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Abstract of coplanar points. When the input points lie on a single

plane, it is wise to have multiple input images containing

Reprojection error is a commonly used measure for com- different planar grid orientations in order to ensure a ro-
paring the quality of different camera calibrations, for-ex bust calibration, even though Tsai's method can operate on
ample when choosing the best calibration from a set. While a single input image. Zhang's calibration method strictly
this measure is suitable for single cameras, we show thatenforces these conditions, requiring multiple images of a
we can improve calibrations in a binocular or multi-camera planar calibration grid. In this paper we will employ the
setup by calibrating the cameras in pairs using a recti ca- method of Zhang, although our algorithm is applicable to
tion error. The recti cation error determines the mismatch other calibration methods, including that of Tsai.
in epipolar constraints between a pair of cameras, and it
can be used to calibrate binocular camera setups more ac-
curately than using the reprojection error. We provide a
guantitative comparison of the reprojection and recti ca-
tion errors, and also demonstrate our result with examples
of binocular stereo reconstruction.

Once multiple calibration images are collected, the cali-
bration process proceeds by nding the projection of known
grid points in the images and then solving for the camera pa-
rameters that minimize the reprojection error of the detct
points. The result is a single set of intrinsic parameters fo
the entire image sequence and multiple sets of extrinsic pa-
rameters, one for each calibration grid location. All of the
) images are used to compute the intrinsic parameters, how-
1 Introduction ever each set of extrinsic parameters is computed from a

single image and the corresponding grid location. The prob-

One of the most common problems in computer vision lem, as pointed out by Zaharescu et al. [20], is to determine
is camera calibration. The process of calibration is to de- which of the extrinsic parameters to use. When collect-
termine the intrinsic and extrinsic parameters of a cam- ing the images, a small number of precisely oriented grid
era from a number of correspondences between 3D pointdocations could be recorded to ensure that the entire cap-
and their projections onto one or multiple images [17, 21]. ture space is sampled by points. Alternatively, a shortwide
Most often this is accomplished using a calibration plane could be captured where the calibration grid is rotated more
with a checkerboard or other known marker pattern [5]. or less at random, resulting in hundreds of input images but
In this paper we focus on the problem of multiple camera also covering the entire space. The latter approach is more
calibration, where the relative projection matrices be&we practical, however there will be many more calibrations to
cameras must be very accurate, for example in binocularchoose from. Each different location of the calibratiordgri
stereo [11], multi-view stereo [12], human pose reconstruc produces different extrinsic parameters for the camettd, wi
tion [18, 4], and novel view interpolation [22, 14]. For tkes varying accuracy depending on the grid orientation, visibi
applications, the quality of the camera calibration has-a di ity, illumination, noise and a variety of other parameters.
rectimpact on the quality of the results. We will speci gall  The standard approach to determine which grid location to
explore binocular camera calibration, and later discuss ho use is to keep the extrinsic parameters that give the lowest
our approach can be used in a many-camera setup. reprojection error in theingleimage from which the ex-

The two most common techniques for camera calibration trinsics are calculated. This is the only image for which 3D
are those of Tsai [17] and Zhang [21]. While the method points are known, and thus the best we can hope for in sin-
of Tsai has the advantage that it can handle both coplanaigle camera calibration. However, the reprojection error fo
and non-coplanar input points, the easiest and most praca single grid location is only guaranteed to be accurate for
tical approach is to use a calibration grid or checkerboard points that lie on the plane of that grid, and other points off



the plane can have a much higher reprojection error. Al- curate than using the standard reprojection error. Thidtres

though multiple grid locations are captured in the sequence will be demonstrated quantitatively as well as qualitdyive

the 3D location of one grid relative to another is usually using multi-view stereo reconstruction.

