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1. Coefficient Subproblem
As described in the main manuscript in Section 2.1.2,

the optimization problem from Equation (4) w.r.t. z can be
written as

argmin
z

1

2
‖b′ −D′z‖22 + β‖z‖1 (1)

where b′ = [b1T . . .bJ
T
]T , D′ is a block diagonal matrix

with D = [D1 . . .DW ] repeated along its diagonal J times,
and z = [z1 . . . zJ ]T and zj = [z1

T . . . zW
T ]. Having de-

fined these operators, we can use the same row partition as
in Equation (5) of the main manuscript for b′ and z.

argmin
zi

1

2

N∑
i=1

‖bi −Dzi‖22 + β‖zi‖1 (2)

Analogue to the ADMM method for the filter subproblem,
we derive the following Algorithm 3 for solving for the
sparse coefficient maps zi. However, unlike in the filter
subproblem, we do not enforce consensus among the co-
efficient feature maps zi since there exists a distinct zi for
each bi,∀i = [1 . . . N ].

In Algorithm 3, each zi update takes the form of a
Tikhonov-regularized least squares problem, which has the
analytical solution

zk+1
i = (D†D+ ρI)−1(D†bi + ρ(yki − λki )), (3)

where ·† denotes the conjugate transpose. As described
in [5, 6, 10] one can find a variable reordering which makes
(D†D+ρI) block-diagonal. Following [10] we directly in-
vert the block-diagonal matrix using Cholesky factorization
for the individual blocks in a parallel. The y-update in Al-
gorithm 3 has the form of the shrinkage proximal operator

∗Denotes equal contribution

Algorithm 3 ADMM for Feature Map Optimization z

1: for i = 1 to N do
2: for k = 1 to V do
3: zk+1

i = argmin
zi

1
2‖bi−Dzi‖22+

ρ
2‖zi−y

k
i +λ

k
i ‖22

4: yk+1
i = argmin

yi

β‖yi‖1+ ρ
2‖yi−zi

k+1−λki ‖22

5: λk+1
i = λki + zk+1

i − yk+1
i

6: end for
7: end for
8: z = [zT1 . . . z

T
N ]T

prox β
ρ

(zik+1 + λi
k), where

proxθ‖·‖(v) = max

(
1− θβ

|v|
, 0

)
� v Shrinkage (4)

For a detailed review on proximal operators as a base
function of proximal optimization algorithms please refer
to [15].

Note that the z-subproblem could be solved using other
flavors of parallelized ADMM algorithms. Specifically, we
found that solving for zi using[12] leads a runtime gain of
approximately 20%.

1.1. Splitting Strategies

In our formulation of Equation 4 from the main
manuscript the training data b and coefficient blocks z
were partitioned across the examples (index J). Alterna-
tively, blocks can be chosen inside the examples, i.e. blocks
for regions in images, when individual example images
have dimensions. Another possible partitioning scheme for
higher dimensional datasets is to choose blocks across the
higher feature dimensions. For example, from a large video
dataset, choosing blocks partitioned across the time dimen-
sion. Both these partitioning schemes allows us to select



Algorithm 4 ADMM for the Consensus Feature Map Opti-
mization z

1: for k = 1 to V do
2: for i = 1 to N do
3: zk+1

i = argmin
zi

1
2‖bi−Dizi‖22+

ρ
2‖zi−y

k+λki ‖22
4: end for
5: yk+1 = argmin

y
β‖y‖1 + Nρ

2 ‖y − zk+1 − λk‖22
6: for i = 1 to N do
7: λk+1

i = λki + dk+1
i − yk+1

8: end for
9: end for

10: z = yk+1

blocks small enough such that the corresponding solver fits
into the memory of a single worker. The algorithm for com-
puting the dictionary and their corresponding sparse coeffi-
cients maps are Algorithm 1 (main manuscript) and Algo-
rithm 3 respectively.

However, if the partitioning scheme results in overlap-
ping image blocks, then the consensus constraint needs to
be enforced across the coefficient maps z for consistent
boundaries. This yields the consensus-based Algorithm 4
(analogoue to Algorithm 1 in main manuscript) for comput-
ing the sparse coefficient feature maps z.

1.2. Poisson Noise Penalty

The proximal operator to account for Poisson noise dur-
ing reconstruction is defined following [9], which is given
below for completeness:

proxθ(vi) =

{
vi M(i) = 1

vi−θ
2 +

√
θb+ (θ−vi)2

4 else
,

(5)
where b is the data term we are reconstructing, i indicates
a single pixel location in b, and M represents the logical
subsampling mask.

2. Objective Convergence
We have empirically verified the convergence of the pro-

posed algorithm. Figure 1 shows comparisons of existing
CSC and CCSC on a small Fruit dataset (10 images), which
can entirely fit into available memory. We can observe
that the proposed CCSC converges to the same objective
as is obtained from the current state-of-the-art CSC tech-
nique [10]. Furthermore, we have plotted the convergence
for the sequential and the parallel mode of our CCSC algo-
rithm.

