrate camera networks from

the silhouettes of objects [13].

A related technique for finding the parameters of a multi-

camera setup is bundle adjustment [8]. The goal of bun-

dle adjustment is to simultaneously solve for optimal scene

structure and camera parameters given a set of 2D inter-

est points that are common among subsets of views. How-

ever, it is well known that bundle adjustment fails if there

is insufficient overlap between many camera views [16, 9].

Typically, each feature point must be visible in at least

four views in order to produce reliable camera parameter

estimates. It is not always possible to provide such re-

dundancy, for example in 360◦ sparse multi-view recon-

struction, where only a small number of cameras are avail-

able [18, 4]. Since we only require pairs of cameras to have

overlapping views, our rectification error can be used to find

very accurate camera calibrations in these cases, more ac-

curate than using the standard reprojection error. This result

will be demonstrated quantitatively as well as qualitatively

using multi-view stereo reconstruction.

The remainder of the paper is organized as follows. In

Section 2 we provide an overview of the camera model and

camera calibration. We introduce the rectification error in

Section 3, and show experimental results comparing our

measure to the reprojection error in Section 4. Finally, we

conclude in Section 5.

2 Camera Calibration Overview

We begin by describing the camera model, a typical

planar-based calibration method, and the standard rectifi-

cation error used to evaluate calibration.

2.1 Camera Model

A camera model consists of a set of intrinsic parameters,

which define how the camera forms an image, and a set of

extrinsic parameters, which define the position and orienta-

tion of the camera in the world. The intrinsic parameters in-

clude the focal length in pixels (fx, fy), the principal point

(px, py), and a skew factor, s (which is often ignored and

set to zero [15]). These parameters form the camera matrix

K, defined as

K =





fx s px

0 fy py

0 0 1



 . (1)

The extrinsic parameters include a rotation matrix R ∈
R

3×3 and a translation vector t = [ tx ty tz ]⊤, which

relate the world coordinate frame to the camera coordinate

frame. The full calibration forms a projection matrix P ∈
R

3×4, defined as

P = K · [R|t], (2)

which maps world points to camera pixels.

The calibration parameters also include radial distortion

coefficients to correct lens aberration. From this point on

we will assume that radial distortion has been corrected for

all camera images.

2.2 Calibration

We will focus on the common calibration technique of

Zhang [21]. This method is widely used and an implemen-

tation is readily available in the OpenCV library [1]. The

input is a set of several views of a known calibration grid,

where every view is described by several world-to-2D point

correspondences. Typically only 20-30 views are required,

however we prefer to capture a video sequence of hundreds
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Figure 1. Visualizing reprojection errors for two different calibrations of a single camera. The top row
(A & C) is calibrated with extrinsic parameters from grid A, while the bottom row (B & D) is calibrated
from grid B (intrinsic parameters are the same for both). The points on the common grid in C and

D lie off the planes of both A and B. The calibration from grid B is more accurate than the one from
grid A, as shown in the zoom images on the far right.

of views, rather than attempting to choose the small number

of views that will provide the best calibration. The world

points are defined by the calibration plane (z = 0), and

an elegant marker pattern and corner detection scheme has

been proposed by Fiala and Shu [5] to detect the 2D corre-

spondences. The calibration method then solves for all the

camera parameters such that the reprojection error of the

points is minimized. The result is a single K matrix and

multiple Ri and ti transformations, one for each view of the

calibration grid. Since all grid locations are used to esti-

mate K we assume the intrinsic parameters are computed

robustly. This assumption is common for multi-camera se-

tups [20], and in practice we have observed this to be true.

However, since an Ri and ti are determined for each input

image, the accuracy of each transformation depends on a

single grid location and how well the grid pattern was de-

tected in the single image. Therefore, some transformations

can be more accurate than others. We illustrate this effect

in Figure 1. Here we choose two different grid locations,

A and B, each resulting in a different projection matrix

PA = K · [RA|tA] and PB = K · [RB|tB ]. Both PA and

PB appear to be accurate when reprojecting the planar grid

points onto the image, as we see in the first set of zoom im-

ages. However, when reprojecting points that are not on the

calibration plane used to compute the extrinsic parameters

(e.g. the plane in Figure 1, C and D), we see that PA (top

row) is less accurate than PB (bottom row).

The problem is to determine which of the multiple Ri

and ti transformations is the most accurate. The common

approach is to select the transformation with the lowest re-

projection error for the single calibration grid used to com-

pute the transformation, as we describe next.