not available, and so we are unable to compute reprojection The remainder of the paper is organized as follows. In

errors for points off the plane of each grid. Section 2 we provide an overview of the camera model and
In this paper we show that in a binocular camera setup €@mera calibration. We intr(_nduce the recti cation error in

we can useall the grid locations in all images to evaluate S€ction 3, and show experimental results comparing our

eachpotential set of extrinsic parameters and more accu-Measure to the reprojection error in Section 4. Finally, we

rately determine the calibration for a pair of cameras. We do conclude in Section 5.

this by estimating a reprojection error for the entire volum

spanned by the calibration grid over the whole sequence2 Camera Calibration Overview

of images, rather than simply a reprojection error for only

the points that lie on the calibration plane in one image, as  we begin by describing the camera model, a typical

with the single-camera approach described above. Our nevpjanar-based calibration method, and the standard recti -

approach is partly inspired by theormalized stereo cali-  cation error used to evaluate calibration.
bration error (NSCE) of Weng et al. [19], which evaluates

multi-calibration by measuring the triangulation erroreof 2 1 camera Model
pair of cameras using known 3D points. However, for any
given calibration, we do not know the 3D point locations

on any calibration plane except the one that de nes the ex-
trinsic parameters, so the NSCE is not applicable. Even

though we do not know the 3D locations of points on the i, ot the camera in the world. The intrinsic parameters in-
other grids, the projection of common points onto the two clude the focal length in pixelgx: fy ), the principal point
cameras can be found and we can measure the accuracy %x; py), and a skew factoss (which is often ignored and

the epipolar ggometry for each potent|a! set of extrinsic pa ge¢ {6 zer0 [15]). These parameters form the camera matrix
rameters. This accuracy measure, which we callrédee K de ned as

ti cation error, measures the subpixel scanline difference

A camera model consists of a set of intrinsic parameters,
which de ne how the camera forms an image, and a set of
extrinsic parameters, which de ne the position and orienta

between the projection of common points onto the recti- 2 fx s px
ed versions of the two camera images. If the calibration =4 0 fy py 5: (1)
of the two cameras is accurate then any scene point visible O 0 1

by both cameras will project onto the same scanline in the
recti ed images. Any discrepancy indicates an errorinthe _, ", : . N .
calibration. Combining epipolar geometry and calibration R® “anda translat|on_ vectar=[ tx ty @z |, Wh'Ch_

has proven useful in past research. A similar measure torelate the world coprdlqate frame to thg camera coordinate
our recti cation error was used by Furukawa and Ponce to frgnlle. The full calibration forms a projection matix 2
evaluate their calibration algorithm [6], and Sinhaet&oa < denedas
use epipolar geometry to calibrate camera networks from

the silhouettes of objects [13].

Arelated technique for nding the parameters of a multi- Which maps world points to camera pixels.
camera setup is bundle adjustment [8]. The goal of bun-  The calibration parameters also include radial distortion
dle adjustment is to simultaneously solve for optimal scene Co€f cients to correct lens aberration. From this point on
structure and camera parameters given a set of 2D inter\we will assume that radial distortion has been corrected for
est points that are common among subsets of views. How-all camera images.
ever, it is well known that bundle adjustment fails if there
is insuf cient overlap between many camera views [16, 9]. 2.2  Calibration
Typically, each feature point must be visible in at least
four views in order to produce reliable camera parameter We will focus on the common calibration technique of
estimates. It is not always possible to provide such re- Zhang [21]. This method is widely used and an implemen-
dundancy, for example i860 sparse multi-view recon- tation is readily available in the OpenCV library [1]. The
struction, where only a small number of cameras are avail-input is a set of several views of a known calibration grid,
able [18, 4]. Since we only require pairs of cameras to havewhere every view is described by several world-to-2D point
overlapping views, our recti cation error can be usedto nd correspondences. Typically only 20-30 views are required,
very accurate camera calibrations in these cases, more adiowever we prefer to capture a video sequence of hundreds