Note that the increase in time to converge for our (se-
quential/parallel) CCSC algorithm is higher because of the
additional consensus computations performed on a very

Figure 1: Convergence for sequential block-optimization.
When only a single worker is available the subproblems
have to be executed sequentially, otherwise they can be
parallelized. The plots show convergence for a very small
dataset (fruits from [18, 10]). Our consensus optimization
method convergences to the same stationary point. Spatial
methods such as [18] take several hours (more than 5 for
this example) and reach a significantly higher objective.

small dataset that can easily fit in memory, and therefore
can be quickly computed using [10]. Please refer to the
main manuscript for runtime comparisons on medium and
large datasets which highlight the drastic runtime benefits
of the proposed approach.

3. Contrast Normalization
Similar to all existing CSC techniques, we perform con-

trast normalization on the input data, effective learning from
whitened data which is a standard technique in most dic-
tionary learning techniques. However, for the reconstruc-
tion of natural images, we require the correct scaling and
offset parameters for the image. While 2D CSC meth-
ods [5, 10] performed their reconstruction on pre-processed
contrast normalized data, Serrano et al. [17] employed com-
plex proximal operators in place of applying contrast nor-
malization directly. We introduce a simple modification to
the objective function to implicitly apply contrast normal-
ization during reconstruction.

We introduce the offset term (b′) which is our obser-
vation data convolved with a local contrast normalization
Gaussian kernel [18]. We then modify our objective as,

‖b−M(DUz+b′)‖22 = ‖(b−Mb′)−MDUz‖22. (6)

Thus allowing us to solve the optimization identically to
that described in our main text with only a simple modi-
fication of the data term and quadratic proximal operator
described in the main text. In addition to its simplicity, this
method allows us to reconstruct the original image without
affecting channel intensity differences or introducing con-
trast normalization artifacts.

However, if there is a significant amount of missing data
in b (and therefore b′), inpainting can be computationally



Image CCSC [7] [8] [2, 3]
Wind Mill 35.13 31.98 32.25 23.82
Sea Rock 28.45 27.60 27.21 21.20
Parthenon 31.36 28.79 28.85 24.75
Rolls Royce 29.15 24.47 24.91 21.14
Fence 30.83 29.21 29.07 23.67
Car 34.06 32.44 32.31 27.19
Kid 29.41 27.33 27.26 23.48
Tower 29.97 27.96 27.88 23.43
Fish 31.68 28.00 28.44 26.39
Food 36.77 33.12 33.69 30.14

Table 1: 2D Image Inpainting: CCSC compared to three
other state of the art inpainting algorithms. Please note
that our algorithm performs much better for all instances
as compared to the state of the art inpainting techniques
[2, 3, 7, 8].

costly. Therefore, we approximate the missing data in b
before computing b′. Simple interpolation was adequate
for all example applications that we explored.

4. Results

4.1. Inpainting

4.1.1 2D Inpainting

In this section, we provide a set of quantitative results (Ta-
ble 1), comparing our algorithm CCSC with other state of
the art inpainting algorithms, followed by qualitative results
in Figure 4. We observe that out algorithm performs better
than various state of the art inpainting algorithms.

4.1.2 Higher-Dimensional Inpainting

To evaluate CCSC for inpainting in higher dimension, we
have reconstructed randomly subsampled multispectral im-
ages. The results are shown in Figure 5. To verify that
higher-dimensional reconstruction is beneficial, and in par-
ticular superior to simply applying 2D CSC on each channel
independently, we compared reconstruction results for sub-
sampled multispectral images. In all cases the results of the
proposed method were better, often considerably so, than
the 2D comparison. This is not all together surprising as
we are able to enforce similarity between channels which
the 2D methods are not. Quantitative results are listed in
Table 2.

4.2. Poisson Deconvolution

We provide 2D Poisson deconvolution qualitative results
in Figure 6 for comparison with classical CSC. We also
provide quantitative comparison of our CCSC algorithm

Image CCSC [14] [19] [16] [1]
Agama 28.05 22.80 24.79 22.71 22.41
Gypful 29.36 22.26 24.77 23.60 23.95
Kathmandu 23.14 18.10 19.84 19.58 19.34
Laser 31.59 25.14 25.77 27.46 26.43
Libelle 27.56 18.32 21.55 21.66 18.91
Melinaea 28.36 23.19 23.83 23.13 18.81
Mototaxis 23.41 19.52 20.31 20.11 19.33
Painted 22.47 17.20 17.79 18.61 17.67
Platycercus 25.93 18.29 20.10 20.27 20.02
Porsche 27.11 18.05 21.14 18.58 17.47

Table 3: Poisson deconvolution: CCSC compared to three
other state of the art deconvolution algorithms. Please note
that our algorithm performs much better for all instances as
compared to the state of the art deconvolution techniques.

as compared to state-of-the-art deconvolution algorithms in
Table 3.