2.3 Reprojection Error

Let Pi = K · [Ri|ti] be the projection matrix of camera c

for calibration grid view i. Assume we have detected k grid

points xj in the image, corresponding to 3D planar points

Xj . Then the reprojection error for image i is

ec
rep[i] =

1

k

k
∑

j=1

‖Pi(Xj) − xj‖. (3)

The reprojection error has been widely used as the main

tool for evaluating camera calibration, either in the form

presented above [5, 10, 20], or in a normalized form [15,

19]. This is because a low reprojection error indicates an ac-

curate projection matrix, at least for the points on the plane

that were used to compute the projection matrix. The prob-

lem is that the reprojection error may increase for 3D points

off the plane, as we saw in Figure 1. The worst case is

when the planar grid is perpendicular to the optical axis of

the camera, and the calibration may only be accurate for

essentially a single depth. The reprojection error would be

more accurate if there were additional 3D points available,

off the plane of the calibration grid, for which we had cor-

responding detected 2D pixels. The image sequence does

in fact contain many different grid locations for which cor-

ner points are detected, however the corresponding 3D lo-

cations of those points are not known. Figure 2 (a) illus-

trates the problem. The camera is calibrated with respect to

calibration grid i1, which defines the world coordinate sys-

tem. Unfortunately, the 3D location of point Q on grid i2
is not available, and so Equation 3 cannot be applied. For

this reason, the reprojection error can only be evaluated on
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a) Single Camera b) Two Cameras

c) Rectification Error for Two Cameras
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Figure 2. Evaluating the extrinsic parameters
computed using calibration grid i1. a) With

a single camera we cannot compute repro-
jection errors for points on other planes. b)
With two cameras, although the 3D location

of Q is not known, its projection onto the two
cameras can be found. c) The rectification
error is the scanline difference between the

projection of Q onto the rectified versions of
the two cameras.

plane i1. However, if two cameras observe the same cali-

bration grid sequence (such as the case of binocular stereo),

then we propose a pair-wise calibration algorithm using the

rectification error.

3 Rectification Error

When two cameras observe the same sequence of cali-

bration grid locations, all grids can be used to evaluate the

calibration accuracy for each individual set of extrinsic pa-

rameters. As we have seen, the standard reprojection error

in Equation 3 cannot be applied to points off the main grid

(grid i1 in Figure 2). However, if a point, Q, on some other

grid is visible in both cameras then epipolar constraints tells

us that the projection of Q onto the rectified versions of the

left and right images should lie on the same scanline, if the

calibration of the cameras is accurate (see Figure 2 (b) and

(c)). This fact is independent of the 3D location of Q, and

thus we are able to use all detected points from all grid lo-

cations that are common in both views.

From the above observation, we form a measure of rec-

tification error for two cameras c1 and c2, and calibration

grid view i as follows. For each calibration grid, let the kth

detected grid point on the image plane of c1 corresponding

to unknown 3D point Qk be qk
1

= (uk
1
, vk

1
), and on the im-

age plane of c2 be qk
2

= (uk
2
, vk

2
). For c ∈ {1, 2}, we denote

qk
c [0] to refer to uk

c and qk
c [1] to refer to vk

c . Then,

ec1

rect[i] =
1

N

N
∑

j=1





1

Mj

Mj
∑

k=1

∣

∣

∣(T c1

i qk
1
)[1] − (T c2

i qk
2
)[1]

∣

∣

∣





(4)

where T c1

i is the rectifying transformation for camera c1 us-

ing calibration i, and T c2

i is defined similarly for camera c2.

N is the total number of grid positions in the sequence, and

Mj is the number of grid points that are commonly detected

in both camera views for grid position j. Note that the rec-

tification error is symmetric, so ec2

rect = ec1

rect. We compute

the rectifying transformations using the method of Fusiello

et al. [7]. We illustrate the rectification error for a particular

point Q in Figure 2 (c), where

q′
1

= T c1

i q1,

q′
2

= T c2

i q2.

This rectification error measure can now be used to deter-

mine more accurate binocular camera calibrations than the

standard method of using the reprojection error. In fact, the

calibration grid A in Figure 1 was the one with the lowest

reprojection error, and grid B had the lowest rectification

error. As we saw in that figure, the rectification error deter-

mined a more accurate calibration.

4 Experimental Results

We demonstrate the quality of the rectification error by

calibrating a multi-camera setup of 14 cameras, arranged as

seven binocular pairs. We show qualitative results by per-

forming stereo reconstruction of a static object, and quanti-

tatively prove that the rectification error is a better tool for

evaluating binocular camera calibrations than the reprojec-

tion error.

Our static object is a human head model made from sty-

rofoam, which we have painted in order to give it a high-

frequency surface texture to aid the stereo reconstruction.

We use an ARTag calibration grid [5] and the method of

Zhang [21] to compute one set of intrinsic parameters and

multiple sets of extrinsic parameters for each camera. In all
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of our experiments we record a calibration video for each

camera, where the calibration grid is rotated and translated

throughout the capture volume, resulting in over one thou-

sand planar grid orientations. As we have discussed, the

problem lies in choosing which extrinsic parameters to use.