The extrinsic parameters include a rotation maRixX2

P =K [Rjt]; @)
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Figure 1. Visualizing reprojection errors for two differen t calibrations of a single camera. The top row
(A & C) is calibrated with extrinsic parameters from grid A, w hile the bottom row (B & D) is calibrated
from grid B (intrinsic parameters are the same for both). The points on the common grid in C and
D lie off the planes of both A and B. The calibration from grid B is more accurate than the one from
grid A, as shown in the zoom images on the far right.

of views, rather than attempting to choose the small number2.3  Reprojection Error
of views that will provide the best calibration. The world
points are de ned by the calibration plane & 0), and LetP; = K [Rijti] be the projection matrix of cameca
an elegant marker pattern and corner detection scheme hagr calibration grid viewi. Assume we have detect&ayrid
been proposed by Fiala and Shu [5] to detect the 2D corre-pointsx; in the image, corresponding to 3D planar points
spondences. The calibration method then solves for all thex ;. Then the reprojection error for imagés
camera parameters such that the reprojection error of the
points is minimized. The result is a singke matrix and 1
multiple R; andt; transformations, one for each view of the €rep [1] = K kPi(X;) xjk: 3)
calibration grid. Since all grid locations are used to esti- =1
mateK we assume the intrinsic parameters are computed  The reprojection error has been widely used as the main
robustly. This assumption is common for multi-camera se- tool for evaluating camera calibration, either in the form
tups [20], and in practice we have observed this to be true.presented above [5, 10, 20], or in a normalized form [15,
However, since aiR; andt; are determined for each input  19]. This is because a low reprojection error indicates an ac
image, the accuracy of each transformation depends on &urate projection matrix, at least for the points on the @lan
single grid location and how well the grid pattern was de- that were used to compute the projection matrix. The prob-
tected in the single image. Therefore, some transformgtion |em is that the reprojection error may increase for 3D points
can be more accurate than others. We illustrate this effectoff the plane, as we saw in Figure 1. The worst case is
in Figure 1. Here we choose two different grid locations, when the planar grid is perpendicular to the optical axis of
A andB, each resulting in a different projection matrix the camera, and the calibration may only be accurate for
Pa = K [RajtalandPg = K [Rgjtg]. BothPa and  essentially a single depth. The reprojection error would be
Pg appear to be accurate when reprojectingglamar grid more accurate if there were additional 3D points available,
points onto the image, as we see in the rst set of zoom im- off the plane of the calibration grid, for which we had cor-
ages. However, when reprojecting points that are not on theresponding detected 2D pixels. The image sequence does
calibration plane used to compute the extrinsic parametersin fact contain many different grid locations for which cor-
(e.g. the plane in Figure 1, C and D), we see at(top  ner points are detected, however the corresponding 3D lo-
row) is less accurate thd? (bottom row). cations of those points are not known. Figure 2 (a) illus-
The problem is to determine which of the multigke trates the problem. The camera is calibrated with respect to
andt; transformations is the most accurate. The common calibration gridi;, which de nes the world coordinate sys-
approach is to select the transformation with the lowest re-tem. Unfortunately, the 3D location of poif@ on gridi,
projection error for the single calibration grid used to eom is not available, and so Equation 3 cannot be applied. For
pute the transformation, as we describe next. this reason, the reprojection error can only be evaluated on



calibration of the cameras is accurate (see Figure 2 (b) and
_ _ (c)). This fact is independent of the 3D location@f and
12 I2 thus we are able to use all detected points from all grid lo-
_ _ cations that are common in both views.
I I From the above observation, we form a measuneof
ti cation error for two cameras; andc,, and calibration
v v grid viewi as follows. For each calibration grid, let th®
)_. detected grid point on the image planecgfcorresponding
RN to unknown 3D poinQ¥ begf = (uk;vk), and on the im-
: \Q _ age plane o, begs = (u;vk). Forc 2 f 1;2g, we denote
'

\
. s ok [0] to refer touk andgf[1] to refer tovk. Then,

\\
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whereT is the rectifying transformation for cameraus-

ing calibrationi, andT* is de ned similarly for camera,.