4.3. Video Deblurring

We evaluated CCSC when applied to video deblurring.
To simulate blurred data we applied a 3×3 snake-like blur
kernel to each frame from 10, 100 frame video clips ran-
domly drawn from the “Big Buck Bunny” video1. For com-
parison we have included results from a comparable 2D

1(c) copyright 2008, Blender Foundation / www.bigbuckbunny.org

OriginalOriginal Blurred (35.59dB)Blurred (35.59dB) CCSC (37.29dB)CCSC (37.29dB) Krishnan (35.15dB)Krishnan (35.15dB)

Clip Blurred CCSC Krishnan [11]
1 34.94 40.54 38.23
2 40.54 34.41 32.82
3 38.23 38.08 35.59
4 28.65 39.46 37.86
5 34.41 36.85 36.33
6 32.82 34.63 33.91
7 32.53 36.54 35.36
8 38.08 35.83 33.96
9 35.59 37.29 35.15

10 31.49 35.55 34.09

Figure 2: Video Deblurring PSNR (dB) Results. Top: Se-
lected deblurred frames. Note that SCSC is able to recover
more high frequency information such as the bird feathers
and bark speckles. Bottom: Quantitative comparisons on a
representative test set of videos.



Dataset Columbia Cave Testing Set Harvard Testing Set
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PSNR Heide [10] 23.17 20.88 17.59 17.06 19.14 20.81 20.66 21.32 21.43 20.28 21.73 22.11 19.40 19.38 19.98 21.51 19.39 19.33 18.88 19.01
PSNR Ours 25.31 27.14 29.34 37.17 23.50 31.71 33.19 32.21 30.72 22.81 25.84 25.84 39.54 40.99 49.23 31.79 36.10 41.70 28.51 46.71

Table 2: Multispectral Inpainting (2D/3D): Reconstruction quality with our proposed 3D dictionary (bottom row) and the
filters learned using [10] (center row). All reconstructions were performed with 50% subsampling of the testing data.

method [11] applied to each frame individually. The results
of this comparison and the example output can be found in
Figure 2.

4.3.1 Full Video Filters

For completeness we include our learned video dictionary
in its entirety in Figure 7.

4.4. Light Field View Synthesis

In Figure 8 we provide our learned light field dictionary
in its entirety. We also provide reconstructed novel views
for comparison in Figure 9.

4.5. Multispectral Demosaicing

In this section, we include the color filter mosaic used
during all of our multispectral demosaicing experiments in
Figure 3. Each pixel records information only for a narrow
band-pass in wavelength, arranged a filter array of 5×5 pix-
els.

In addition to the results shown in the main manuscript,
we show here the output from both SD and WB algo-
rithms [4], IID [13], and our own in Figure 10. Furthermore,

I15x-1,y-1 I12x,y-1 I13x+1,y-1 I14x+2,y-1 I15x+3,y-1 I12x+4,y-1 
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I11x-1,y+2 I8x,y+2 I9x+1,y+2 I10x+2,y+2 I11x+3,y+2 I8x+4,y+2 
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I3x-1,y+4 I0x,y+4 I1x+1,y+4 I2x+2,y+4 I3x+3,y+4 I0x+4,y+4 

 

Figure 3: MultiSpectral Filter Array (MSFA) used during
demosaicing experiments.

we include synthetic RGB images in Figure 11 which visu-
alize the ability of the demosaicking methods to faithfully
capture high frequency detail in the scene.
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Figure 4: 2D Image Inpainting: Additional inpainting results using 2D filters. From left to right: (a) Subsampled image,
(b) Ground Truth, (c) CCSC, (d) Conventional CSC. Please zoom into the digital version of this document for pixel-level
comparisons or view the attached images themselves.
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Figure 5: Multispectral Inpainting: Gamma-corrected reconstruction results for the multispectral inpainting problem. For
both samples from top row to bottom; (a) Five channels of the original multispectral dataset, (b) Randomly sampled incom-
plete observations, (c) Reconstruction results with 2D CSC, (d) Reconstruction results with our algorithm. Edges as well as
spectral integrity are much better represented by our algorithm which enforces similar correlations across all channels. Please
zoom into the digital version of this document for pixel-level comparisons or view the attached images themselves.



BlurredBlurred OriginalOriginal CCSCCCSC CSCCSC

Figure 6: Poisson deconvolution: Additional deconvolution results using 2D filters. From left to right: (a) Blurred image,
(b) Ground Truth, (c) CCSC, (d) Conventional CSC. Please zoom into the digital version of this document for pixel-level
comparisons or view the attached images themselves.



Figure 7: Video Filters: Learned Video Features (3D-Convolutional). Each row shows a single 3D convolutional video kernel
whose features slowly change over time from left to right.



Figure 8: Light Field filters: Learned Light Field Features (2D Convolutional + 2D Non-Convolutional). Each group of 5x5
filters shows all 25 angular features learned.
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Figure 9: Light field view synthesis: Five synthesized views from the “Seahorse” data set.
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Figure 10: Multispectral demosaicing results from eight wavelengths of the chart dataset.
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Figure 11: Multispectral demosaicing results visualized as synthetic RGB images.