We will show in Section 4.4 that this choice is critical to

the quality of the calibration and the resulting stereo recon-

struction.

In this paper we are in fact advocating two principles.

One, cameras should be calibrated in binocular pairs, and

two, cameras should be calibrated using the rectification er-

ror. In order to show the importance of combining these

principles we have performed three experiments. In the

first experiment we find the best extrinsic parameters for

all cameras globally using reprojection error. This is what

we refer to as the standard approach, which we use as a

baseline for comparison. In the second experiment we cali-

brate the cameras in pairs, but still use the reprojection error.

This experiment will show that simply calibrating in pairs is

not sufficient, if the rectification error measure is not used.

Finally, in the third experiment we calibrate in pairs and

use the rectification error. As we will see, the calibration

quality achieved in the third experiment is consistently su-

perior to that of the first two experiments. Additionally, we

will see that the rectification error is directly proportional

to the quality of the stereo reconstruction, no-matter which

method is used to choose the extrinsic parameters, unlike

the reprojection error which can be misleading.

4.1 Exp. 1 - Global Reprojection Error

Let S be the set of all calibration grids visible in every

camera view. We choose the single grid location that yields

the lowest average reprojection error among all Nc cameras.

Specifically, the grid i that minimizes

min
i∈S

Nc
∑

c=1

(ec
rep[i]). (5)

The benefit of this approach is that all cameras are cal-

ibrated to the same world coordinate system. However the

drawback is that some cameras will be calibrated better than

others (see Figure 3 and Section 4.4). In practice, depending

on the camera setup it may also be difficult to find calibra-

tion grids that are visible in all camera views.

4.2 Exp. 2 - Pair-wise Reprojection Error

Let S be the set of all calibration grids visible by a spe-

cific pair of cameras, c1 and c2. We choose the single cali-

bration grid that yields the lowest average reprojection error

for those two cameras. Specifically, the grid i that mini-

mizes

min
i∈S

∑

c∈{c1,c2}

(ec
rep[i]). (6)

The benefit of this approach is that there will be more

grids to choose from, resulting in lower reprojection errors

(see Table 1 and Section 4.4). The drawback is that the low

reprojection errors are misleading, as some calibrations are

still not very accurate (Figure 3). Also, the cameras will

not be calibrated in the same world coordinate system, so

combining stereo results from different pairs is no-longer

trivial.

4.3 Exp. 3 - Pair-wise Rectification Error

Let S be the set of all calibration grids visible by a spe-

cific pair of cameras, c1 and c2. We choose the single cali-

bration grid that yields the lowest average rectification error

for those two cameras. Specifically, the grid i that mini-

mizes

min
i∈S

∑

c∈{c1,c2}

(ec
rect[i]). (7)

This approach has the same benefit as experiment two, in

that there are more grids to choose from than in experiment

one, and the same drawback in that the cameras will not

be calibrated in the same coordinate system. However, this

approach yields the most accurate calibrations (again, see

Figure 3).

4.4 Stereo Reconstruction Analysis

We analyze the quality of the calibrations in each exper-

iment by performing stereo reconstruction of our styrofoam

head. We expect that the accuracy of each calibration will

be reflected in the number of outliers in the corresponding

depth map. We use the reconstruction method of Bradley et

al. [3], although other methods could equally be employed.

In this reconstruction algorithm, depth outliers are automat-

ically rejected by thresholding on the correlation score, and

also through a spatial depth filtering post-process. In effect,

the quality of the calibration is related to the completeness

of the depth map.

Our cameras are Sony HDR-SR7 camcorders, which

capture high-definition video, although we only reconstruct

a single frame. The cameras are placed very close to the re-

construction object and zoomed in to see the painted surface

details. This type of close-range setup is very challenging

to calibrate as even the slightest calibration error results in

inaccurate reconstruction results.

Qualitative Analysis. Figure 3 shows the depth maps for

each experiment. As we can see, the results from experi-

ment one tend to be rather poor, with only one camera pair
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(8-9) producing a valid and mostly complete depth map. We

can also see that depth maps for some pairs are only ac-

curate at a single depth (i.e. pairs 2-3 and 10-11), which

indicates that the chosen calibration grid was likely nearly-

perpendicular to the optical axes of the cameras, resulting

in a low reprojection error but also low calibration accu-

racy. We see that experiment two sometimes produces bet-

ter depth maps than experiment one, although sometimes

they are worse. This indicates that calibrating in pairs alone

is not sufficient. The results of experiment three always pro-

duce the most complete depth maps, indicating the impor-

tance of calibrating in pairs and using the rectification error.