N is the total number of grid positions in the sequence, and
M; is the number of grid points that are commonly detected
in both camera views for grid positign Note that the rec-

¢) Rectification Error for Two Cameras ti cation error is symmetric, S@Z, = €réq - We compute
the rectifying transformations using the method of Fusiell
et al. [7]. We illustrate the recti cation error for a patii@r
pointQ in Figure 2 (c), where

I %

Figure 2. Evaluating the extrinsic parameters

computed using calibration grid i1. a) With ©= TS
a single camera we cannot compute repro- 10 _ 'CZ '
jection errors for points on other planes. b) @ = Tk

With two cameras, although the 3D location
of Q is not known, its projection onto the two
cameras can be found. c) The recti cation
error is the scanline difference between the
projection of Q onto the recti ed versions of
the two cameras.

This recti cation error measure can now be used to deter-
mine more accurate binocular camera calibrations than the
standard method of using the reprojection error. In fat, th
calibration gridA in Figure 1 was the one with the lowest
reprojection error, and gri@ had the lowest recti cation
error. As we saw in that gure, the recti cation error deter-
mined a more accurate calibration.

planei;. However, if two cameras observe the same cali-
bration grid sequence (such as the case of binocular stereod  Experimental Results
then we propose a pair-wise calibration algorithm using the

recti cation error. We demonstrate the quality of the recti cation error by
_ _ calibrating a multi-camera setup of 14 cameras, arranged as
3 Rectication Error seven binocular pairs. We show qualitative results by per-

forming stereo reconstruction of a static object, and dquant
When two cameras observe the same sequence of calitatively prove that the recti cation error is a better took f

bration grid locations, all grids can be used to evaluate theevaluating binocular camera calibrations than the reproje
calibration accuracy for each individual set of extrinsé&c p  tion error.
rameters. As we have seen, the standard reprojection error Our static object is a human head model made from sty-
in Equation 3 cannot be applied to points off the main grid rofoam, which we have painted in order to give it a high-
(grid iy in Figure 2). However, if a pointQ, on some other  frequency surface texture to aid the stereo reconstruction
grid is visible in both cameras then epipolar constrairits te  We use an ARTag calibration grid [5] and the method of
us that the projection @ onto the recti ed versions of the  Zhang [21] to compute one set of intrinsic parameters and
left and right images should lie on the same scanline, if the multiple sets of extrinsic parameters for each camera.lln al



of our experiments we record a calibration video for each
camera, where the calibration grid is rotated and trarslate

throughout the capture volume, resulting in over one thou-
sand planar grid orientations. As we have discussed, the
problem lies in choosing which extrinsic parameters to use.

We will show in Section 4.4 that this choice is critical to
the quality of the calibration and the resulting stereo neco
struction.

In this paper we are in fact advocating two principles.
One, cameras should be calibrated in binocular pairs, an
two, cameras should be calibrated using the recti cation er
ror. In order to show the importance of combining these
principles we have performed three experiments.
rst experiment we nd the best extrinsic parameters for
all cameras globally using reprojection error. This is what

we refer to as the standard approach, which we use as a
baseline for comparison. In the second experiment we cali-

brate the cameras in pairs, but still use the reprojectimr.er
This experiment will show that simply calibrating in paiss i
not suf cient, if the recti cation error measure is not used
Finally, in the third experiment we calibrate in pairs and
use the recti cation error. As we will see, the calibration
quality achieved in the third experiment is consistently su
perior to that of the rst two experiments. Additionally, we
will see that the recti cation error is directly proportiah
to the quality of the stereo reconstruction, no-matter Whic
method is used to choose the extrinsic parameters, unlik
the reprojection error which can be misleading.

4.1 Exp. 1 - Global Reprojection Error

Let S be the set of all calibration grids visible avery

camera view. We choose the single grid location that yields .

the lowest average reprojection error amongdNalcameras.
Speci cally, the gridi that minimizes

- %c C .
min - (€rep[i]):
c=1

®)

The bene t of this approach is that all cameras are cal-

ibrated to the same world coordinate system. However the
drawback is that some cameras will be calibrated better than

others (see Figure 3 and Section 4.4). In practice, depgndin
on the camera setup it may also be dif cult to nd calibra-
tion grids that are visible in all camera views.

4.2 Exp. 2 - Pair-wise Reprojection Error

Let S be the set of all calibration grids visible by a spe-
ci ¢ pair of camerasg; andc,. We choose the single cali-
bration grid that yields the lowest average reprojectioarer
for those two cameras. Speci cally, the gridhat mini-
mizes

In the

(efep [1]):

c2f c1;c29

b ®

The bene t of this approach is that there will be more
grids to choose from, resulting in lower reprojection esror
(see Table 1 and Section 4.4). The drawback is that the low
reprojection errors are misleading, as some calibrations a
still not very accurate (Figure 3). Also, the cameras will

dnot be calibrated in the same world coordinate system, so

combining stereo results from different pairs is no-longer
trivial.

4.3 Exp. 3 - Pair-wise Recti cation Error

Let S be the set of all calibration grids visible by a spe-
ci ¢ pair of camerasg; andc,. We choose the single cali-
bration grid that yields the lowest average recti catioroer
for those two cameras. Speci cally, the gricthat mini-

mizes
X

(Efect [1]):
c2f cy;c29

min 7
i2S (")

This approach has the same bene t as experiment two, in
that there are more grids to choose from than in experiment
one, and the same drawback in that the cameras will not

ebe calibrated in the same coordinate system. However, this

approach yields the most accurate calibrations (again, see
Figure 3).

4.4 Stereo Reconstruction Analysis

We analyze the quality of the calibrations in each exper-
iment by performing stereo reconstruction of our styrofoam
head. We expect that the accuracy of each calibration will
be re ected in the number of outliers in the corresponding
depth map. We use the reconstruction method of Bradley et
al. [3], although other methods could equally be employed.
In this reconstruction algorithm, depth outliers are awgtm
ically rejected by thresholding on the correlation scorsl a
also through a spatial depth Itering post-process. Incffe
the quality of the calibration is related to the completanes
of the depth map.

Our cameras are Sony HDR-SR7 camcorders, which
capture high-de nition video, although we only reconstruc
a single frame. The cameras are placed very close to the re-
construction object and zoomed in to see the painted surface
details. This type of close-range setup is very challenging
to calibrate as even the slightest calibration error resualt
inaccurate reconstruction results.

Qualitative Analysis. Figure 3 shows the depth maps for
each experiment. As we can see, the results from experi-
ment one tend to be rather poor, with only one camera pair



(8-9) producing a valid and mostly complete depth map. We Reprojection Error Recti cation Error
can also see that depth maps for some pairs are only ac- Cam || Exp. 1 | Exp. 2 | Exp. 3 || Exp. 1 | Exp. 2 | Exp. 3
curate at a single depth (i.e. pairs 2-3 and 10-11), which| 0 1.57 | 0.66 | 1.45 1.20 | 1.21 | 1.01
indicates that the chosen calibration grid was likely nearl 1 204 | 1.08 | 1.84 1.20 | 1.21 | 1.01
perpendicular to the optical axes of the cameras, resulting 2 1.77 | 094 | 2.08 || 12.64| 1.75 | 1.08
in a low reprojection error but also low calibration accu- | 3 1.80 | 1.02 | 2.19 || 12.64| 1.75 | 1.08
racy. We see that experiment two sometimes produces bett 4 175 | 054 | 1.40 || 448 | 1.28 | 0.75
ter depth maps than experiment one, although sometimes 5 0.83 | 0.56 | 1.62 4.48 | 1.28 | 0.75
they are worse. This indicates that calibrating in pairaalo 6 1.89 | 085 | 2.10 209 | 1.81 | 0.78
is not suf cient. The results of experiment three always-pro | 7 1.76 1.18 1.19 2.09 181 | 0.78
duce the most complete depth maps, indicating the impor-g 196 | 093 | 1.83 143 | 333 | 1.02
tance of calibrating in pairs and using the recti cationogrr 9 265 | 151 | 2.22 143 | 333 | 1.02
- . _— 10 203 | 090 | 1.33 || 1493| 7.76 | 1.22
QuannFatlve AnaIyS|.s. Table 1 shows reprolectlon errors | 44 164 | 116 | 1.89 | 1493| 776 | 1.22
(Eqpatlon Q)anQrectl cation errors (Equation 4) for thg re- 1 163 | 104 | 342 305 | 359 | 1.49
sulting calibration of every camera from each experiment, 13 156 | 1.12 | 4.60 3.05 | 359 | 1.49