Quantitative Analysis. Table 1 shows reprojection errors

(Equation 3) and rectification errors (Equation 4) for the re-

sulting calibration of every camera from each experiment,

measured in pixels. This data corresponds to the stereo re-

sults in Figure 3. Using this table we can quantitatively

analyze the difference between the two measures. As ex-

pected, the reprojection errors for experiment two are lower

than experiments one and three, although this has no cor-

relation with the quality of the stereo reconstruction and so

the reprojection error is not always indicative of calibration

accuracy. On the other hand, the rectification error varies

between experiments one and two, and a lower error value

directly correlates with better stereo reconstruction (refer

again to Figure 3). As expected, experiment three produced

the lowest rectification errors and also the best reconstruc-

tion results. It is clear from comparing Table 1 to the depth

images in Figure 3 that our proposed rectification error ac-

curately measures the quality of binocular camera calibra-

tions.

Merging stereo pairs. If we wish to generate a 3D

model from the stereo reconstructions, the cameras must

be aligned in the same world coordinates. For experiments

two and three, the resulting pair-wise calibrations need to be

transformed rigidly into a global coordinate system. This

can be achieved in a number of ways. First, experiment

one could be performed to establish the world coordinate

system, and then each pair could be commonly transformed

into the global coordinates. In this approach, the same trans-

formation would be applied to each camera in a pair, keep-

ing the relative transformations between the two cameras

fixed and therefore very accurate. The drawback is that

inter-pair alignment would be less accurate than the pair-

wise alignment. A second option is to perform pair-wise

calibration between non-stereo pairs and build up a global

calibration by sequentially adding pairs. For example, if the

stereo pairs are [c1,c2], [c3,c4], and [c5,c6], then pair-wise

calibration could be performed between cameras c2 and c3,

thus aligning the first two pairs, and then between c4 and c5,

thus aligning the last pair with the first two. Finally, a third

option is to complete the binocular stereo reconstruction in

Reprojection Error Rectification Error

Cam Exp. 1 Exp. 2 Exp. 3 Exp. 1 Exp. 2 Exp. 3

0 1.57 0.66 1.45 1.20 1.21 1.01

1 2.04 1.08 1.84 1.20 1.21 1.01

2 1.77 0.94 2.08 12.64 1.75 1.08

3 1.80 1.02 2.19 12.64 1.75 1.08

4 1.75 0.54 1.40 4.48 1.28 0.75

5 0.83 0.56 1.62 4.48 1.28 0.75

6 1.89 0.85 2.10 2.09 1.81 0.78

7 1.76 1.18 1.19 2.09 1.81 0.78

8 1.96 0.93 1.83 1.43 3.33 1.02

9 2.65 1.51 2.22 1.43 3.33 1.02

10 2.03 0.90 1.33 14.93 7.76 1.22

11 1.64 1.16 1.89 14.93 7.76 1.22

12 1.63 1.04 3.42 3.05 3.59 1.49

13 1.56 1.12 4.60 3.05 3.59 1.49

Table 1. Comparing reprojection and rectifi-
cation errors for the three experiments. Note

that the reprojection errors are quite similar
and non-indicative of the stereo results in
Figure 3, while the rectification errors vary

drastically and they directly reflect the qual-
ity of the stereo reconstruction.

pairs and then align the different depth maps or 3D surfaces

using a rigid alignment technique such as ICP [2]. In prac-

tice, this is how we generate the final 3D model in Figure 4.

This result, using calibrations from experiment three, shows

the high accuracy of calibrations computed using the recti-

fication error.

5 Conclusion

We propose a new technique for calibrating binocular

cameras using a pair-wise rectification error. This technique

can be used to significantly improve stereo reconstruction

results, as compared to using the standard reprojection er-

ror for calibration.

In order for a camera pair to be considered as a binocu-

lar pair for calibration, the only requirement is that the two

cameras observe the same sequence of calibration grid im-

ages. This means that the cameras should be placed fairly

close together with significant overlap in their views. How-

ever, this condition is already met in most binocular camera

setups, if the cameras are to be used for applications such

as stereo reconstruction or novel view interpolation.

We validate our approach by calibrating seven binoc-

ular pairs using our rectification error measure, and fur-

ther demonstrate how the cameras can be combined into an
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Figure 4. Combined multi-view 3D result from

Experiment three.

accurate multi-view reconstruction setup. We believe our

method can benefit a number of applications that make use

of camera arrays, where binocular pairs are available.
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Figure 3. Binocular stereo results for a styrofoam head using the calibrations from the three experi-
ments. Each row is a separate camera pair. From left to right we show the two camera views, then the
depth maps from experiments one, two and three respectively. Corresponding quantitative results

are shown in Table 1.
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