measured in pixels. This data corresponds to the stereo r

sults in Figure 3. Using this table we can quantitatively
analyze the difference between the two measures. As ex-
pected, the reprojection errors for experiment two are towe
than experiments one and three, although this has no cor-
relation with the quality of the stereo reconstruction aod s
the reprojection error is not always indicative of califwat
accuracy. On the other hand, the recti cation error varies

Table 1. Comparing reprojection and recti -
cation errors for the three experiments. Note
that the reprojection errors are quite similar
and non-indicative of the stereo results in
Figure 3, while the recti cation errors vary
drastically and they directly re ect the qual-

between experiments one and two, and a lower error value
directly correlates with better stereo reconstructioriefre
again to Figure 3). As expected, experiment three produced
the lowest recti cation errors and also the best reconstruc
tion results. It is clear from comparing Table 1 to the depth Pairs and then align the different depth maps or 3D surfaces
images in Figure 3 that our proposed recti cation error ac- Using a rigid alignment technique such as ICP [2]. In prac-

curately measures the quality of binocular camera calibra-tice, this is how we generate the nal 3D model in Figure 4.
tions. This result, using calibrations from experiment threeysho

the high accuracy of calibrations computed using the recti-
cation error.

ity of the stereo reconstruction.

Merging stereo pairs. If we wish to generate a 3D
model from the stereo reconstructions, the cameras must
be aligned in the same world coordinates. For experiments .

two and three, the resulting pair-wise calibrations nedwmkto 5 Conclusion

transformed rigidly into a global coordinate system. This

can be achieved in a number of ways. First, experiment We propose a new technique for calibrating binocular
one could be performed to establish the world coordinate cameras using a pair-wise recti cation error. This teclueiq
system, and then each pair could be commonly transformedcan be used to signi cantly improve stereo reconstruction
into the global coordinates. In this approach, the sametran results, as compared to using the standard reprojection er-
formation would be applied to each camera in a pair, keep-ror for calibration.

ing the relative transformations between the two cameras In order for a camera pair to be considered as a binocu-
xed and therefore very accurate. The drawback is that lar pair for calibration, the only requirement is that thetw
inter-pair alignment would be less accurate than the pair-cameras observe the same sequence of calibration grid im-
wise alignment. A second option is to perform pair-wise ages. This means that the cameras should be placed fairly
calibration between non-stereo pairs dndld up a global close together with signi cant overlap in their views. How-
calibration by sequentially adding pairs. For examplehdéft  ever, this condition is already met in most binocular camera
stereo pairs arec],c,], [c3,Cc4], and [cs,Ce], then pair-wise  setups, if the cameras are to be used for applications such
calibration could be performed between camegaandcz, as stereo reconstruction or novel view interpolation.

thus aligning the rst two pairs, and then betwegrandcs, We validate our approach by calibrating seven binoc-
thus aligning the last pair with the rst two. Finally, a thir ~ ular pairs using our recti cation error measure, and fur-
option is to complete the binocular stereo reconstruction i ther demonstrate how the cameras can be combined into an
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Figure 3. Binocular stereo results for a styrofoam head usin g the calibrations from the three experi-
ments. Each row is a separate camera pair. From left to right w e show the two camera views, then the
depth maps from experiments one, two and three respectively . Corresponding quantitative results
are shown in Table 1.



